1
|
Kılıç H, Ceylan D. Multi-responsive shape memory and self-healing hydrogels with gold and silver nanoparticles. J Mater Chem B 2024; 13:336-353. [PMID: 39556003 DOI: 10.1039/d4tb01720j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Nanocomposite smart gels (Nc-x) with self-healing and shape memory properties were designed in different types and size nano particles with temperature or light stimuli. Nc-x networks were prepared by bulk polymerization of stearyl methacrylate (SM) and vinyl pyrrolidone (VP) in the presence of gold and silver nanoparticles. The structure, which does not contain any chemical cross-linkers, is held together by hydrophobic interactions while consisting of dipole-dipole bonds of the VP units and long alkyl groups in the side chains of the SM. Thanks to their crystalline regions, shape memory gels can self-heal with the presence of long hydrophobic chains, and furthermore, the nanoparticles (NPs) incorporated into the structure facilitate the controlled tuning of hydrophilic and hydrophobic properties. Nc-x gels have the ability to self-heal by repairing mechanical damage independently or in the presence of a stimulus, as well as transforming from a temporary form to a permanent form. In vitro experiments on human skin fibroblast cells revealed that cell viability was over 100% after 48 hours and almost complete recovery was observed in scratch experiments at the end of this period. Based on the results obtained, Nc-x gels have been shown to have the potential to be used as a non-invasive wound dressing material alternative to traditional wound closure methods.
Collapse
Affiliation(s)
- Hüsna Kılıç
- Bezmialem Vakıf University, Health Sciences Institute, Department of Biotechnology, 34093 Istanbul, Turkey
| | - Deniz Ceylan
- Bezmialem Vakif University, Faculty of Pharmacy, 34093 Istanbul, Turkey.
| |
Collapse
|
2
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
3
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
4
|
Holey S, Nayak RR. Harnessing Glycolipids for Supramolecular Gelation: A Contemporary Review. ACS OMEGA 2024; 9:25513-25538. [PMID: 38911776 PMCID: PMC11190938 DOI: 10.1021/acsomega.4c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Within the scope of this review, our exploration spans diverse facets of amphiphilic glycolipid-based low-molecular-weight gelators (LMWGs). This journey explores glycolipid synthesis, self-assembly, and gelation with tailorable properties. It begins by examining the design of glycolipids and their influence on gel formation. Following this, a brief exploration of several gel characterization techniques adds another layer to the understanding of these materials. The final section is dedicated to unraveling the various applications of these glycolipid-based supramolecular gels. A meticulous analysis of available glycolipid gelators and their correlations with desired properties for distinct applications is a pivotal aspect of their investigation. As of the present moment, there exists a notable absence of a review dedicated exclusively to glycolipid gelators. This study aims to bridge this critical gap by presenting an overview that provides novel insights into their unique properties and versatile applications. This holistic examination seeks to contribute to a deeper understanding of molecular design, structural characteristics, and functional applications of glycolipid gelators by offering insights that can propel advancements in these converging scientific disciplines. Overall, this review highlights the diverse classifications of glycolipid-derived gelators and particularly emphasizes their capacity to form gels.
Collapse
Affiliation(s)
- Snehal
Ashokrao Holey
- Department
of Oils, Lipid Science and Technology, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rati Ranjan Nayak
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| |
Collapse
|
5
|
Vadala M, Lupascu DC, Galstyan A. Fabrication and characterization of microporous soft templated photoactive 3D materials for water disinfection in batch and continuous flow. Photochem Photobiol Sci 2024; 23:803-814. [PMID: 38462570 DOI: 10.1007/s43630-024-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Water cleaning can be provided in batch mode or in continuous flow. For the latter, some kind of framework must withhold the cleaning agents from washout. Porous structures provide an ideal ratio of surface to volume for optimal access of the water to active sites and are able to facilitate rapid and efficient fluid transport to maintain a constant flow. When functionalized with suitable photoactive agents, they could be used in solar photocatalytic disinfection. In this study, we have used the sugar cube method to fabricate PDMS-based materials that contain three different classes of photosensitizers that differ in absorption wavelength and intensity, charge as well as in ability to generate singlet oxygen. The obtained sponges are characterized by scanning electron microscopy and digital microscopy. Archimede's method was used to measure porosity and density. We show that the materials can absorb visible light and generate Reactive Oxygen Species (ROS) that are required to kill bacteria. The disinfection ability was tested by examining how irradiation time and operation mode (batch vs. flow) contribute to the performance of the material. The current strategy is highly adaptable to other (medium) pressure-driven flow systems and holds promising potential for various applications, including continuous flow photoreactions.
Collapse
Affiliation(s)
- Miriana Vadala
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 15, 45141, Essen, Germany
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 15, 45141, Essen, Germany
| | - Anzhela Galstyan
- Faculty of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), Centre for Water and Environmental Research (ZWU) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany.
