1
|
Benny A, Scanlan EM. Synthesis of macrocyclic thiolactone peptides via photochemical intramolecular radical acyl thiol-ene ligation. Chem Commun (Camb) 2024; 60:7950-7953. [PMID: 38985027 DOI: 10.1039/d4cc02442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A photochemical acyl thiol-ene reaction can be used to rapidly cyclise fully unprotected peptides bearing both a thioacid and alkene to form peptide thiolactones. This strategy represents the first reported synthesis of peptide thiolactones under radical-mediated conditions.
Collapse
Affiliation(s)
- Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
2
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Oh C, Manavalan B, Shoombuatong W. PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning. Comput Biol Med 2023; 158:106784. [PMID: 36989748 DOI: 10.1016/j.compbiomed.2023.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Martínez OF, Duque HM, Franco OL. Peptidomimetics as Potential Anti-Virulence Drugs Against Resistant Bacterial Pathogens. Front Microbiol 2022; 13:831037. [PMID: 35516442 PMCID: PMC9062693 DOI: 10.3389/fmicb.2022.831037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The uncontrollable spread of superbugs calls for new approaches in dealing with microbial-antibiotic resistance. Accordingly, the anti-virulence approach has arisen as an attractive unconventional strategy to face multidrug-resistant pathogens. As an emergent strategy, there is an imperative demand for discovery, design, and development of anti-virulence drugs. In this regard, peptidomimetic compounds could be a valuable source of anti-virulence drugs, since these molecules circumvent several shortcomings of natural peptide-based drugs like proteolytic instability, immunogenicity, toxicity, and low bioavailability. Some emerging evidence points to the feasibility of peptidomimetics to impair pathogen virulence. Consequently, in this review, we shed some light on the potential of peptidomimetics as anti-virulence drugs to overcome antibiotic resistance. Specifically, we address the anti-virulence activity of peptidomimetics against pathogens' secretion systems, biofilms, and quorum-sensing systems.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
4
|
Cheung CHP, Chow HY, Li C, Blasco P, Chen K, Chen S, Li X. Synthesis of a daptomycin thiolactone analogue via the
MeDbz
‐linker‐based cyclative‐cleavage approach. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hoi Yee Chow
- Department of Chemistry The University of Hong Kong Hong Kong China
| | - Can Li
- Department of Chemistry The University of Hong Kong Hong Kong China
| | - Pilar Blasco
- Department of Chemistry The University of Hong Kong Hong Kong China
| | - Kaichao Chen
- Department of Infectious Diseases and Public Health The City University of Hong Kong Hong Kong China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health The City University of Hong Kong Hong Kong China
| | - Xuechen Li
- Department of Chemistry The University of Hong Kong Hong Kong China
| |
Collapse
|
5
|
Nagano M, Ishida S, Suga H. Inner residues of macrothiolactone in autoinducer peptides-I/IV circumvents S-to-O acyl transfer to the upstream serine residue. RSC Chem Biol 2022; 3:295-300. [PMID: 35359496 PMCID: PMC8905530 DOI: 10.1039/d1cb00225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/23/2022] [Indexed: 11/21/2022] Open
Abstract
Autoinducing peptides I and IV (AIP-I/IV) are naturally occurring cyclic thiodepsipeptides (CTPs) bearing a Ser–Thr–Cys–Asp/Tyr (STC[D/Y]) tetrapeptide motif, where the Cys thiol (HSC) in the side-chain is linked to the Met C-terminal carboxylic acid (MCOOH) to form 5-residue macrothiolactones,−SC(D/Y)FIMCO−. We have recently reported that CTPs containing SX1CX2 motifs spontaneously undergo macrolactonization to yield cyclic depsipeptides (CDPs) by an unprecedented rapid S-to-O acyl transfer to the upstream Ser hydroxyl group. Interestingly, even though the STC[D/Y] motif in AIP-I/IV is a member of the SX1CX2 motif family, it maintains the CTP form. This suggests that AIP-I/IV have a structural or chemical motive for avoiding such an S-to-O acyl transfer, thus retaining the CTP form intact. Here we have used genetic code reprogramming to ribosomally synthesize various AIP-I analogs and studied what the determinant is to control the formation of CTP vs. CDP products. The study revealed that a Gly substitution of the inner Asp/Tyr or Met residues in the thiolactone drastically alters the resistance to the promotion of the S-to-O acyl transfer, giving the corresponding CDP product. This suggests that the steric hindrances originating from the α-substituted sidechain in these two amino acids in the AIP-I/IV thiolactone likely play a critical role in controlling the resistance against macrolactone rearrangement to the upstream Ser residue. In AIP-I/IV, single Gly mutation at the thiolactone induces S-to-O acyl shift to yield a corresponding ring-expanded lactone form.![]()
Collapse
Affiliation(s)
- Masanobu Nagano
- Graduate School of Science, The University of Tokyo 113-0033 Japan
| | - Satoshi Ishida
- Graduate School of Science, The University of Tokyo 113-0033 Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo 113-0033 Japan
| |
Collapse
|
6
|
Menti-Platten M, Aldrich-Wright JR, Gordon CP. A flow-based transition-metal-catalysed hydrogenolysis strategy to facilitate peptide side-chain deprotection. Org Biomol Chem 2021; 20:106-112. [PMID: 34897363 DOI: 10.1039/d1ob02179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orthogonal deprotection methodologies are an invaluable tool for the construction of site-specially modified peptides. Here, we report a facile 10% Pd/CaCO3-based procedure to selectively mediate Nβ-side-chain Cbz-lysis from extended peptide sequences in the presence of trityl and t-Butyl protecting groups.
