1
|
Larsen C, Ledbetter K, Nascimento DR, Biasin E, Qureshi M, Nowak S, Sokaras D, Govind N, Cordones AA. Metal-Ligand Covalency in the Valence Excited States of Metal Dithiolenes Revealed by S 1s3p Resonant Inelastic X-ray Scattering. J Am Chem Soc 2024; 146. [PMID: 39377493 PMCID: PMC11487610 DOI: 10.1021/jacs.4c11667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Metallo dithiolene complexes with biological and catalytic relevance are well-known for having strong metal-ligand covalency, which dictates their valence electronic structures. We present the resonant sulfur Kβ (1s3p) X-ray emission spectroscopy (XES) for a series of Ni and Cu bis(dithiolene) complexes to reveal the ligand sulfur contributions to both the occupied and unoccupied valence orbitals. While S K-edge X-ray absorption spectroscopy played a critical role in identifying the covalency of the unoccupied orbitals of metal dithiolenes, the present focus on XES explores the occupied density of states. For a series of [Cu(mnt)2]n- and [Ni(mnt)2]n- anions and dianions, a comparison of the nonresonant and resonant S Kβ XES spectra highlights the dramatic improvement in spectral resolution and corresponding ability to differentiate subtle changes in occupied electronic structure across the series. Furthermore, the use of resonant inelastic X-ray scattering (RIXS) probes the valence excited states and the core-valence couplings of the complexes. By employing a theoretical approach based on time-dependent density functional theory to interpret the RIXS spectra, we reveal how metal-ligand covalency influences the excited state energies and covalencies. We identify the low energy excited states as having the same symmetry as the nominal "ligand field" or "d-d" states that typically dominate the photophysics of 3d metal complexes but with significant metal-ligand charge transfer character dictated by their covalency. These results suggest that strong metal-ligand covalency can be used to influence the charge-transfer photochemistry of first row transition metal complexes.
Collapse
Affiliation(s)
- Christopher
B. Larsen
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kathryn Ledbetter
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Daniel R. Nascimento
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Muhammad Qureshi
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stanisław
H. Nowak
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amy A. Cordones
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Keszei S, Wang Y, Zhou H, Ollár T, Kováts É, Frey K, Tapasztó L, Shen S, Pap JS. Hydrogen evolution driven by heteroatoms of bidentate N-heterocyclic ligands in iron(II) complexes. Dalton Trans 2024; 53:14817-14829. [PMID: 39171517 DOI: 10.1039/d4dt02081b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
While Pt is considered the best catalyst for the electrocatalytic hydrogen evolution reaction (HER), it is evident that non-noble metal alternatives must be explored. In this regard, it is well known that the binding sites for non-noble metals play a pivotal role in facilitating efficient catalysis. Herein, we studied Fe(II) complexes with bidentate 2-(2'-pyridyl)benzoxazole (LO), 2-(2'-pyridyl)benzthiazole (LS), 2-(2'-pyridyl)benzimidazole (LNH), and 2-2'-bipyridyl (Lpy) ligands - by adding trifluoroacetic acid (TFA) to their acetonitrile solution - in order to examine how their reactivity towards protons under reductive conditions could be impacted by the non-coordinating heteroatoms (S, O, N, or none). By applying this ligand series, we found that the reduction potentials relevant for HER correlate with ligand basicity in the presence of TFA. Moreover, DFT calculations underlined the importance of charge distribution in the ligand-based LUMO and LUMO+1 orbitals of the complexes, dependent on the heterocycle. Kinetic studies and controlled potential electrolysis - using TFA as a proton source - revealed HER activities for the complexes with LNH, LO, and LS of kobs = 0.03, 1.1, and 10.8 s-1 at overpotentials of 0.81, 0.76, and 0.79 V, respectively, and pointed towards a correlation between the kinetics of the reaction and the non-coordinating heteroatoms of the ligands. In particular, the activity was associated with the [Fe(LS/O/NH)2(S)2]2+ form (S = solvent or substrate molecule), and the rate-determining step involved the formation of [Fe(H-H)]+, during the weakening of Fe-H and CF3CO2-H bonds, according to the experimental and DFT results.
Collapse
Affiliation(s)
- Soma Keszei
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary.
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Yiqing Wang
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haotian Zhou
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tamás Ollár
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Éva Kováts
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Krisztina Frey
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| | - Levente Tapasztó
- Centre for Energy Research, Institute of Technical Physics and Materials Science, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary.
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - József Sándor Pap
- Centre for Energy Research, Surface Chemistry and Catalysis Department, H-1121, Konkoly-Thege út 29-33, Budapest, Hungary
| |
Collapse
|
3
|
Das K, Beyene BB, Massera C, Garribba E, El Fallah MS, Frontera A, Hung CH, Datta A. Magnetic study and DFT analysis of a doubly carboxylato-bridged Co(II) derivative anchored with a 'scorpionate' precursor as a potential electrocatalyst for heterogeneous H 2 evolution. Dalton Trans 2024; 53:9358-9368. [PMID: 38757183 DOI: 10.1039/d4dt00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A new doubly carboxylato-bridged Co(II) dinuclear complex, [Co(bdtbpza)(NCS)]2 (1), was obtained in a satisfactory yield by employing a 'scorpionate'-type precursor, bdtbpza {bis-(3,5-di-tert-butylpyrazol-1-yl)acetate}, and was then structurally characterized. Single-crystal X-ray diffraction analysis revealed that, in 1, each Co(II) is penta-coordinated, leading to a distorted trigonal-bipyramidal geometry within the coordination environment of N3O2. Weak antiferromagnetic coupling within the Co(II) ions in 1 was found based on the isotropic spin Hamiltonian H = -J(S1·S2) for the Si = 3/2 system. For evaluating the spin density distribution and the mechanism for the magnetic exchange coupling, DFT analysis was performed, with the calculated result agreeing the experimental magnetic data. A study into electrochemical H2 evolution, involving cyclic voltammetry (CV), controlled potential electrolysis (CPE), and gas chromatographic (GC) analyses of the graphite electrode modified with the cobalt complex in a neutral aqueous solution revealed the high catalytic activity of the complex with a low overpotential toward H2O reduction. The faradaic efficiency of the catalyst was found to be 83.7% and the di-cobalt catalyst-modified electrode displayed quite an interesting H2-evolution activity compared with that of bare electrodes. These results are encouraging for the future potential application of 1 in water splitting.