| |
Collapse
|
6
|
Ortega IV, Şener Raman T, Schulze A, Flors C. In Situ Single-Cell Bacterial Imaging Provides Mechanistic Insight into the Photodynamic Action of Photosensitizer-Loaded Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5677-5682. [PMID: 38284232 DOI: 10.1021/acsami.3c17916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Hydrogels, three-dimensional hydrophilic polymeric networks with high water retaining capacity, have gained prominence in wound management and drug delivery due to their tunability, softness, permeability, and biocompatibility. Electron-beam polymerized poly(ethylene glycol) diacrylate (PEGDA) hydrogels are particularly useful for phototherapies such as antimicrobial photodynamic therapy (aPDT) due to their excellent optical properties. This work takes advantage of the transparency of PEGDA hydrogels to investigate bacterial responses to aPDT at the single-cell level, in real-time and in situ. The photosensitizer methylene blue (MB) was loaded in PEGDA hydrogels by using two methods: reversible loading and irreversible immobilization within the 3D polymer network. MB release kinetics and singlet oxygen generation were studied, revealing the distinct behaviors of both hydrogels. Real-time imaging of Escherichia coli was conducted during aPDT in both hydrogel types, using the Min protein system to report changes in bacterial physiology. Min oscillation patterns provided mechanistic insights into bacterial photoinactivation, revealing a dependence on the hydrogel preparation method. This difference was attributed to the mobility of MB within the hydrogel, affecting its direct interaction with bacterial membranes. These findings shed light on the complex interplay between hydrogel properties and the bacterial response during aPDT, offering valuable insights for the development of antibacterial wound dressing materials. The study demonstrates the capability of real-time, single-cell fluorescence microscopy to unravel dynamic bacterial behaviors in the intricate environment of hydrogel surfaces during aPDT.
Collapse
Affiliation(s)
- Ingrid V Ortega
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Tuğçe Şener Raman
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), C/Faraday 9, Madrid 28049, Spain
| |
Collapse
|
7
|
Gierlich P, Donohoe C, Behan K, Kelly DJ, Senge MO, Gomes-da-Silva LC. Antitumor Immunity Mediated by Photodynamic Therapy Using Injectable Chitosan Hydrogels for Intratumoral and Sustained Drug Delivery. Biomacromolecules 2024; 25:24-42. [PMID: 37890872 PMCID: PMC10778090 DOI: 10.1021/acs.biomac.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Photodynamic therapy (PDT) is an anticancer therapy with proven efficacy; however, its application is often limited by prolonged skin photosensitivity and solubility issues associated with the phototherapeutic agents. Injectable hydrogels which can effectively provide intratumoral delivery of photosensitizers with sustained release are attracting increased interest for photodynamic cancer therapies. However, most of the hydrogels for PDT applications are based on systems with high complexity, and often, preclinical validation is not provided. Herein, we provide a simple and reliable pH-sensitive hydrogel formulation that presents appropriate rheological properties for intratumoral injection. For this, Temoporfin (m-THPC), which is one of the most potent clinical photosensitizers, was chemically modified to introduce functional groups that act as cross-linkers in the formation of chitosan-based hydrogels. The introduction of -COOH groups resulted in a water-soluble derivative, named PS2, that was the most promising candidate. Although PS2 was not internalized by the target cells, its extracellular activation caused effective damage to the cancer cells, which was likely mediated by lipid peroxidation. The injection of the hydrogel containing PS2 in the tumors was monitored by high-frequency ultrasounds and in vivo fluorescence imaging which confirmed the sustained release of PS2 for at least 72 h. Following local administration, light exposure was conducted one (single irradiation protocol) or three (multiple irradiation protocols) times. The latter delivered the best therapeutic outcomes, which included complete tumor regression and systemic anticancer immune responses. Immunological memory was induced as ∼75% of the mice cured with our strategy rejected a second rechallenge with live cancer cells. Additionally, the failure of PDT to treat immunocompromised mice bearing tumors reinforces the relevance of the host immune system. Finally, our strategy promotes anticancer immune responses that lead to the abscopal protection against distant metastases.
Collapse
Affiliation(s)
- Piotr Gierlich
- Medicinal
Chemistry, Trinity St. James’s Cancer Institute, Trinity Translational
Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
- CQC,
Coimbra Chemistry Center, University of
Coimbra, Rua Larga 3004-535, Coimbra, Portugal
| | - Claire Donohoe
- Medicinal
Chemistry, Trinity St. James’s Cancer Institute, Trinity Translational
Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
- CQC,
Coimbra Chemistry Center, University of
Coimbra, Rua Larga 3004-535, Coimbra, Portugal
| | - Kevin Behan
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2 D02R590, Ireland
| | - Daniel J. Kelly
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2 D02R590, Ireland
| | - Mathias O. Senge
- Medicinal
Chemistry, Trinity St. James’s Cancer Institute, Trinity Translational
Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, Ireland
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2 D02R590, Ireland
| | | |
Collapse
|
8
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
9
|
Guo M, Deng Y, Huang J, Huang Y, Deng J, Wu H. Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells. Polymers (Basel) 2023; 15:3183. [PMID: 37571077 PMCID: PMC10421435 DOI: 10.3390/polym15153183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
To guide therapeutic strategies and to monitor the state changes in the disease, a low-cost, portable, and easily fabricated microfluidic-chip-integrated three-dimensional (3D) microchamber was designed for capturing and analyzing breast cancer cells. Optimally, a colorimetric sensor array was integrated into a microfluidic chip to discriminate the metabolites of the cells. The ultraviolet polymerization characteristic of poly(ethylene glycol) diacrylate (PEGDA) hydrogel was utilized to rapidly fabricate a three-layer hydrogel microfluidic chip with the designed structure under noninvasive 365 nm laser irradiation. 2-Hydroxyethyl methacrylate (HEMA) was added to the prepolymer in order to increase the adhesive capacity of the microchip's surface for capturing cells. 1-Vinyl-2-pyrrolidone (NVP) was designed to improve the toughness and reduce the swelling capacity of the hydrogel composite. A non-toxic 3D hydrogel microarray chip (60 mm × 20 mm × 3 mm) with low immunogenicity and high hydrophilicity was created to simulate the real physiological microenvironment of breast tissue. The crisscross channels were designed to ensure homogeneous seeding density. This hydrogel material displayed excellent biocompatibility and tunable physical properties compared with traditional microfluidic chip materials and can be directly processed to obtain the most desirable microstructure. The feasibility of using a PEGDA hydrogel microfluidic chip for the real-time online detection of breast cancer cells' metabolism was confirmed using a specifically designed colorimetric sensor array with 16 kinds of porphyrin, porphyrin derivatives, and indicator dyes. The results of the principal component analysis (PCA), the hierarchical cluster analysis (HCA), and the linear discriminant analysis (LDA) suggest that the metabolic liquids of different breast cells can be easily distinguished with the developed PEGDA hydrogel microfluidic chip. The PEGDA hydrogel microfluidic chip has potential practicable applicability in distinguishing normal and cancerous breast cells.
