1
|
Cao S, Zhou T, Xu X, Bing Y, Sui N, Wang J, Li J, Zhang T. Metal-organic frameworks derived inverse/normal bimetallic spinel oxides toward the selective VOCs and H 2S sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131734. [PMID: 37290357 DOI: 10.1016/j.jhazmat.2023.131734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
As the typical toxic and hazardous gases, volatile organic compounds (VOCs) and hydrogen sulfide (H2S) pose a threat to the environment and human health. The demand for real-time detection of VOCs and H2S gases is growing in many application to protect human health and air quality. Therefore, it is essential to develop advance sensing materials for the construction of effective and reliable gas sensors. Herein, bimetallic spinel ferrites with different metal ions (MFe2O4, M = Co, Ni, Cu and Zn) were designed by using metal-organic frameworks as templates. The evaluation of cation substitution on crystal structures (inverse/normal spinel structure) and electrical properties (n/p type and band gap) is systematically discussed. The results indicate that p-type NiFe2O4 and n-type CuFe2O4 nanocubes with inverse spinel structure exhibit high response and great selectivity towards acetone (C3H6O) and H2S, respectively. Moreover, the two sensors also display the detection limits as low as 1 ppm (C3H6O) and 0.5 ppm (H2S), which are far below the threshold values of 750 ppm to acetone and 10 ppm to H2S for 8 h exposure set by American Conference of Governmental Industrial Hygienists (ACGIH). The finding provides new possibilities for the design of high-performance chemical sensors, which display tremendous potential for practical applications.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Yu Bing
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130012, PR China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Cao S, Xu Y, Yu Z, Zhang P, Xu X, Sui N, Zhou T, Zhang T. A Dual Sensing Platform for Human Exhaled Breath Enabled by Fe-MIL-101-NH 2 Metal-Organic Frameworks and its Derived Co/Ni/Fe Trimetallic Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203715. [PMID: 36058648 DOI: 10.1002/smll.202203715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Limited by the insufficient active sites and the interference from breath humidity, designing reliable gas sensing materials with high activity and moisture resistance remains a challenge to analyze human exhaled breath for the translational application of medical diagnostics. Herein, the dual sensing and cooperative diagnosis is achieved by utilizing metal-organic frameworks (MOFs) and its derivative. The Fe-MIL-101-NH2 serves as the quartz crystal microbalance humidity sensing layer, which exhibits high selectivity and rapid response time (16 s/15 s) to water vapor. Then, the Co2+ and Ni2+ cations are further co-doped into Fe-MIL-101-NH2 host to obtain the derived Co/Ni/Fe trimetallic oxides (CoNiFe-MOS-n). The chemiresistive CoNiFe-MOS-n sensor displays the high sensitivity (560) and good selectivity to acetone, together with a lower original resistance compared with Fe2 O3 and NiFe2 O4 . Moreover, as a proof-of-concept application, synergistic integration of Fe-MIL-101-NH2 and derived CoNiFe-MOS-n is carried out. The Fe-MIL-101-NH2 is applied as moisture sorbent materials, which realize a sensitivity compensation of CoNiFe-MOS-n sensors for the detection of acetone (biomarker gas of diabetes). The findings provide an insight for effective utilization of MOFs and the derived materials to achieve a trace gas detection in exhaled breath analysis.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yifeng Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Peng Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Bibi G, Khan SR, Ali S, Jamil S, Bibi S, Shehroz H, Janjua MRSA. Role of capping agent in the synthesis of zinc–cobalt bimetallic nanoparticles and its application as catalyst and fuel additive. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Wang G, Yang S, Cao L, Jin P, Zeng X, Zhang X, Wei J. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214086] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Cao S, Sui N, Zhang P, Zhou T, Tu J, Zhang T. TiO 2 nanostructures with different crystal phases for sensitive acetone gas sensors. J Colloid Interface Sci 2021; 607:357-366. [PMID: 34509110 DOI: 10.1016/j.jcis.2021.08.215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023]
Abstract