Collapse
Affiliation(s)
- Kuheli Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
| | - Belete B Beyene
- Department of Chemistry, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
| | - Chiara Massera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - M S El Fallah
- Departament de Química Inorgànica i Orgànica, Secció Inorgànica and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès, 1-11, 08028-Barcelona, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
| | - Amitabha Datta
- Institute of Chemistry, Academia Sinica, Nankang - 115, Taipei, Taiwan.
- Department of Chemistry, National Changhua University of Education, Changhua - 50058, Taiwan
| |
Collapse
|
4
|
Kazemi A, Manteghi F, Tehrani Z. Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS OMEGA 2024; 9:7310-7335. [PMID: 38405471 PMCID: PMC10882616 DOI: 10.1021/acsomega.3c07911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The rising demand for fossil fuels and the resulting pollution have raised environmental concerns about energy production. Undoubtedly, hydrogen is the best candidate for producing clean and sustainable energy now and in the future. Water splitting is a promising and efficient process for hydrogen production, where catalysts play a key role in the hydrogen evolution reaction (HER). HER electrocatalysis can be well performed by Pt with a low overpotential close to zero and a Tafel slope of about 30 mV dec-1. However, the main challenge in expanding the hydrogen production process is using efficient and inexpensive catalysts. Due to electrocatalytic activity and electrochemical stability, transition metal compounds are the best options for HER electrocatalysts. This study will focus on analyzing the current situation and recent advances in the design and development of nanostructured electrocatalysts for noble and non-noble metals in HER electrocatalysis. In general, strategies including doping, crystallization control, structural engineering, carbon nanomaterials, and increasing active sites by changing morphology are helpful to improve HER performance. Finally, the challenges and future perspectives in designing functional and stable electrocatalysts for HER in efficient hydrogen production from water-splitting electrolysis will be described.
Collapse
Affiliation(s)
- Amir Kazemi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Faranak Manteghi
- Research
Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Zari Tehrani
- The
Future Manufacturing Research Institute, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| |
Collapse
|
5
|
Medany SS, Nafady A, Soomro RA, Hefnawy MA. Construction of chitosan-supported nickel cobaltite composite for efficient electrochemical capacitor and water-splitting applications. Sci Rep 2024; 14:2453. [PMID: 38291040 PMCID: PMC10827801 DOI: 10.1038/s41598-023-49692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
The construction of highly efficient electrode material is of considerable interest, particularly for high capacitance and water-splitting applications. Herein, we present the preparation of a NiCo2O4-Chitosan (NC@Chit) nanocomposite using a simple hydrothermal technique designed for applications in high capacitance and water-splitting. The structure/composition of the NC@Chit composite was characterized using different analytical methods, containing electron microscope (SEM and TEM), and powder X-ray diffraction (XRD). When configured as an anode material, the NC@Chit displayed a high capacitance of 234 and 345 F g-1 (@1Ag-1 for GC/NC and NC@Chit, respectively) in an alkaline electrolyte. The direct use of the catalyst in electrocatalytic water-splitting i.e., HER and OER achieved an overpotential of 240 mV and 310 mV at a current density of 10 mA cm-2, respectively. The obtained Tafel slopes for OER and HER were 62 and 71 mV dec-1, respectively whereas the stability and durability of the fabricated electrodes were assessed through prolonged chronoamperometry measurement at constant for 10 h. The electrochemical water splitting was studied for modified nickel cobaltite surface using an impedance tool, and the charge transfer resistances were utilized to estimate the electrode activity.
Collapse
Affiliation(s)
- Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Razium Ali Soomro
- State Key Laboratory of Chemical Resource Engineering School of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, People's Republic of China
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| |
Collapse
|
6
|
Kumar P, Tyagi VP, Ghosh M. Exploring the Multifarious Role of the Ligand in Electrocatalytic Hydrogen Evolution Reaction Pathways. Chemistry 2023; 29:e202302195. [PMID: 37728113 DOI: 10.1002/chem.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
In recent years, researchers have shifted their focus towards investigating the redox properties of ancillary ligand backbones for small-molecule activation. Several metal complexes have been reported for the electrocatalytic H2 evolution reaction (HER), providing valuable mechanistic insights. This process involves efficient coupling of electrons and protons. Redox-active ligands stipulate internal electron transfer and promote effective orbital overlap between metal and ligand, thereby, enabling efficient proton-coupled electron transfer reactions. Understanding such catalytic mechanisms requires thorough spectroscopic and computational analyses. Herein, we summarize recent examples of molecular electrocatalysts based on 3d transition metals that have significantly influenced mechanistic pathways, thus, emphasizing the multifaceted role of metal-ligand cooperativity.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Vyom Prakash Tyagi
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Plot #2, Rajiv Gandhi Education City, National Capital Region, 131029, Sonipat, Haryana, India
| |
Collapse
|
7
|
Leone L, Sgueglia G, La Gatta S, Chino M, Nastri F, Lombardi A. Enzymatic and Bioinspired Systems for Hydrogen Production. Int J Mol Sci 2023; 24:ijms24108605. [PMID: 37239950 DOI: 10.3390/ijms24108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Gianmattia Sgueglia
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore La Gatta
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
8
|
Papadakis M, Barrozo A, Delmotte L, Straistari T, Shova S, Réglier M, Krewald V, Bertaina S, Hardré R, Orio M. How Metal Nuclearity Impacts Electrocatalytic H2 Production in Thiocarbohydrazone-Based Complexes. INORGANICS 2023. [DOI: 10.3390/inorganics11040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Thiocarbohydrazone-based catalysts feature ligands that are potentially electrochemically active. From the synthesis point of view, these ligands can be easily tailored, opening multiple strategies for optimization, such as using different substituent groups or metal substitution. In this work, we show the possibility of a new strategy, involving the nuclearity of the system, meaning the number of metal centers. We report the synthesis and characterization of a trinuclear nickel-thiocarbohydrazone complex displaying an improved turnover rate compared with its mononuclear counterpart. We use DFT calculations to show that the mechanism involved is metal-centered, unlike the metal-assisted ligand-centered mechanism found in the mononuclear complex. Finally, we show that two possible mechanisms can be assigned to this catalyst, both involving an initial double reduction of the system.