Collapse
Affiliation(s)
- Mingyi Guo
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Deng
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Junqiu Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 644005, China
| | - Yanping Huang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
| | - Jing Deng
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
| | - Huachang Wu
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
| |
Collapse
|
10
|
Pinthong T, Yooyod M, Daengmankhong J, Tuancharoensri N, Mahasaranon S, Viyoch J, Jongjitwimol J, Ross S, Ross GM. Development of Natural Active Agent-Containing Porous Hydrogel Sheets with High Water Content for Wound Dressings. Gels 2023; 9:459. [PMID: 37367130 DOI: 10.3390/gels9060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
This work was concerned with the fabrication of a porous hydrogel system suitable for medium to heavy-exudating wounds where traditional hydrogels cannot be used. The hydrogels were based on 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPs). In order to produce the porous structure, additional components were added (acid, blowing agent, foam stabilizer). Manuka honey (MH) was also incorporated at concentrations of 1 and 10% w/w. The hydrogel samples were characterized for morphology via scanning electron microscopy, mechanical rheology, swelling using a gravimetric method, surface absorption, and cell cytotoxicity. The results confirmed the formation of porous hydrogels (PH) with pore sizes ranging from ~50-110 µm. The swelling performance showed that the non-porous hydrogel (NPH) swelled to ~2000%, while PH weight increased ~5000%. Additionally, the use of a surface absorption technique showed that the PH absorbed 10 μL in <3000 ms, and NPH absorbed <1 μL over the same time. Incorporating MH the enhanced gel appearance and mechanical properties, including smaller pores and linear swelling. In summary, the PH produced in this study had excellent swelling performance with rapid absorption of surface liquid. Therefore, these materials have the potential to expand the applicability of hydrogels to a range of wound types, as they can both donate and absorb fluid.
Collapse
Affiliation(s)
- Thanyaporn Pinthong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Maytinee Yooyod
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jinjutha Daengmankhong
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nantaprapa Tuancharoensri
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Jirapas Jongjitwimol
- Department of Medical Technology, Faculty of Allied Health Sciences and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Yan Z, Wang D, Gao Y. Nanomaterials for the treatment of bacterial infection by photothermal/photodynamic synergism. Front Bioeng Biotechnol 2023; 11:1192960. [PMID: 37251578 PMCID: PMC10210152 DOI: 10.3389/fbioe.2023.1192960] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
In the past few decades, great progress has been made in the field of nanomaterials against bacterial infection. However, with the widespread emergence of drug-resistant bacteria, people try their best to explore and develop new antibacterial strategies to fight bacteria without obtaining or increasing drug resistance. Recently, multi-mode synergistic therapy has been considered as an effective scheme for the treatment of bacterial infections, especially the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) with controllable, non-invasive, small side effects and broad-spectrum antibacterial characteristics. It can not only improve the efficiency of antibiotics, but also do not promote antibiotic resistance. Therefore, multifunctional nanomaterials which combine the advantages of PTT and PDT are more and more used in the treatment of bacterial infections. However, there is still a lack of a comprehensive review of the synergistic effect of PTT and PDT in anti-infection. This review first focuses on the synthesis of synergistic photothermal/photodynamic nanomaterials and discusses the ways and challenges of photothermal/photodynamic synergism, as well as the future research direction of photothermal/photodynamic synergistic antibacterial nanomaterials.
Collapse
|
12
|
Martínez-Serrano RD, Cuétara-Guadarrama F, Vonlanthen M, Illescas J, Zhu XX, Rivera E. Facile Obtainment of Fluorescent PEG Hydrogels Bearing Pyrene Groups by Frontal Polymerization. Polymers (Basel) 2023; 15:polym15071687. [PMID: 37050301 PMCID: PMC10097409 DOI: 10.3390/polym15071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Frontal polymerization (FP) was used to prepare poly(ethylene glycol) methyl ether acrylate (PEGMA) fluorescent polymer hydrogels containing pyrenebutyl pendant groups as fluorescent probes. The polymerization procedure was carried out under solvent-free conditions, with different molar quantities of pyrenebutyl methyl ether methacrylate (PybuMA) and PEGMA, in the presence of tricaprylmethylammonium (Aliquat 336®) persulfate as a radical initiator. The obtained PEGPy hydrogels were characterized by FT-IR spectroscopy, confirming the effective incorporation of the PybuMA monomer into the polymer backbone. The thermal properties of the hydrogels were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). After immersing the hydrogels in deionized water at 25 °C and pH = 7, their swelling behavior was investigated by mass gain at different pH and temperature values. The introduction of PybuMA comonomer into the hydrogel resulted in a decreased swelling ability due to the hydrophobicity of PybuMA. The optical properties of PEGPy were determined by UV-visible absorption and fluorescence spectroscopies. Both monomer and excimer emission bands were observed at 379–397 and 486 nm, respectively, and the fluorescence spectra of the PEGPy hydrogel series were recorded in different solvents to explore the coexistence of monomer and excimer emissions.
