1
|
Panda N, Palit K, Mohapatra S. "Cation Pool" generated from DMSO and 1,2-dihaloethanes and their application in organic synthesis. Org Biomol Chem 2024; 22:7103-7110. [PMID: 39175440 DOI: 10.1039/d4ob00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Conventionally, carbenium and onium ions are prepared in the presence of nucleophiles due to their instability and transient nature. The nucleophiles that are unstable or inert to the reaction media cannot be used for reaction with the cationic species to access the desired compounds. To overcome these limitations, developing methods for generating organic cations irreversibly in the absence of nucleophiles is essential. The "cation pool" method developed by Yoshida and co-workers stands out as a reliable strategy to generate and accumulate the reactive cations in solution in the absence of nucleophiles. The cation pool method involves the electrolysis of the substrate in the absence of nucleophiles, usually at low temperature. Moreover, the generation of halogen and chalcogen cations through electrolysis needs extra care because of their low stability. This review covers our effort in generating and accumulating halogen cations as "cation pools", most importantly by simply heating a mixture of dimethyl sulfoxide (DMSO) and 1,2-dihaloethane (DXE, X = Cl, Br, I), and their use in the halogenation reactions. Furthermore, condition-dependent Pummerer-type fragmentations of DMSO-stabilized halogen cations to methyl(methylene)sulfonium ions and chlorodimethylsulfonium ions for synthetic applications are described.
Collapse
Affiliation(s)
- Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| |
Collapse
|
2
|
Bi WZ, Geng Y, Zhang WJ, Li CY, Ni CS, Ma QJ, Feng SX, Chen XL, Qu LB. Highly sensitive and selective detection of triphosgene with a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe. RSC Adv 2023; 13:30771-30776. [PMID: 37869386 PMCID: PMC10587890 DOI: 10.1039/d3ra06061f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
In this work, a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe, 2-(2'-hydroxy-4'-aminophenyl)benzimidazole (4-AHBI), was synthesized and its fluorescent behavior toward triphosgene were evaluated. The results showed that 4-AHBI exhibited high sensitivity (limit of detection, 0.08 nM) and excellent selectivity for triphosgene over other acyl chlorides including phosgene in CH2Cl2 solution. Moreover, 4-AHBI loaded test strips were prepared for the practical sensing of triphosgene.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College Zhengzhou 450046 China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Chu-Sen Ni
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Qiu-Juan Ma
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
| | - Su-Xiang Feng
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P. R. China Zhengzhou 450046 China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University Zhengzhou 450052 China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
3
|
Zheng L, Qiu X, Xiao Z, Ma X, Gao T, Zhou X, Wang Y, Guo Y, Chen QY, Liu C. Deoxygenation of ClSO 2CF 2COOMe with Triphenylphosphine for the Metal-Free Direct Electrophilic Difluoroalkylthiolation of Various Heterocycles. J Org Chem 2023. [PMID: 37134234 DOI: 10.1021/acs.joc.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A direct electrophilic difluoroalkylthiolation reaction of indole derivatives and other electron-rich heterocycles using methyl 2,2-difluoro-2-(chlorsulfonyl)acetate (ClSO2CF2COOMe) derived from Chen's reagent (FSO2CF2COOMe) is described. The ester group in the product can be further utilized in subsequent versatile transformations. The reactions provide good yields of the corresponding difluoroalkylthiolation products and exhibit high functional group compatibility. It is expected to serve as an alternative and practical protocol for difluoroalkylthiolation of various heterocycles.
Collapse
Affiliation(s)
- Liping Zheng
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Xin Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zhiwei Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Ma
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Tianzeng Gao
- Henan Ground Biological Science & Technology Co., Ltd., 3 Tanxiang Road, Zhengzhou 450001, China
| | - Xiumiao Zhou
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Yufei Wang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
4
|
Liu F. Direct methylthiolation of C-, S-, and P-nucleophiles with sodium S-methyl thiosulfate. Org Biomol Chem 2023; 21:1153-1157. [PMID: 36628986 DOI: 10.1039/d2ob02056d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A practical and efficient methylthiolation that employed the typical Bunte salt sodium S-methyl sulfothioate as the sulfur source was described. This reagent could react with a variety of compounds such as alkynes, 1,3-diketones, thiols, selenol and H-phosphine oxides, affording methylthiolated products in moderate to excellent yields. The advantages such as easy preparation, air- and moisture-stability and high tolerance of functional groups demonstrated the potential of this reagent to be widely applied in organic synthesis. Notably, the robustness of this reagent was demonstrated by the late-stage modification of drug molecules of erlotinib.