Collapse
Affiliation(s)
- Michael Papadakis
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Alexandre Barrozo
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Léa Delmotte
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Tatiana Straistari
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Sergiu Shova
- Institute of Macromolecular Chemistry Petru Poni, 700487 Iasi, Romania
| | - Marius Réglier
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Sylvain Bertaina
- Aix-Marseille Univ, CNRS, IN2MP UMR 7334, 13397 Marseille, France
| | - Renaud Hardré
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Maylis Orio
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
9
|
Tang HM, Fan WY. Transition Metal Pyrithione Complexes (Ni, Mn, Fe, and Co) as Electrocatalysts for Proton Reduction of Acetic Acid. ACS OMEGA 2023; 8:7234-7241. [PMID: 36844539 PMCID: PMC9948554 DOI: 10.1021/acsomega.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/01/2023]
Abstract
A series of mononuclear first-row transition metal pyrithione M(pyr) n complexes (M = Ni(II), Mn(II), n = 2; M = Co(III), Fe(III), n = 3) have been prepared from the reaction of the corresponding metal salt with the sodium salt of pyrithione. Using cyclic voltammetry, the complexes have been shown to behave as proton reduction electrocatalysts albeit with varying efficiencies in the presence of acetic acid as the proton source in acetonitrile. The nickel complex displays the optimal overall catalytic performance with an overpotential of 0.44 V. An ECEC mechanism is suggested for the nickel-catalyzed system based on the experimental data and supported by density functional theory calculations.
Collapse
|
10
|
Guan J, Guo Z, Li X, Tang H. Theoretical Understanding of Reactions of Rhenium and Ruthenium Tris(thiolate) Complexes with Unsaturated Hydrocarbons: Noninnocent Nature of the Ligand, Mechanism, and Origin of Differential Reactivity. Inorg Chem 2023; 62:2548-2560. [PMID: 36719396 DOI: 10.1021/acs.inorgchem.2c02837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In retrospect to the complexity induced by the noninnocent ligands in identifying the transition metal's oxidation state and correlating the ligand's noninnocence with reactivity, the reactions of alkene/alkyne addition to rhenium/ruthenium tris(thiolate) complexes are particularly good cases for shedding light on the chemistry of the dppbt ligand, including its noninnocent nature, ligand-centered mechanism, and origin of differential reactivity. Density functional theory (DFT) combined with the high-level ab initio calculations performed herein demonstrates that, upon alkene/alkyne addition, the orbital symmetry properly regulates the reaction to form ligand-centered cis-interligand dithioethers as the most favorable pathway. The neutral and cationic Re and Ru dithioethers are revealed via DFT calculations to be in a low-spin ground state; on the contrary, high-level ab initio methods confirm that the dicationic Re-dithioethers exhibit obvious multireference character with antiferromagnetic coupling between Re-dyz and S1-py. The metal-stabilized thiyl radicals play a pivotal role in delivering the reactivity of [RuL3]+ and [ReL3]+/2+ toward alkene/alkyne rather than [ReL3], where [RuL3]+ and [ReL3]+/2+ present significant radical characters on ligand S2, yet neutral [ReL3] has little such feature, from which differential reactivity arises. Faster styrene addition to Ru tris(thiolate) in contrast to Re tris(thiolate) has been properly interpreted using DFT calculations with major products assigned. The deeper understanding gained in this work would illuminate further experimental exploration in adding alkene/alkyne to other metal-stabilized thiyl radicals.
Collapse
Affiliation(s)
- Jia Guan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zeyi Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xuelian Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Hao Tang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
11
|
Zhang C, Prignot E, Jeannin O, Vacher A, Dragoe D, Camerel F, Halime Z, Gramage-Doria R. Efficient Hydrogen Production at pH 7 in Water with a Heterogeneous Electrocatalyst Based on a Neutral Dimeric Cobalt-Dithiolene Complex. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chanjuan Zhang
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91190Orsay, France
| | - Erwan Prignot
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000Rennes, France
| | | | | | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91190Orsay, France
| | | | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91190Orsay, France
| | | |
Collapse
|
12
|
Sakthinathan I, Köhling J, Wagner V, McCormac T. Layer-by-Layer Construction of a Nanoarchitecture by Polyoxometalates and Polymers: Enhanced Electrochemical Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2861-2872. [PMID: 36598164 DOI: 10.1021/acsami.2c17397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this contribution, a nanoarchitectural approach was employed to produce a nanolayer of polyoxometalate (POM) on the surface of a glassy carbon electrode (GCE) to achieve a higher surface area with higher electrocatalytic activity toward the electrochemical hydrogen evolution reaction (HER). To accomplish this, the well-known layer-by-layer (LbL) technique was employed, which involved the alternate adsorption of the POM, Na0.3[N(C4H9)4]7.7 [(Mo3O8)4(O3PC(O)(C3H6NH2CH2C4H3S)PO3)4], abbreviated as [(TBA)Mo12(AleThio)4], and polyethyleneimine (PEI) polymer. This nanolayered electrode exhibited catalytic properties toward the HER in 0.5 M H2SO4 with the resulting polarization curves indicating an increase in the HER activity with the increasing number of POM layers, and the overpotential required for this reaction was lowered by 0.83 V when compared with a bare GCE. The eighth PEI/[(TBA)Mo12(AleThio)4] bilayer exhibited a significantly lower HER overpotential of -0.077 V at a current density of 10 mA cm-2. Surface characterization of the LbL-assembled nanolayers was carried out using X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. We believe that the synergetic effect of the positively charged PEI polymer and the catalytically active molybdate POM is the cause for the successful response to the electrochemical HER.