Collapse
|
13
|
Xie G, Wang X, Mo M, Zhang L, Zhu J. Photothermal Hydrogels for Promoting Infected Wound Healing. Macromol Biosci 2023; 23:e2200378. [PMID: 36337010 DOI: 10.1002/mabi.202200378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Photothermal therapies (PTT), with spatiotemporally controllable antibacterial capabilities without inducing resistance, have shown encouraging prospects in the field of infected wound treatments. As an important platform for PTT, photothermal hydrogels exhibit attractive advantages in the field of infected wound treatment due to their excellent biochemical properties and have been intensively explored in recent years. This review summarizes the progress of the photothermal hydrogels for promoting infected wound healing. Three major elements of photothermal hydrogels, i.e., photothermal materials, hydrogel matrix, and construction methods, are introduced. Furthermore, different strategies of photothermal hydrogels in the treatment of infected wounds are summarized. Finally, the challenges and prospects in the clinical treatment of photothermal hydrogels are discussed.
Collapse
Affiliation(s)
- Ge Xie
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiao Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Min Mo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
14
|
Zheng BD, Xiao MT. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr Polym 2023; 299:120228. [PMID: 36876827 DOI: 10.1016/j.carbpol.2022.120228] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Polysaccharide-based hydrogel has excellent biochemical function, abundant sources, good biocompatibility and other advantages, and has a broad application prospect in biomedical fields, especially in the field of wound healing. With its inherent high specificity and low invasive burden, photothermal therapy has shown great application prospect in preventing wound infection and promoting wound healing. Combining polysaccharide-based hydrogel with photothermal therapy (PTT), multifunctional hydrogel with photothermal, bactericidal, anti-inflammatory and tissue regeneration functions can be designed, so as to achieve better therapeutic effect. This review first focuses on the basic principles of hydrogel and PTT, and the types of polysaccharides that can be used to design hydrogels. In addition, according to the different materials that produce photothermal effects, the design considerations of several representative polysaccharide-based hydrogels are emphatically introduced. Finally, the challenges faced by polysaccharide-based hydrogels with photothermal properties are discussed, and the future prospects of this field are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
15
|
Photodynamic therapy for treating infected skin wounds: A systematic review and meta-analysis from randomized clinical trials. Photodiagnosis Photodyn Ther 2022; 40:103118. [PMID: 36109003 DOI: 10.1016/j.pdpdt.2022.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infected skin wounds represent a public health problem that effects 20 million people worldwide. Photodynamic therapy (PDT) is a treatment option with excellent results against several infections. OBJECTIVE This study aimed to perform a systematic review and meta-analysis on PDT efficacy for treating infected wounds based on randomized clinical trials (RCTs). METHODS PubMed, Scopus, Web of Science, SciELO, and the Cochrane library were searched. The Delphi List criteria and the Revised Cochrane risk-of-bias (Rob 2) were used for evaluating the quality of clinical trials. Meta-analyses were performed with the random-effect model. The odds ratio was the effect measure for binary outcomes, while the standard mean difference was used for continuous outcomes. The trim-and-fill method was used to detect small-study effects. The quality of evidence was verified for each outcome. RESULTS Only four out of 573 articles were selected for the qualitative and quantitative analyses. The most frequent cause of infected wounds was impaired venous circulation (75%). All studies used red LED light. PDT reduced healing time and improved the healing process and wound oxygenation. Patients treated with PDT showed 15% to 17% (p = 0.0003/ I2=0%) lower microbial cell viability in the wound and a significantly smaller wound size (0.72 cm2/p = 0.0187/I2=0%) than patients treated with placebo or red-light exposure. There was a high level of evidence for each meta-analysis outcome. CONCLUSION PDT can be an excellent alternative treatment for infected skin wounds, though larger trials are needed.
Collapse
|
16
|
Teeuwen PCP, Melissari Z, Senge MO, Williams RM. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules 2022; 27:molecules27206967. [PMID: 36296559 PMCID: PMC9610856 DOI: 10.3390/molecules27206967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within this work, we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which, cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Rh(III), Ir(III), Zn(II), Pd(II), Pt(II), Ni(II), Cu(II), Ga(III), In(III) and Al(III) dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed, and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.
Collapse
Affiliation(s)
- Paula C. P. Teeuwen
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Zoi Melissari
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany
- Correspondence: (M.O.S.); (R.M.W.)
| | - René M. Williams
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Correspondence: (M.O.S.); (R.M.W.)