Gas sensors have become increasingly significant because of the rapid development in electronic devices that are applied in detecting noxious gases. Adjusting the crystal phase structure of sensing materials can optimize the band gap and oxygen-adsorptive capacity, which influences the gas sensing characteristics. Therefore, titanium dioxide (TiO2) materials with different crystal phase structures including rutile TiO2 nanorods (R-TiO2 NRs), anatase TiO2 nanoparticles (A-TiO2 NRs) and brookite TiO2 nanorods (B-TiO2 NRs) were synthesized successfully via one-step hydrothermal process, respectively. The gas sensing characteristics were also investigated systematically. The sensors based on R-TiO2 NRs displayed the higher response value (12.3) to 100 ppm acetone vapor at 320 °C compared to A-TiO2 NRs (4.1) and B-TiO2 NRs (2.3). Furthermore, gas sensors based on R-TiO2 NRs exhibited excellent repeatability under six cycles and good selectivity to acetone. The outstanding sensing properties of gas sensors based on R-TiO2 NRs can be ascribed to relatively narrow band gap and more oxygen vacancies of rutile phase, which showed a probable way for design gas sensors based on metal oxide semiconductors with remarkable gas sensing performances by the crystal phase adjustment engineering in the future.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Peng Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
6
|
Shi J, Liu S, Zhang P, Sui N, Cao S, Zhou T, Zhang T. Sb/Pd co-doped SnO 2nanoparticles for methane detection: resistance reduction and sensing performance studies. NANOTECHNOLOGY 2021; 32:475506. [PMID: 33957609 DOI: 10.1088/1361-6528/abfe92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4) gas sensors play an important role in industrial safety and detection of indoor gas quality. In general, metal oxide semiconductor sensing materials with nano-structure have high responses to the target gas. However, the sensor resistance is usually very high. Considering the practical application, it is vital to reduce base resistance and improve sensitivity for gas sensors. Herein, Pd-doped SnO2nanoparticles were prepared as the basis material by a simple sol-gel method. In order to adjust the resistance, the pentavalent metal element (Sb) was introduced via a simple doping route. As CH4sensing layers, the prepared SnO2-sensors doped with Pd and Sb exhibited the most obvious resistance reduction effect. Meantime, excellent sensing performances including high response, fast response/recovery time, excellent reproducibility and great stability were also obtained. In-depth research has shown that the ability to reduce resistance depends on the effective internal doping of cation with high valence. The enhanced sensing capability can be attributed to the 'synergistic effects' including catalytic effects of novel metals, increased oxygen vacancies and decreased band gap energy. This work can provide a new opportunity to design metal oxide sensing materials with low resistance and high sensitivity.
Collapse
Affiliation(s)
- Jiawen Shi
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
7
|
Zhou T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. SMALL METHODS 2021; 5:e2100515. [PMID: 34928067 DOI: 10.1002/smtd.202100515] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Along with the progress of nanoscience and nanotechnology, nanomaterials with attractive structural and functional properties have gained more attention than ever before, especially in the field of electronic sensors. In recent years, the gas sensing devices have made great achievement and also created wide application prospects, which leads to a new wave of research for designing advanced sensing materials. There is no doubt that the characteristics are highly governed by the sensitive layers. For this reason, important advances for the outstanding, novel sensing materials with different dimensional structures including 0D, 1D, 2D, and 3D are reported and summarized systematically. The sensing materials cover noble metals, metal oxide semiconductors, carbon nanomaterials, metal dichalcogenides, g-C3 N4 , MXenes, and complex composites. Discussion is also extended to the relation between sensing performances and their structure, electronic properties, and surface chemistry. In addition, some gas sensing related applications are also highlighted, including environment monitoring, breath analysis, food quality and safety, and flexible wearable electronics, from current situation and the facing challenges to the future research perspectives.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
|