Collapse
Affiliation(s)
- Indherjith Sakthinathan
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| | - Jonas Köhling
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Veit Wagner
- Physics & Earth Sciences, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Timothy McCormac
- Electrochemistry Research Group, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk A91K584, County Louth, Ireland
| |
Collapse
|
13
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
14
|
Loke WLJ, Guo W, Sohail M, Bengali AA, Fan WY. Manganese Tricarbonyl Diimine Bromide Complexes as Electrocatalysts for Proton Reduction. Inorg Chem 2022; 61:20699-20708. [DOI: 10.1021/acs.inorgchem.2c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wen Liang James Loke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,117543, Singapore
| | - Wenzhuo Guo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,117543, Singapore
| | - Muhammad Sohail
- Department of Chemistry, Texas A&M University at Qatar, Doha23874, Qatar
| | - Ashfaq A. Bengali
- Department of Chemistry, Texas A&M University at Qatar, Doha23874, Qatar
| | - Wai Yip Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,117543, Singapore
| |
Collapse
|
15
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lin S, Banerjee S, Fortunato MT, Xue C, Huang J, Sokolov AY, Turro C. Electrochemical Strategy for Proton Relay Installation Enhances the Activity of a Hydrogen Evolution Electrocatalyst. J Am Chem Soc 2022; 144:20267-20277. [DOI: 10.1021/jacs.2c06011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaoyang Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Matthew T. Fortunato
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Congcong Xue
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Jie Huang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| |
Collapse
|
17
|
Capulín Flores L, Paul LA, Siewert I, Havenith R, Zúñiga-Villarreal N, Otten E. Neutral Formazan Ligands Bound to the fac-(CO) 3Re(I) Fragment: Structural, Spectroscopic, and Computational Studies. Inorg Chem 2022; 61:13532-13542. [PMID: 35969867 PMCID: PMC9438031 DOI: 10.1021/acs.inorgchem.2c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal complexes with ligands that coordinate via the nitrogen atom of azo (N═N) or imino (C═N) groups are of interest due to their π-acceptor properties and redox-active nature, which leads to interesting (opto)electronic properties and reactivity. Here, we describe the synthesis and characterization of rhenium(I) tricarbonyl complexes with neutral N,N-bidentate formazans, which possess both N═N and C═N fragments within the ligand backbone (Ar1-NH-N═C(R3)-N═N-Ar5). The compounds were synthesized by reacting equimolar amounts of [ReBr(CO)5] and the corresponding neutral formazan. X-ray crystallographic and spectroscopic (IR, NMR) characterization confirmed the generation of formazan-type species with the structure fac-[ReBr(CO)3(κ2-N2,N4(Ar1-N1H-N2═C(R3)-N3═N4-Ar5))]. The formazan ligand coordinates the metal center in the 'open' form, generating a five-membered chelate ring with a pendant NH arm. The electronic absorption and emission properties of these complexes are governed by the presence of low-lying π*-orbitals on the ligand as shown by DFT calculations. The high orbital mixing between the metal and ligand results in photophysical properties that contrast to those observed in fac-[ReBr(CO)3(L,L)] species with α-diimine ligands.
Collapse
Affiliation(s)
- Liliana Capulín Flores
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510 México, D.F., México
| | - Lucas A Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Remco Havenith
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Noé Zúñiga-Villarreal
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510 México, D.F., México
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Kitamura T, Yamanishi K, Inoue S, Yan Y, Yano N, Kataoka Y, Handa M, Kawamoto T. Clamshell Palladium(II) Complexes: Suitable Precursors for Photocatalytic Hydrogen Production from Water. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuma Kitamura
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Katsunori Yamanishi
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Satoshi Inoue
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Yin‐Nan Yan
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Natsumi Yano
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Yusuke Kataoka
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Makoto Handa
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Tatsuya Kawamoto
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| |
Collapse
|
19
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
20
|
Ebeler F, Vishnevskiy YV, Neumann B, Stammler H, Ghadwal RS. Mesoionic Dithiolates (MIDts) Derived from 1,3-Imidazole-Based Anionic Dicarbenes (ADCs). Chemistry 2022; 28:e202200739. [PMID: 35363912 PMCID: PMC9323478 DOI: 10.1002/chem.202200739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/22/2022]
Abstract
Mesoionic dithiolates [(MIDtAr )Li(LiBr)2 (THF)3 ] (MIDtAr ={SC(NDipp)}2 CAr; Dipp=2,6-iPr2 C6 H3 ; Ar=Ph 3 a, 3-MeC6 H4 (3-Tol) 3 b, 4-Me2 NC6 H4 (DMP) 3 c) and [(MIDtPh )Li(THF)2 ] (4) are readily accessible (in≥90 % yields) as crystalline solids on treatments of anionic dicarbenes Li(ADCAr ) (2 a-c) (ADCAr ={C(NDipp)2 }2 CAr) with elemental sulfur. 3 a-c and 4 are monoanionic ditopic ligands with both the sulfur atoms formally negatively charged, while the 1,3-imidazole unit bears a formal positive charge. Treatment of 4 with (L)GeCl2 (L=1,4-dioxane) affords the germylene (MIDtPh )GeCl (5) featuring a three-coordinated Ge atom. 5 reacts with (L)GeCl2 to give the Ge-Ge catenation product (MIDtPh )GeGeCl3 (6). KC8 reduction of 5 yields the homoleptic germylene (MIDtPh )2 Ge (7). Compounds 3 a-c and 4-7 have been characterized by spectroscopic studies and single-crystal X-ray diffraction. The electronic structures of 4-7 have been analyzed by DFT calculations.
Collapse
Affiliation(s)
- Falk Ebeler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Yury V. Vishnevskiy
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Beate Neumann
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| | - Rajendra S. Ghadwal
- Molecular Inorganic Chemistry and CatalysisInorganic and Structural ChemistryCenter for Molecular MaterialsFaculty of ChemistryUniversität BielefeldUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
21
|
González-García C, García-Pascual C, Burón R, Calatayud DG, Perles J, Antonia Mendiola M, López-Torres E. Structural variety, fluorescence and photocatalytic activity of dissymmetric thiosemicarbazone complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Chen L, Xie B, Li T, Lai C, Cao J, Ji R, Liu M, Li W, Zhang D, He J. Heteroleptic nickel complexes bearing O‐methyldithiophosphate and aminodiphosphine monosulfide ligands as robust molecular electrocatalysts for hydrogen evolution. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luo Chen
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Bin Xie
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Tao Li
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Chuan Lai
- School of Chemistry and Chemical Engineering Sichuan University of Arts and Science Dazhou China
| | - Jia‐Xi Cao
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Ren‐Wu Ji
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Meng‐Nan Liu
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Wei Li
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Dong‐Liang Zhang
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| | - Jia‐Yu He
- School of Materials Science and Engineering, College of Chemistry and Environmental Engineering, Key Laboratory of Materials Corrosion and Protection of Sichuan Province Sichuan University of Science and Engineering Zigong China
| |
Collapse
|
23
|
Tran DB, To TH, Tran PD. Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Non-Covalent Functionalization of Graphene Oxide-Supported 2-Picolyamine-Based Zinc(II) Complexes as Novel Electrocatalysts for Hydrogen Production. Catalysts 2022. [DOI: 10.3390/catal12040389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three mononuclear 2-picolylamine-containing zinc(III) complexes viz [(2-PA)2ZnCl]2(ZnCl4)] (Zn1), [(2-PA)2Zn(H2O)](NO3)2] (Zn2) and [Zn(2-PA)2(OH)]NO3] (Zn3) were synthesized and fully characterized. Spectral and X-ray structural characteristics showed that the Zn1 complex has a square-pyramidal coordination environment around a zinc(II) core. The hydroxide complex Zn3 was non-covalently functionalized with few layers of graphene oxide (GO) sheets, formed by exfoliation of GO in water. The resulting Zn3/GO hybrid material was characterized by FT-IR, TGA-DSC, SEM-EDX and X-ray powder diffraction. The way of interaction of Zn3 with GO has been established through density functional theory (DFT) calculations. Both experimental and theoretical findings indicate that, on the surface of GO, the complex Zn3 forms a complete double-sided adsorption layer. Zn3 and its hybrid form Zn3/GO have been individually investigated as electrocatalysts for the hydrogen evolution reaction. The hybrid heterogenized form Zn3/GO was supported on glassy carbon (GC) with variable loading densities of Zn3 (0.2, 0.4 and 0.8 mg cm−2) to form electrodes. These electrodes have been tested as molecular electrocatalysts for the hydrogen evolution reaction (HER) using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in 0.1 M KOH. Results showed that both GC-Zn3 and GC-Zn3/GO catalysts for the HER are highly active, and with increase of the catalyst’s loading density, this catalytic activity enhances. The high catalytic activity of HER with a low onset potential of −140 mV vs. RHE and a high exchange current density of 0.22 mA cm−2 is achieved with the highest loading density of Zn3 (0.8 mg cm−2). To achieve a current density of 10 mA cm−2, an overpotential of 240 mV was needed.