| |
Collapse
|
17
|
Elkihel A, Vernisse C, Ouk T, Lucas R, Chaleix V, Sol V. Cationic
porphyrin–xylan conjugate hydrogels for photodynamic antimicrobial chemotherapy. J Appl Polym Sci 2022. [DOI: 10.1002/app.52744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Tan‐Sothéa Ouk
- University of Limoges, Laboratoire PEIRENE, UR 22722 Limoges France
| | - Romain Lucas
- University of Limoges, IRCER, UMR 7315 Limoges France
| | - Vincent Chaleix
- University of Limoges, Laboratoire PEIRENE, UR 22722 Limoges France
| | - Vincent Sol
- University of Limoges, Laboratoire PEIRENE, UR 22722 Limoges France
| |
Collapse
|
18
|
Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Khurana B, Ouk TS, Lucas R, Senge MO, Sol V. Photosensitizer-hyaluronic acid complexes for antimicrobial photodynamic therapy (aPDT). J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Donohoe C, Leroy-Lhez S, Senge MO, Gomes-da-Silva LC. POLYTHEA - The opportunities and challenges of doctoral training networks. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Lin X, Bai Y, Jiang Q. Precise Fabrication of Folic Acid-Targeted Therapy on Metformin Encapsulated β-Cyclodextrin Nanomaterials for Treatment of Lung Cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
García ER, Solladié N, Galán GZ. Recent Advances on Porphyrin and Metalloporphyrin Chemistry. CURR ORG CHEM 2022. [DOI: 10.2174/138527282606220617124303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ernesto Rivera García
- Instituto de Investigaciones en Materiales UNAM
Circuito exterior Ciudad Universitaria CP 04510
Mexico City
Mexico
| | - Nathalie Solladié
- Groupe de Synthèse de Systèmes Porphyriniques
(G2SP)
Laboratoire de Chimie de Coordination du CNRS
205 route de Narbonne 31077 Toulouse Cedex 4
France
| | - Gerardo Zaragoza Galán
- Facultad de Ciencias Químicas, Universidad
Autónoma de Chihuahua
Circuito Universitario, Campus Universitario #2,
Apartado Postal 669, Chihuahua
Chihuahua. 31125
Mexico
| |
Collapse
|
23
|
Vonlanthen M, Cuétara-Guadarrama F, Porcu P, Sorroza-Martínez K, González-Méndez I, Rivera E. Dendronized Porphyrins: Molecular Design and Synthesis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
In this review, we report different methods and strategies to synthesize flexible and rigid dendronized porphyrins. We will focus on porphyrin dendrimers that have been reported in the last 10 years. Particularly, in our research group, we have designed and synthesized different series of dendronized porphyrins (free base and metallated) with pyrene units at the periphery and Fréchet-type dendritic arms. The Lindsey methodology has allowed the synthesis of meso-substituted porphyrins with various substitution patterns, such as symmetric, dissymmetric, or unsymmetric. Porphyrin dendrimers have been prepared by different synthetic methodologies; one of the most reported being the convergent method, where the dendrons are first prepared and further linked to a meso-substituted functionalized porphyrin unit, which will constitute the core of the dendrimer. Another interesting synthetic approach is the use of a reactive dendron bearing a terminal aldehyde functional group to form the final porphyrin core. In this way, a two-armed dendronized dissymmetric porphyrin core can be prepared from a dendritic precursor and a dipyrromethene derivative. This strategy is very convenient to prepare low-generation dendritic porphyrins. The divergent approach is another well-known methodology for porphyrin dendrimer synthesis, mostly used for the obtainment of high-generation dendrimers. Click chemistry reaction has been advantageous for the development of more complex porphyrin dendritic structures. This reaction presents important advantages, such as high yields and mild reaction conditions which permit the assembly of different multiporphyrin dendritic structures. In the constructs presented in this review, the emission of the porphyrin moiety has been observed, leading to potential applications in artificial photosynthesis, sensing, nanomedicine, and biological sciences.
Collapse
Affiliation(s)
- Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Pasquale Porcu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| |
Collapse
|
24
|
Gierlich P, Mucha SG, Robbins E, Gomes‐da‐Silva LC, Matczyszyn K, Senge MO. One‐Photon and Two‐Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20‐tetrakis(
m‐
hydroxyphenyl)chlorin (
Temoporfin
) Derivatives as Potential Two‐Photon‐Induced Photodynamic Therapy Agents. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute Trinity Centre for Health Sciences Trinity College Dublin The University of Dublin St James's Hospital Dublin 8 Ireland
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221 University of Montpellier CNRS 34095 Montpellier France
| | - Emma Robbins
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
- Faculté des Sciences et Techniques Université de Limoges, PEIRENE, EA 7500 123 Avenue Albert Thomas, CEDEX 87060 Limoges France
| | - Lígia C. Gomes‐da‐Silva
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS) Technical University of Munich Lichtenbergstrasse 2a 85748 Garching Germany
| |
Collapse
|
25
|
Maleki A, He J, Bochani S, Nosrati V, Shahbazi MA, Guo B. Multifunctional Photoactive Hydrogels for Wound Healing Acceleration. ACS NANO 2021; 15:18895-18930. [PMID: 34870413 DOI: 10.1021/acsnano.1c08334] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light is an attractive tool that has a profound impact on modern medicine. Particularly, light-based photothermal therapy (PTT) and photodynamic therapy (PDT) show great application prospects in the prevention of wound infection and promoting wound healing. In addition, hydrogels have shown attractive advantages in the field of wound dressings due to their excellent biochemical effects. Therefore, multifunctional photoresponsive hydrogels (MPRHs) that integrate the advantages of light and hydrogels are increasingly used in biomedicine, especially in the field of wound repair. However, a comprehensive review of MPRHs for wound regeneration is still lacking. This review first focuses on various types of MPRHs prepared by diverse photosensitizers, photothermal agents (PHTAs) including transition metal sulfide/oxides nanomaterials, metal nanostructure-based PHTAs, carbon-based PHTAs, conjugated polymer or complex-based PHTAs, and/or photodynamic agents (PHDAs) such as ZnO-based, black-phosphorus-based, TiO2-based, and small organic molecule-based PHDAs. We also then discuss how PTT, PDT, and photothermal/photodynamic synergistic therapy can modulate the microenvironments of bacteria to inhibit infection. Overall, multifunctional hydrogels with both therapeutic and tissue regeneration capabilities have been discussed and existing challenges, as well as future research directions in the field of MPRHs and their application in wound management are argued.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Jiahui He