Collapse
Affiliation(s)
- Fanmin Liu
- Division of Specialty Chemicals, Institute of Zhejiang University-Quzhou, Quzhou, 324000, P. R. China.
| |
Collapse
|
5
|
Mumtaz Y, Liu J, Huang X. Copper-Promoted Trifluoromethylthiolation of Anilines with CF 3SO 2Na. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202203031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
6
|
Yu N, Huang J, Leng F. Direct fluoroalkylthiolation of indoles with iodofluoroethane enabled by Na 2S 2O 4. RSC Adv 2022; 13:730-733. [PMID: 36683774 PMCID: PMC9808600 DOI: 10.1039/d2ra07430c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this paper, we report an efficient approach for the direct fluoroalkylthiolation of indoles with iodofluoroethane in the presence of Na2S2O4. In this work, we employed readily available iodofluoroethane and Na2S2O4 as fluoroalkylthiolation reagents, featuring mild conditions and a wide range of indole substrates. In addition, fluoroalkylthiolated 2,3'-biindole derivatives can also be prepared by this method.
Collapse
Affiliation(s)
- Nianhua Yu
- School of Pharmaceutical Sciences, Capital Medical UniversityBeijing 100069P. R. China
| | - Jianjian Huang
- School of Pharmaceutical Sciences, Capital Medical UniversityBeijing 100069P. R. China
| | - Faqiang Leng
- School of Pharmaceutical Sciences, Capital Medical UniversityBeijing 100069P. R. China
| |
Collapse
|
7
|
Liu Z, Yu T, Li L, Fu W, Gan X, Chen H, Gao W, Tang B. S-triggered Schmidt-type rearrangement of vinyl azides to access N-aryl-(trifluoromethylsulfinyl)acetamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel S-induced Schmidt-type rearrangement of vinyl azides with CF3SO2Na is developed for synthesis of N-arylated 2-(trifluoromethylsulfinyl)acetamieds, which is mediated by triphosgene (BTC) under mild reaction conditions.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Tian Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Longhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Wei Fu
- Department of Pharmacy, Zibo Central Hospital, Zibo 255000, P. R. China
| | - Xingxing Gan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Huimin Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
8
|
Wang H, Yao Y, You Y, Huang Y, Weng Z. Aerobic copper-mediated domino process for the synthesis of 3-(trifluoromethylseleno)indoles. Org Biomol Chem 2022; 20:2115-2120. [DOI: 10.1039/d2ob00063f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aerobic copper-mediated domino reaction for the synthesis of 3-(trifluoromethylseleno)indoles from trifluoromethylselenolation of N-Ts 2-alkynylaniline with [(bpy)CuSeCF3]2 is reported. This reaction proceeds through a sequential oxidation, alkyne coordination, and deprotonation...