Collapse
|
25
|
Su WH, Wang FD, Rong Y, Xu MY, Zhang CX, Yang LB. Integrating CdS and Titanium oxide clusters with molecular redox catalysts into metal‐organic frameworks promoting photocatalytic efficient H2 evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Hui Su
- Tianjin University of Science and Technology College of Chemical Engineering and Materials Science Tianjin CHINA
| | - Feng-Dong Wang
- Tianjin University of Science and Technology College of Chemical Engineering and Materials Science tianjin CHINA
| | - Yi Rong
- Tianjin University of Science and Technology College of Chemical Engineering and Materials Science tianjn CHINA
| | - Meng-Yao Xu
- Tianjin University of Science and Technology College of Chemical Engineering and Materials Science tianjin CHINA
| | - Chen-Xi Zhang
- Tianjin University of Science and Technology Department of Chemistry tianjin university 300457 tianjin CHINA
| | - Li-Bin Yang
- Tianjin University of Science and Technology Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization CHINA
| |
Collapse
|
26
|
Barrozo A, Orio M. From Ligand- to Metal-centered Reactivity: Metal Substitution Effect in Thiosemicarbazone-based Complexes for H2 Production. Chemphyschem 2022; 23:e202200056. [PMID: 35213068 DOI: 10.1002/cphc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
The quest to develop and optimize catalysts for H 2 production requires a thorough understanding in the possible catalytic mechanisms involved. Transition metals are very often the centers of reactivity in the catalysis, although this can change in the presence of a redox-active ligand. Investigating the differences in catalysis when considering ligand- and metal-centered reactivity is important to find the most optimal mechanisms for hydrogen evolution reaction. Here, we investigated this change of reactivity in two versions of a thiosemicarbazone-based complex, using Co and Ni metal centers. While the Ni version has a ligand-centered reactivity, Co switches it toward a metal-centered one. Comparison between the mechanisms show differences in rate-limiting steps, and shows the importance of identifying those steps in order to optimize the system for hydrogen production.
Collapse
Affiliation(s)
- Alexandre Barrozo
- University of Southern California, Department of Chemistry, SSC 404, University of Southern California, 90089-0482, Los Angeles, UNITED STATES
| | - Maylis Orio
- iSm2: Institut des Sciences Moleculaires de Marseille, Biosciences, 52 Avenue Escadrille Normandie Niemen, 13013, Marseille, FRANCE
| |
Collapse
|
27
|
Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2022_77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Electrocatalytic hydrogen evolution upon reduction of pyridoxal semicarbazone and thiosemicarbazone-based Cu(II) complexes. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc210520050a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The growing global demand for renewable energy sources has pushed renewable, green energy sources to the forefront, among which the production of hydrogen gas from water occupies a significant place. To realize this goal, researchers across the globe are developing various systems that could swiftly catalyze the hydrogen evolution reaction (HER) in the highest possible yield. In the present work, the electrocatalytic HER performances of pyridoxal semicarbazone- and thiosemicarbazone-based Cu(II) complexes, i.e., ([Cu(PLSC)Cl2] and [Cu(PLTSC-H)H2O]Br?H2O) are reported. It has been unambiguously demonstrated that the complexes exhibit enviable level of HER catalytic activity. The catalytic activity of the complexes was not only the function of central metal but it was also controlled by the nature of the coordinating ligand.
Collapse
|
29
|
Bhattacharjee A, Brown DSV, Virca CN, Ethridge TE, Mendez Galue O, Pham UT, McCormick TM. Computational investigation into intramolecular hydrogen bonding controlling the isomer formation and pKa of octahedral nickel (II) proton reduction catalysts. Dalton Trans 2022; 51:3676-3685. [DOI: 10.1039/d2dt00043a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrates the impact of intramolecular hydrogen bonding (H-bonding) on the calculated pKa of octahedral tris-(pyridinethiolato)nickel (II), [Ni(PyS)3]-, proton reduction catalysts. Density Functional Theory (DFT) calculations on a [Ni(PyS)3]-...
Collapse
|
30
|
Liu J, Liao RZ, Heinemann FW, Meyer K, Thummel RP, Zhang Y, Tong L. Electrocatalytic Hydrogen Evolution by Cobalt Complexes with a Redox Non-Innocent Polypyridine Ligand. Inorg Chem 2021; 60:17976-17985. [PMID: 34808047 DOI: 10.1021/acs.inorgchem.1c02539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Novel cobalt and zinc complexes with the tetradentate ppq (8-(1″,10″-phenanthrol-2″-yl)-2-(pyrid-2'-yl)quinoline) ligand have been synthesized and fully characterized. Electrochemical measurements have shown that the formal monovalent complex [Co(ppq)(PPh3)]+ (2) undergoes two stepwise ligand-based electroreductions in DMF, affording a [Co(ppq)DMF]-1 species. Theoretical calculations have described the electronic structure of [Co(ppq)DMF]-1 as a low-spin Co(II) center coupling with a triple-reduced ppq radical ligand. In the presence of triethylammonium as the proton donor, the cobalt complex efficiently drives electrocatalytic hydrogen evolution with a maximum turnover frequency of thousands per second. A mechanistic investigation proposes an EECC H2-evolving pathway, where the second ligand-based redox process (E), generating the [Co(ppq)DMF]-1 intermediate, initiates proton reduction, and the second proton transfer process (C) is the rate-determining step. This work provides a unique example for understanding the role of redox-active ligands in electrocatalytic H2 evolution by transition metal sites.