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Shayesteh Bochani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Vahideh Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| |
Collapse
|
26
|
Ovchenkova EN, Bichan NG, Gostev FE, Shelaev IV, Nadtochenko VA, Lomova TN. The donor-acceptor dyad based on high substituted fullero[70]pyrrolidine-coordinated manganese (III) phthalocyanine for photoinduced electron transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120166. [PMID: 34274635 DOI: 10.1016/j.saa.2021.120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Donor-acceptor dyads based on manganese porphyrins/phthalocyanines and fullerene derivatives with N-basicity centers have proved as promising photoinduced electron-transfer systems for photovoltaic devices, biologically active compounds, and molecular magnetic materials. The macroheterocyclic chromophore characterized by rich UV-visible-near IR absorption is the basis for the applications above. The problem of the synthesis and the characterization of new effective dyads was solved in this work on the example of the self-organizing system consisting of (octakis-3,5-di-tert-butylphenoxy)phthalocyaninato)manganese(III) acetate, (AcO)MnPc(3,5-di-tBuPhO)8, 2',5-di(pyridin-2'-yl)-3,4-fullero[70]pyrrolidine, Py2C70, and toluene. The phthalocyanine-fullerene dyads in the molecular and cationic form (respectively (AcO)(Py2C70)MnPc(3,5-di-tBuPhO)8 and [(Py2C70)MnPc(3,5-di-tBuPhO)8]+(AcO)-) were observed and described using the chemical kinetics/thermodynamics, UV-vis, IR, 1H NMR spectroscopy and mass spectrometry methods. The 1: 1 stoichiometry of both dyads was confirmed; the equilibrium and rate constant value, K= (4.86 ± 0.56) × 104 L mol-1 and k = (4.455 ± 3.37) × 10-5 s-1 was observed for the formation of molecular and cationic dyad, respectively. The study of (AcO)MnPc(3,5-di-tBuPhO)8 and [(Py2C70)MnPc(3,5-di-tBuPhO)8]+AcO- femtosecond transient absorption spectra points to the photoinduced electron transfer in the dyad, for which the lifetimes and the rate constants of charge separation (τCS, kCS) and charge recombination (τCR, kCR) were defined. The analysis of the relationship of the dyad physicochemical parameters with the molecular structure is represented using previously published data.
Collapse
Affiliation(s)
- E N Ovchenkova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation
| | - N G Bichan
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation.
| | - F E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - I V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - V A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - T N Lomova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation
| |
Collapse
|
27
|
Kristinaityte K, Urbańczyk M, Mames A, Pietrzak M, Ratajczyk T. Photoreactivity of an Exemplary Anthracene Mixture Revealed by NMR Studies, including a Kinetic Approach. Molecules 2021; 26:6695. [PMID: 34771104 PMCID: PMC8587725 DOI: 10.3390/molecules26216695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Anthracenes are an important class of acenes. They are being utilized more and more often in chemistry and materials sciences, due to their unique rigid molecular structure and photoreactivity. In particular, photodimerization can be harnessed for the fabrication of novel photoresponsive materials. Photodimerization between the same anthracenes have been investigated and utilized in various fields, while reactions between varying anthracenes have barely been investigated. Here, Nuclear Magnetic Resonance (NMR) spectroscopy is employed for the investigation of the photodimerization of two exemplary anthracenes: anthracene (A) and 9-bromoanthracene (B), in the solutions with only A or B, and in the mixture of A and B. Estimated k values, derived from the presented kinetic model, showed that the dimerization of A was 10 times faster in comparison with B when compounds were investigated in separate samples, and 2 times faster when compounds were prepared in the mixture. Notably, the photoreaction in the mixture, apart from AA and BB, additionally yielded a large amount of the AB mixdimer. Another important advantage of investigating a mixture with different anthracenes is the ability to estimate the relative reactivity for all the reactions under the same experimental conditions. This results in a better understanding of the photodimerization processes. Thus, the rational photofabrication of mix-anthracene-based materials can be facilitated, which is of crucial importance in the field of polymer and material sciences.
Collapse
Affiliation(s)
| | | | | | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| |
Collapse
|
28
|
Zhou K, Chigan D, Xu L, Liu C, Ding R, Li G, Zhang Z, Pei D, Li A, Guo B, Yan X, He G. Anti-Sandwich Structured Photo-Electronic Wound Dressing for Highly Efficient Bacterial Infection Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101858. [PMID: 34250738 DOI: 10.1002/smll.202101858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Photo-electronic devices based on reactive oxygen species (ROS) generation suffer a crucial limitation in wound treatment due to their sandwich structure, which prevents the contact of ROS with wound tissue. In this work, the first anti-sandwich structured visible-light/electricity dual-responsive wound dressing is constructed for treatment of methicillin-resistant Staphylococcus aureus (MRSA), based on selenoviologen-appendant polythiophene (SeV2+ -PT)-containing polyacrylamide hydrogels. The new wound dressing is named an anti-sandwich structured photo-electronic wound dressing (PEWD). The unique structure of PEWD enables its use in synergistic electrodynamic and photodynamic therapy (EDT and PDT), providing rapid, on-demand, and sustained generation of ROS in situ via short-time light irradiation and/or wireless-controlled electrification. The PEWD possesses good flexibility, excellent biocompatibility, and fast response, as well as sustained ROS generation in a physiological environment. Animal experiments demonstrate effective ROS generation in 6 s under irradiation and electrification, inhibiting infection at an early stage, and substantially shortening the healing time of bacterial infection (to within 7 days). This proof-of-concept research holds great promise in developing new flexible PEWD, and novel strategies to improve wound treatment.