Collapse
Affiliation(s)
- Maria Menti-Platten
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Australia.
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Australia. .,Nanoscale Organisation and Dynamics Group, Locked Bag 1797, Penrith South DC, Australia
| | - Christopher P Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Australia. .,Nanoscale Organisation and Dynamics Group, Locked Bag 1797, Penrith South DC, Australia.,Molecular Medicine Research Group, Western Sydney University School of Medicine, Narellan Rd & Gilchrist Dr, 2560, Campbelltown, NSW, Australia
| |
Collapse
|
7
|
McBrayer DN, Cameron CD, Tal-Gan Y. Development and utilization of peptide-based quorum sensing modulators in Gram-positive bacteria. Org Biomol Chem 2020; 18:7273-7290. [PMID: 32914160 PMCID: PMC7530124 DOI: 10.1039/d0ob01421d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quorum sensing (QS) is a mechanism by which bacteria regulate cell density-dependent group behaviors. Gram-positive bacteria generally rely on auto-inducing peptide (AIP)-based QS signaling to regulate their group behaviors. To develop synthetic modulators of these behaviors, the natural peptide needs to be identified and its structure-activity relationships (SARs) with its cognate receptor (either membrane-bound or cytosolic) need to be understood. SAR information allows for the rational design of peptides or peptide mimics with enhanced characteristics, which in turn can be utilized in studies to understand species-specific QS mechanisms and as lead scaffolds for the development of therapeutic candidates that target QS. In this review, we discuss recent work associated with the approaches used towards forwarding each of these steps in Gram-positive bacteria, with a focus on species that have received less attention.
Collapse
Affiliation(s)
- Dominic N McBrayer
- Department of Chemistry, SUNY New Paltz, 1 Hawk Drive, New Paltz, NY 12561, USA. and Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Crissey D Cameron
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
8
|
Dankers C, Tadros J, Harman DG, Aldrich-Wright JR, Nguyen TV, Gordon CP. Immobilized Carbodiimide Assisted Flow Combinatorial Protocol to Facilitate Amide Coupling and Lactamization. ACS COMBINATORIAL SCIENCE 2020; 22:255-267. [PMID: 32283009 DOI: 10.1021/acscombsci.0c00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Through a screen of over one hundred and 30 permutations of reaction temperatures, solvents, carbodiimide resins, and carbodiimide molar equivalences, in the presence, absence, or combination of diisopropylamine and benzotriazole additives, a convenient and first reported carbodiimide polymer-assisted flow approach to effect amide coupling and lactamization was developed. The protocol entails injecting a single solution (1:9 dimethylformamide: dichloromethane) containing a carboxylic acid and an amine or linear peptide sequence into a continuous stream of dichloromethane. The protocol remained viable in the absence of base, did not require carboxylate preactivation which, and in concert with minimal workup requirements, enabled the isolation of products in high yields. Compared to the utilization of untethered carbodiimide reagents, the flow procedure was also observed to provide a degree of racemization safety.
Collapse
Affiliation(s)
- Christian Dankers
- School of Science, Western Sydney University, Locked Bag, Penrith South DC, Sydney, New South Wales 1797, Australia
| | - Joseph Tadros
- School of Science, Western Sydney University, Locked Bag, Penrith South DC, Sydney, New South Wales 1797, Australia
| | - David G. Harman
- School of Medicine, Western Sydney University, Building 30, Goldsmith Avenue, Campbelltown, New South Wales 2560, Australia
- Molecular Medicine Research Group, School of Medicine, Western Sydney University, Building 30, Goldsmith Avenue, Campbelltown, New South Wales 2560, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag, Penrith South DC, Sydney, New South Wales 1797, Australia
- Nanoscale Organization and Dynamics Group, Western Sydney University, Campbelltown, New South Wales 2560, Australia
| | - Thanh V. Nguyen
- School of Chemistry, University of New South Wales, Sydney New South Wales 2052, Australia
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag, Penrith South DC, Sydney, New South Wales 1797, Australia
- Molecular Medicine Research Group, School of Medicine, Western Sydney University, Building 30, Goldsmith Avenue, Campbelltown, New South Wales 2560, Australia
| |
Collapse
|