Collapse
Affiliation(s)
- Jiale Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Randolph P Thummel
- Department of Chemistry, 112 Fleming Building, University of Houston, Houston, Texas 77204-5003, United States
| | - Yaqiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lianpeng Tong
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University, No. 230 Wai Huan Xi Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
31
|
Obermeier M, Beckmann F, Schaer RS, Wenger OS, Schwalbe M. Sensitized Photocatalytic CO 2 Reduction With Earth Abundant 3d Metal Complexes Possessing Dipicolyl-Triazacyclononane Derivatives. Front Chem 2021; 9:751716. [PMID: 34660540 PMCID: PMC8514774 DOI: 10.3389/fchem.2021.751716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Complexes based on nitrogen and sulfur containing ligands involving 3d metal centers are known for the electrocatalytic reduction of CO2. However, photocatalytical activation has rarely been investigated. We herein present results on the light-driven CO2 reduction using either Ir(dFppy)3 [Ir, dFppy = 2-(4,6-difluorophenyl)pyridine] or [Cu(xant)(bcp)]+, (Cu, xant = xantphos, bcp = bathocuproine) as photosensitizer in combination with TEA (triethylamine) as sacrificial electron donor. The 3d metal catalysts have either dptacn (dipicolyl-triazacyclononane, LN3) or dpdatcn (dipicolyl-diazathiocyclononane, LN2S) as ligand framework and Fe3+, Co3+ or Ni2+ as central metal ion. It turned out that the choice of ligand, metal center and solvent composition influences the selectivity for product formation, which means that the gaseous reduction products can be solely CO or H2 or a mixture of both. The ratio between these two products can be controlled by the right choice of reaction conditions. With using Cu as photosensitizer, we could introduce an intermolecular system that is based solely on 3d metal compounds being able to reduce CO2.
Collapse
Affiliation(s)
- Martin Obermeier
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Beckmann
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raoul S Schaer
- Department of Chemistry, Universität Basel, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, Universität Basel, Basel, Switzerland
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
32
|
Ladomenou K, Papadakis M, Landrou G, Giorgi M, Drivas C, Kennou S, Hardré R, Massin J, Coutsolelos AG, Orio M. Nickel Complexes and Carbon Dots for Efficient Light‐Driven Hydrogen Production. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kalliopi Ladomenou
- Laboratory of Bioinorganic Chemistry Chemistry Department University of Crete PO Box 2208 71003 Heraklion Crete Greece
| | | | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry Chemistry Department University of Crete PO Box 2208 71003 Heraklion Crete Greece
| | - Michel Giorgi
- Aix Marseille Univ, CNRS, Spectropole FR1739 Marseille France
| | - Charalambos Drivas
- Surface Science Laboratory Chemical Engineering Department University of Patras 26504 Patras Greece
| | - Stella Kennou
- Surface Science Laboratory Chemical Engineering Department University of Patras 26504 Patras Greece
| | - Renaud Hardré
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Julien Massin
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Athanassios G. Coutsolelos
- Laboratory of Bioinorganic Chemistry Chemistry Department University of Crete PO Box 2208 71003 Heraklion Crete Greece
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
33
|
Wei R, Hu J, Chen X, Gong Y. Vanadium, niobium and tantalum complexes with terminal sulfur radical ligands. Dalton Trans 2021; 50:11300-11306. [PMID: 34342320 DOI: 10.1039/d1dt01956b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur radicals terminally bound to the metal center can be considered as the one-electron reduction products of complexes with terminal sulfido ligands which serve as the reactive sites in enzymes and precursors. However, there is limited information regarding this kind of metal stabilized sulfur radical, which contrasts the more commonly known metal stabilized thiyl radical. In this work, we report the preparation of vanadium, niobium and tantalum radical complexes in the form of M(O)(S)F2 from the reactions of laser-ablated metal atoms and SOF2 in cryogenic matrixes. Combined with the results from infrared spectroscopy and density functional theory calculations, the sulfur ligand in M(O)(S)F2 is characterized to be a terminally bound radical with the unpaired electron located on the sulfur 3p orbital. Besides this radical complex, calculations also predict the existence of MF2(η2-SO) with a side-on SO ligand, but this less stable isomer is not observed as a result of high exothermicity along with its formation from metal atoms and SOF2 that is large enough to overcome the energy barrier towards the occurrence of M(O)(S)F2.
Collapse
Affiliation(s)
- Rui Wei
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | |
Collapse
|
34
|
Ma R, Hong K. Theoretical Investigation of
HER
Mechanism Using Density Functional and
Ab Initio
Calculations. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rory Ma
- XFEL Science Team Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Kiryong Hong
- Gas Metrology Group, Department of Chemical and Biological Metrology Korea Research Institute of Standards and Science Daejeon 34113 South Korea
| |
Collapse
|
35
|
Attar SS, Pilia L, Espa D, Artizzu F, Serpe A, Pizzotti M, Marinotto D, Marchiò L, Deplano P. Insight into the Properties of Heteroleptic Metal Dithiolenes: Multistimuli Responsive Luminescence, Chromism, and Nonlinear Optics. Inorg Chem 2021; 60:9332-9344. [PMID: 34115489 DOI: 10.1021/acs.inorgchem.1c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comprehensive investigation of the functional properties of heteroleptic donor-M-acceptor dithiolene complexes Bu4N[MII(L1)(L2)] is presented (M = Pd, Pt). The acceptor L1 consists of the chiral (R)-(+)α-methylbenzyldithiooxamidate ((R)-α-MBAdto), the donor L2 is 2-thioxo-1,3-dithiole-4,5-dithiolato (dmit) in 1 (Pd) and 2 (Pt), 1,2-dicarbomethoxyethylenedithiolate (ddmet) in 3 (Pd) and 4 (Pt), or [4',5':5,6][1,4]dithiino[2,3-b]quinoxaline-1',3'-dithiolato (quinoxdt) in 5 (Pd) and 6 (Pt). L1 is capable of undergoing proton exchange and promoting crystal formation in noncentrosymmetric space groups. L2 has different molecular structures while it maintains similar electron-donating capabilities. Thanks to the synergy of the ligands, 1-6 behave as H+ and Ag+ switchable linear chromophores. Moreover, the compounds exhibit a H+-switchable second-order NLO response in solution, which is maintained in the bulk for 1, 3, and 4 when they are embedded into a PMMA poled matrix. 5 and 6 show unique anti-Kasha H+ and Ag+ tunable colored emission originating from the quinoxdt ligand. A correlation between the electronic structure and properties is shown through density functional theory (DFT) and time-dependent DFT calculations.