Collapse
Affiliation(s)
- Kun Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dongdong Chigan
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenjing Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Rui Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gang He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
29
|
Komolibus K, Fisher C, Swartling J, Svanberg S, Svanberg K, Andersson-Engels S. Perspectives on interstitial photodynamic therapy for malignant tumors. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210111-PERR. [PMID: 34302323 PMCID: PMC8299827 DOI: 10.1117/1.jbo.26.7.070604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE Despite remarkable advances in the core modalities used in combating cancer, malignant diseases remain the second largest cause of death globally. Interstitial photodynamic therapy (IPDT) has emerged as an alternative approach for the treatment of solid tumors. AIM The aim of our study is to outline the advancements in IPDT in recent years and provide our vision for the inclusion of IPDT in standard-of-care (SoC) treatment guidelines of specific malignant diseases. APPROACH First, the SoC treatment for solid tumors is described, and the attractive properties of IPDT are presented. Second, the application of IPDT for selected types of tumors is discussed. Finally, future opportunities are considered. RESULTS Strong research efforts in academic, clinical, and industrial settings have led to significant improvements in the current implementation of IPDT, and these studies have demonstrated the unique advantages of this modality for the treatment of solid tumors. It is envisioned that further randomized prospective clinical trials and treatment optimization will enable a wide acceptance of IPDT in the clinical community and inclusion in SoC guidelines for well-defined clinical indications. CONCLUSIONS The minimally invasive nature of this treatment modality combined with the relatively mild side effects makes IPDT a compelling alternative option for treatment in a number of clinical applications. The adaptability of this technique provides many opportunities to both optimize and personalize the treatment.
Collapse
Affiliation(s)
- Katarzyna Komolibus
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- Address all correspondence to Katarzyna Komolibus,
| | - Carl Fisher
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
| | | | - Sune Svanberg
- Lund University, Department of Physics, Lund, Sweden
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Katarina Svanberg
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
- Lund University Hospital, Department of Clinical Sciences, Lund, Sweden
| | - Stefan Andersson-Engels
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
30
|
Zia M, Faisal S, Shams DF, Anjum F, Saeed M, Shah Z, Nadhman A. Degradation of Polyethylene Plastic by Non-Embedded Visible-Light Iron-Doped Zinc Oxide Nanophotocatalyst. APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY 2021; 30:87-91. [DOI: 10.5757/asct.2021.30.3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 10/10/2024]
Affiliation(s)
| | | | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Farida Anjum
- Directorate of Soil and Plant Nutrition, Agricultural Research Institute Tarnab, Peshawar 25000, Pakistan
| | - Mehk Saeed
- Deparment of Biotechnology, Institute of Integrative Biosciences, CECOS University, Hayatabad, Phase VI, Peshawar 25000, Pakistan
| | - ZiaUllah Shah
- Department of Pharmacy, Institute of Integrative Biosciences, CECOS University, Hayatabad, Phase VI, Peshawar 25000, Pakistan
| | - Akhtar Nadhman
- Deparment of Biotechnology, Institute of Integrative Biosciences, CECOS University, Hayatabad, Phase VI, Peshawar 25000, Pakistan
| |
Collapse
|
31
|
Light and Hydrogels: A New Generation of Antimicrobial Materials. MATERIALS 2021; 14:ma14040787. [PMID: 33562335 PMCID: PMC7915775 DOI: 10.3390/ma14040787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/17/2023]
Abstract
Nosocomial diseases are becoming a scourge in hospitals worldwide, and new multidrug-resistant microorganisms are appearing at the forefront, significantly increasing the number of deaths. Innovative solutions must emerge to prevent the imminent health crisis risk, and antibacterial hydrogels are one of them. In addition to this, for the past ten years, photochemistry has become an appealing green process attracting continuous attention from scientists in the scope of sustainable development, as it exhibits many advantages over other methods used in polymer chemistry. Therefore, the combination of antimicrobial hydrogels and light has become a matter of course to design innovative antimicrobial materials. In the present review, we focus on the use of photochemistry to highlight two categories of hydrogels: (a) antibacterial hydrogels synthesized via a free-radical photochemical crosslinking process and (b) chemical hydrogels with light-triggered antibacterial properties. Numerous examples of these new types of hydrogels are described, and some notions of photochemistry are introduced.
Collapse
|
32
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
33
|
Synthesis and Performance of Hybrid Hydrogels Loaded with Methylene Blue and Its Use for Antimicrobial Photodynamic Inactivation. J CHEM-NY 2020. [DOI: 10.1155/2020/6679960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Development and characterization of hybrid hydrogels loaded with methylene blue, which are designed to apply for photodynamic therapy, are presented. Hybrid hydrogels were synthesized by grafting polyacrylamide onto dextran/dextran sulfate sodium salt using N, N′-methylene-bis-acrylamide as a cross-linker. The differences in microstructure of synthesized hydrogels were proved by scanning electron microscopy. FTIR spectra testify that the chemical nature of hydrogel components affects the hydrogel hydrophilicity. The swelling properties of hydrogels in water and absorption/desorption hydrogels’ ability towards methylene blue were studied. It was shown that dye sorption was dependent on the hydrogel type. The hydrogel based on dextran and polyacrylamide revealed the highest ability to release absorbed dye. The bactericidal effect of this hydrogel loaded with methylene blue and activated by red light in suspension and solid medium of S. aureus was tested. The increase of bactericidal activity of hybrid hydrogel was dependent on radiation doses.