Collapse
|
9
|
Saroha M, Sindhu J, Kumar S, Bhasin KK, Khurana JM, Varma RS, Tomar D. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Saroha
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Kuldip K. Bhasin
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | | | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Deepak Tomar
- Department of Chemistry R. K. P. G. College Shamli Uttar Pradesh 247776 India
| |
Collapse
|
10
|
Yu Q, Liu Y, Wan JP. Metal-free C(sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of α-perfluoroalkylsulfonyl E-enaminones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Synthesis of 3-((trifluoromethyl)thio)indoles via trifluoromethylthiolation of 2-alkynyl azidoarenes with AgSCF3. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wang Z, Xu S, Wang K, Kong N, Liu X. Recent Studies of Bifunctionalization of Simple Indoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Shaohong Xu
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Niuniu Kong
- School of Pharmacy Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Xue Liu
- Department of Chemistry Lishui University Zhejiang P. R. China
| |
Collapse
|
13
|
Huang D, Wu X. t-BuOK-promoted methylthiolation of aryl fluorides with dimethyldisulfide under transition-metal-free and mild conditions. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Li X, Zhang B, Zhang J, Wang X, Zhang D, Du Y, Zhao K. Synthesis of
3‐Methylthioindoles
via
Intramolecular Cyclization of
2‐Alkynylanilines
Mediated by
DMSO
/
DMSO
‐
d
6
and
SOCl
2
. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Dongke Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| | - Kang Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072, China State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
15
|
Zhang B, Li X, Li X, Sun F, Du Y. Synthesis of
3‐Methylthio
‐benzo[
b
]furans/Thiophenes
via
Intramolecular Cyclization of
2‐Alkynylanisoles
/Sulfides Mediated by
DMSO
/
DMSO
‐
d
6
and
SOCl
2
. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Hebei Research Center of Pharmaceutical and Chemical Engineering Shijiazhuang Hebei 050018 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
16
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
17
|
Batista GMF, de Castro PP, dos Santos JA, Skrydstrup T, Amarante GW. Synthetic developments on the preparation of sulfides from thiol-free reagents. Org Chem Front 2021. [DOI: 10.1039/d0qo01226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This critical review covers the main thiolating reagents with respect to their characteristics and reactivities. In fact, they are complementary to each other and bring different thiolation strategies, avoiding the hazardous thiol derivatives.
Collapse
Affiliation(s)
- Gabriel M. F. Batista
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
- Carbon Dioxide Activation Center (CADIAC)
| | - Pedro P. de Castro
- Chemistry Department
- Federal University of Juiz de Fora
- Juiz de Fora
- Brazil
| | | | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)
- Interdisciplinary Nanoscience Center (iNANO)
- and Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
| | | |
Collapse
|
18
|
Ganiu MO, Nepal B, Van Houten JP, Kartika R. A decade review of triphosgene and its applications in organic reactions. Tetrahedron 2020; 76:131553. [PMID: 33883783 PMCID: PMC8054975 DOI: 10.1016/j.tet.2020.131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review article highlights selected advances in triphosgene-enabled organic synthetic reactions that were reported in the decade of 2010-2019. Triphosgene is a versatile reagent in organic synthesis. It serves as a convenient substitute for the toxic phosgene gas. Despite its first known preparation in the late 19th interestingly began only three decades ago. Despite the relatively short history, triphosgene has been proven to be very useful in facilitating the preparation of a vast scope of value-added compounds, such as organohalides, acid chlorides, isocyanates, carbonyl addition adducts, heterocycles, among others. Furthermore, applications of triphosgene in complex molecules synthesis, polymer synthesis, and other techniques, such as flow chemistry and solid phase synthesis, have also emerged in the literature.
Collapse
Affiliation(s)
| | | | | | - Rendy Kartika
- Department of Chemistry, 232 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803 United States
| |
Collapse
|
19
|
Yuan YQ, Guo SR, Gao HJ, Gu YX, Wang ZF, Wang Y. Triphosgene/Sodium Organosulfinate System: A General and Efficient Electrophilic Thiolation of Silylenol Ethers and Electron-Rich Heteroaromatics. Synlett 2020. [DOI: 10.1055/s-0040-1707299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAn efficient and practical approach to electrophilic thiolation was developed by using commercially available triphosgene as a reductant and the appropriate alkyl- or arylsulfinates, which were transformed in situ into electrophilic RSCl intermediates in the presence of triphosgene. This procedure represents a general and powerful approach for the synthesis of α-(trifluoromethyl)thio-substituted ketones and thiolated electron-rich heteroaromatic compounds.
Collapse
|
20
|
Xu L, Yu L, Liu J, Wang H, Zheng C, Zhao G. Enantioselective Vinylogous Mannich‐Type Reactions to Construct CF
3
S‐Containing Stereocenters Catalysed by Chiral Quaternary Phosphonium Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lijun Xu
- Research Center of Resource Recycling Science and Engineering, College of Arts and SciencesShanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 People's Republic of China
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Hongyu Wang
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Changwu Zheng
- College of PharmacyShanghai University of Traditional Chinese Medicine Shanghai 201203 People's Republic of China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|