Collapse
Affiliation(s)
- Salahuddin S Attar
- Department of Chemical and Soil Sciences, INSTM Research Unit, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Luca Pilia
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Davide Espa
- Department of Chemical and Soil Sciences, INSTM Research Unit, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Flavia Artizzu
- L3-Luminescent Lanthanide Lab, Department of Chemistry, Ghent University Krijgslaan 281, Building S3, B-9000 Gent, Belgium
| | - Angela Serpe
- Dipartimento di Ingegneria Civile, Ambientale e Architettura, INSTM Research Unit, Università di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Maddalena Pizzotti
- Department of Chemistry, INSTM Research Unit, University of Milan Via C. Golgi 19, 20133 Milano, Italy
| | - Daniele Marinotto
- CNR-SCITEC, Centro di eccellenza CIMAINA, Via C. Golgi 19, 20133 Milano, Italy
| | - Luciano Marchiò
- Dipartimento SCVSA, Università di Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Paola Deplano
- Department of Chemical and Soil Sciences, INSTM Research Unit, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
36
|
Drosou M, Zarkadoulas A, Bethanis K, Mitsopoulou CA. Structural modifications on nickel dithiolene complexes lead to increased metal participation in the electrocatalytic hydrogen evolution mechanism. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1918339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maria Drosou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Christiana A. Mitsopoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Synthesis of Novel Heteroleptic Oxothiolate Ni(II) Complexes and Evaluation of Their Catalytic Activity for Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal11030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two heteroleptic nickel oxothiolate complexes, namely [Ni(bpy)(mp)] (1) and [Ni(dmbpy)(mp)] (2), where mp = 2-hydroxythiophenol, bpy = 2,2′-bipyridine and dmbpy = 4,4′-dimethyl-2,2′-bipyridine were synthesized and characterized with various physical and spectroscopic methods. Complex 2 was further characterized by single crystal X-ray diffraction data. The complex crystallizes in the monoclinic P 21/c system and in its neutral form. The catalytic properties of both complexes for proton reduction were evaluated with photochemical and electrochemical studies. Two different in their nature photosensitizers, namely fluorescein and CdTe-TGA-coated quantum dots, were tested under various conditions. The role of the electron donating character of the methyl substituents was revealed in the light of the studies. Thus, catalyst 2 performs better than 1, reaching 39.1 TONs vs. 4.63 TONs in 3 h, respectively, in electrochemical experiments. In contrast, complex 1 is more photocatalytically active than 2, achieving a TON of over 6700 in 120 h of irradiation. This observed reverse catalytic activity suggests that HER mechanism follows different pathways in electrocatalysis and photocatalysis.
Collapse
|
38
|
Queyriaux N. Redox-Active Ligands in Electroassisted Catalytic H + and CO 2 Reductions: Benefits and Risks. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Queyriaux
- CNRS, LCC (Laboratoire de Chimie de Coordination), 31077 Toulouse, France
| |
Collapse
|
39
|
Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Kuwamura N, Konno T. Heterometallic coordination polymers as heterogeneous electrocatalysts. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00112d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterometallic coordination polymers have been rapidly developed as heterogeneous electrocatalysts. This review highlights the synthesis strategies of these polymers and the relationships between structures and electrocatalytic performances.
Collapse
Affiliation(s)
- Naoto Kuwamura
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Takumi Konno
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
41
|
Adhikari S, Bhattacharjee T, Bhattacharjee S, Daniliuc CG, Frontera A, Lopato EM, Bernhard S. Nickel(II) complexes based on dithiolate-polyamine binary ligand systems: crystal structures, hirshfeld surface analysis, theoretical study, and catalytic activity study on photocatalytic hydrogen generation. Dalton Trans 2021; 50:5632-5643. [PMID: 33908954 DOI: 10.1039/d1dt00352f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To ascertain the influence of binary ligand systems [1,1-dicyanoethylene-2,2-dithiolate (i-mnt-2) and polyamine {tetraen = tris(2-aminoethyl)amine, tren = diethylene triamine and opda = o-phenylenediamine}] on the coordination modes of the Ni(ii) metal center and resulting supramolecular architectures, a series of nickel(ii) thiolate complexes [Ni(tetraen)(i-mnt)](DMSO) (1), [Ni2(tren)2(i-mnt)2] (2), and [Ni2(i-mnt)2(opda)2]n (3) have been synthesized in high yield in one step in water and structurally characterized by single crystal X-ray crystallography and spectroscopic techniques. X-ray diffraction studies disclose the diverse i-mnt-2 coordination to the Ni+2 center in the presence of active polyamine ligands, forming a slightly distorted octahedral geometry (NiN4S2) in 1, square planar (NiS4) and distorted octahedral geometries (NiN6) in the bimetallic co-crystallized aggregate of cationic [Ni(tren)2]+2 and anionic [Ni(i-mnt)2]-2 in 2, and a one dimensional (1D) polymeric chain along the [100] axis in 3, having consecutive square planar (NiS4) and octahedral (NiN6) coordination kernels. The N-HO, N-HS, N-HN, N-HS, N-HN, and N-HO type hydrogen bonds stabilize the supramolecular assemblies in 1, 2, and 3 respectively imparting interesting graph-set-motifs. The molecular Hirshfeld surface analyses (HS) and 2D fingerprint plots were utilized for decoding all types of non-covalent contacts in the crystal networks. Atomic HS analysis of the Ni+2 centers reveals significant Ni-N metal-ligand interactions compared to Ni-S interactions. We have also studied the unorthodox interactions observed in the solid state structures of 1-3 by QTAIM and NBO analyses. Moreover, all the complexes proved to be highly active water reduction co-catalysts (WRC) in a photo-catalytic hydrogen evolution process involving iridium photosensitizers, wherein 2 and 3 having a square planar arrangement around the nickel center(s) - were found to be the most active ones, achieving 1000 and 1119 turnover numbers (TON), respectively.