Collapse
|
34
|
Strokov K, Galstyan A. Chitosan‐Silicon Phthalocyanine Conjugate as Effective Photo‐Functional Hydrogel for Tracking and Killing of Bacteria. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Konstantin Strokov
- Center for Soft Nanoscience Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Straße 10 48149 Münster Germany
| | - Anzhela Galstyan
- Center for Soft Nanoscience Westfälische Wilhelms‐Universität Münster Busso‐Peus‐Straße 10 48149 Münster Germany
| |
Collapse
|
35
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
36
|
Norvaiša K, Kielmann M, Senge MO. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. Chembiochem 2020; 21:1793-1807. [PMID: 32187831 PMCID: PMC7383976 DOI: 10.1002/cbic.202000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Advances in porphyrin chemistry have provided novel materials and exciting technologies for bioanalysis such as colorimetric sensor array (CSA), photo-electrochemical (PEC) biosensing, and nanocomposites as peroxidase mimetics for glucose detection. This review highlights selected recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that provide recognition of various biologically important entities through the unique porphyrin properties associated with colorimetry, spectrophotometry, and photo-electrochemistry.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Marc Kielmann
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Lichtenberg-Strasse 2a85748GarchingGermany
| |
Collapse
|
37
|
Sitte E, Senge MO. The Red Color of Life Transformed - Synthetic Advances and Emerging Applications of Protoporphyrin IX in Chemical Biology. European J Org Chem 2020; 2020:3171-3191. [PMID: 32612451 PMCID: PMC7319466 DOI: 10.1002/ejoc.202000074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Protoporphyrin IX (PPIX) is the porphyrin scaffold of heme b, a ubiquitous prosthetic group of proteins responsible for oxygen binding (hemoglobin, myoglobin), electron transfer (cytochrome c) and catalysis (cytochrome P450, catalases, peroxidases). PPIX and its metallated derivatives frequently find application as therapeutic agents, imaging tools, catalysts, sensors and in light harvesting. The vast toolkit of accessible porphyrin functionalization reactions enables easy synthetic modification of PPIX to meet the requirements for its multiple uses. In the past few years, particular interest has arisen in exploiting the interaction of PPIX and its synthetic derivatives with biomolecules such as DNA and heme-binding proteins to evolve molecular devices with new functions as well as to uncover potential therapeutic toeholds. This review strives to shine a light on the most recent developments in the synthetic chemistry of PPIX and its uses in selected fields of chemical biology.
Collapse
Affiliation(s)
- Elisabeth Sitte
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
| | - Mathias O. Senge
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152‐160 Pearse Street2DublinIreland
- Institute for Advanced Study (TUM‐IAS)Technische Universität MünchenLichtenberg‐Str. 2a85748GarchingGermany
| |
Collapse
|
38
|
Hola E, Topa M, Chachaj-Brekiesz A, Pilch M, Fiedor P, Galek M, Ortyl J. New, highly versatile bimolecular photoinitiating systems for free-radical, cationic and thiol–ene photopolymerization processes under low light intensity UV and visible LEDs for 3D printing application. RSC Adv 2020; 10:7509-7522. [PMID: 35492177 PMCID: PMC9049847 DOI: 10.1039/c9ra10212d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
1-Amino-4-methyl-naphthalene-2-carbonitrile derivatives are proposed for the role of photosensitizers of iodonium salt during the photopolymerization processes upon near UV-A and visible ranges. Remarkably, 1-amino-4-methyl-naphthalene-2-carbonitrile derivatives are highly versatile allowing access to photoinitiating systems for (i) the cationic photopolymerization of epoxide monomers with a ring opening mechanism and vinyl ether monomers with chain growth mechanisms (ii) the free-radical photopolymerization of acrylate monomers, (iii) the photopolymerization of interpenetrated polymer networks (IPNs) based on epoxide and acrylate monomers under air and under laminate in an oxygen-free atmosphere (iv) the thiol–ene photopolymerization processes. Excellent polymerization profiles are obtained during all types of photopolymerization processes. The initiation mechanisms are analyzed through steady state photolysis, cyclic voltammetry and fluorescence experiments. Moreover, the newly developed bimolecular photoinitiating systems were investigated by applying an additive manufacturing process under visible light sources. Furthermore, vat photopolymerization processes using IPN compositions, which are polymerizable by using new photoinitiating systems, provide high resolution and speeds. For these reasons, new bimolecular photoinitiating systems are promising initiators for photopolymerization-based 3D printing process to fabricate 3D structures. 1-Amino-4-methyl-naphthalene-2-carbonitrile derivatives are proposed for the role of photosensitizers of iodonium salt during the photopolymerization processes upon near UV-A and visible ranges.![]()
Collapse
Affiliation(s)
- Emilia Hola
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | - Monika Topa
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | | | - Maciej Pilch
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | - Paweł Fiedor
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
| | | | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Cracow
- Poland
- Photo HiTech Ltd
| |
Collapse
|