Collapse
Affiliation(s)
- Suman Adhikari
- Department of Chemistry, Govt. Degree College, Dharmanagar, Tripura (N)-799253, India.
| | - Tirtha Bhattacharjee
- Department of Chemistry, Bineswar Brahma Engineering College, Kokrajhar-783370, Assam, India
| | | | - Constantin Gabriel Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149, Münster, Germany
| | - Antonio Frontera
- Department de Quimica, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Eric M Lopato
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
42
|
Calvary CA, Hietsoi O, Hofsommer DT, Brun HC, Costello AM, Mashuta MS, Spurgeon JM, Buchanan RM, Grapperhaus CA. Copper bis(thiosemicarbazone) Complexes with Pendent Polyamines: Effects of Proton Relays and Charged Moieties on Electrocatalytic HER. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caleb A. Calvary
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| | - Oleksandr Hietsoi
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
- Department of Chemistry Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Dillon T. Hofsommer
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| | - Henry C. Brun
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| | - Alison M. Costello
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| | - Mark S. Mashuta
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| | - Joshua M. Spurgeon
- Conn Center for Renewable Energy Research University of Louisville Louisville KY 40292 USA
| | - Robert M. Buchanan
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| | - Craig A. Grapperhaus
- Department of Chemistry University of Louisville 2320 South Brook Street Louisville KY 40292 USA
| |
Collapse
|
43
|
Banerjee S, Anayah RI, Gerke CS, Thoi VS. From Molecules to Porous Materials: Integrating Discrete Electrocatalytic Active Sites into Extended Frameworks. ACS CENTRAL SCIENCE 2020; 6:1671-1684. [PMID: 33145407 PMCID: PMC7596858 DOI: 10.1021/acscentsci.0c01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 05/15/2023]
Abstract
Metal-organic and covalent-organic frameworks can serve as a bridge between the realms of homo- and heterogeneous catalytic systems. While there are numerous molecular complexes developed for electrocatalysis, homogeneous catalysts are hindered by slow catalyst diffusion, catalyst deactivation, and poor product yield. Heterogeneous catalysts can compensate for these shortcomings, yet they lack the synthetic and chemical tunability to promote rational design. To narrow this knowledge gap, there is a burgeoning field of framework-related research that incorporates molecular catalysts within porous architectures, resulting in an exceptional catalytic performance as compared to their molecular analogues. Framework materials provide structural stability to these catalysts, alter their electronic environments, and are easily tunable for increased catalytic activity. This Outlook compares molecular catalysts and corresponding framework materials to evaluate the effects of such integration on electrocatalytic performance. We describe several different classes of molecular motifs that have been included in framework materials and explore how framework design strategies improve on the catalytic behavior of their homogeneous counterparts. Finally, we will provide an outlook on new directions to drive fundamental research at the intersection of reticular-and electrochemistry.
Collapse
Affiliation(s)
- Soumyodip Banerjee
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rasha I. Anayah
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Carter S. Gerke
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - V. Sara Thoi
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, United States
- E-mail:
| |
Collapse
|
44
|
Chowdhury SN, Biswas S, Das P, Paul S, Biswas AN. Oxygen Reduction Assisted by the Concert of Redox Activity and Proton Relay in a Cu(II) Complex. Inorg Chem 2020; 59:14012-14022. [PMID: 32916051 DOI: 10.1021/acs.inorgchem.0c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A copper complex, [Cu(dpaq)](ClO4) (1), of a monoanionic pentadentate amidate ligand (dpaq) has been isolated and characterized to study its efficacy toward electrocatalytic reduction of oxygen in neutral aqueous medium. The Cu(II) mononuclear complex, poised in a distorted trigonal bipyramidal structure, reduces oxygen at an onset potential of 0.50 V vs RHE. Kinetics study by hydrodynamic voltammetry and chronoamperometry suggests a stepwise mechanism for sequential reduction of O2 to H2O2 to H2O at a single-site Cu-catalyst. The foot-of-the-wave analysis records a turnover frequency of 5.65 × 102 s-1. At pH 7.0, complex 1 undergoes a quasi-reversible mixed metal-ligand-based reduction and triggers the reduction of dioxygen to water. Electrochemical studies in tandem with quantum chemical investigation, conducted at different redox states, portray the active participation of ligand in completing the process of proton-coupled electron transfer internally. The protonated carboxamido moiety acts as a proton relay, while the quinoline-based orbital supplies the necessary redox equivalent for the conversion of complex 1 to Cu(II)-hydroperoxo species. Thus, a suitable combination of redox non-innocence and proton shuttling functionality in the ligand makes it an effective electron-proton-transfer mediator and subsequently assists the process of oxygen reduction.
Collapse
Affiliation(s)
- Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| | - Purak Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati 743165, India
| | - Satadal Paul
- Department of Science and Humanities, Darjeeling Polytechnic, Kurseong 734203, India
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| |
Collapse
|
45
|
Kashin AS, Galushko AS, Degtyareva ES, Ananikov VP. Solid-State C-S Coupling in Nickel Organochalcogenide Frameworks as a Route to Hierarchical Structure Transfer to Binary Nanomaterials. Inorg Chem 2020; 59:10835-10844. [PMID: 32692161 DOI: 10.1021/acs.inorgchem.0c01352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the transfer of the flexible and easily tunable hierarchical structure of nickel organochalcogenides to different binary Ni-based nanomaterials via selective coupling of organic units was developed. We suggested the use of substituted aryl groups in organosulfur ligands (SAr) as traceless structure-inducing units to prepare nanostructured materials. At the first step, it was shown that the slight variation of the type of SAr units and synthetic procedures allowed us to obtain nickel thiolates [Ni(SAr)2]n with diverse morphologies after a self-assembly process in solution. This feature opened the way for the synthesis of different nanomaterials from a single type of precursor using the phenomenon of direct transfer of morphology. This study revealed that various nickel thiolates undergo selective C-S coupling under high-temperature conditions with the formation of highly demanding nanostructured NiS particles and corresponding diaryl sulfides. The in situ oxidation of the formed nickel sulfide in the case of reaction in an air atmosphere provided another type of valuable nanomaterial, nickel oxide. The high selectivity of the transformation allowed the preservation of the initial organochalcogenide morphologies in the resulting products.
Collapse
Affiliation(s)
- Alexey S Kashin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Alexey S Galushko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Evgeniya S Degtyareva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| |
Collapse
|
46
|
Bakir M, Lawrence MW, Bohari Yamin M. Novel κ2-Nim,S- and κ4-C,Nim,(μ-S),(μ-S)-coordination of di-2-thienyl ketone thiosemicarbazone (dtktsc). Hydrogen evolution and catalytic properties of palladacyclic [Pd(κ4-C,Nim,(μ-S),(μ-S)-dtktsc-2H)]4. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|