1
|
Aleynova OA, Ananev AA, Nityagovsky NN, Suprun AR, Zhanbyrshina NZ, Beresh AA, Ogneva ZV, Tyunin AP, Kiselev KV. Endophytic Bacteria and Fungi Associated with Polygonum cuspidatum in the Russian Far East. PLANTS (BASEL, SWITZERLAND) 2024; 13:2618. [PMID: 39339593 PMCID: PMC11434733 DOI: 10.3390/plants13182618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Polygonum cuspidatum, alternatively known as Fallopia japonica or Reynoutria japonica, is a perennial herb belonging to the Polygonaceae family. Commonly called Japanese knotweed or Asian knotweed, this plant is native to East Asia, particularly in regions such as Korea, China, and Japan. It has successfully adapted to a wide range of habitats, resulting in it being listed as a pest and invasive species in several countries in North America and Europe. This study focuses on analysing the composition of the bacterial and fungal endophytic communities associated with Japanese knotweed growing in the Russian Far East, employing next-generation sequencing (NGS) and a cultivation-based method (microbiological sowing). The NGS analysis showed that the dominant classes of endophytic bacteria were Alphaproteobacteria (28%) and Gammaproteobacteria (28%), Actinobacteria (20%), Bacteroidia (15%), and Bacilli (4%), and fungal classes were Agaricomycetes (40%), Dothideomycetes (24%), Leotiomycetes (10%), Tremellomycetes (9%), Pezizomycetes (5%), Sordariomycetes (3%), and Exobasidiomycetes (3%). The most common genera of endophytic bacteria were Burkholderia-Caballeronia-Parabukholderia, Sphingomonas, Hydrotalea, Methylobacterium-Metylorubrum, Cutibacterium, and Comamonadaceae, and genera of fungal endophytes were Marasmius, Tuber, Microcyclosporella, Schizothyrium, Alternaria, Parastagonospora, Vishniacozyma, and Cladosporium. The present data showed that the roots, leaves, and stems of P. cuspidatum have a greater number and diversity of endophytic bacteria and fungi compared to the flowers and seeds. Thus, the biodiversity of endophytic bacteria and fungi of P. cuspidatum was described and analysed for the first time in this study.
Collapse
Affiliation(s)
- Olga A Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey A Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nikolay N Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Andrey R Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Nursaule Zh Zhanbyrshina
- The Department of Agriculture and Plant Growing, S. Seifullin Kazakh Agrotechnical Research University, Astana 010011, Kazakhstan
| | - Alina A Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- Institute of the World Ocean, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Zlata V Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexey P Tyunin
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
2
|
Arias A, Costa CE, Moreira MT, Feijoo G, Domingues L. Resveratrol-based biorefinery models for favoring its inclusion along the market value-added chains: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168199. [PMID: 37914108 DOI: 10.1016/j.scitotenv.2023.168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Resveratrol, a natural organic polyhydroxyphenolic compound, has gained significant attention in the last years given its potential health benefits, including antioxidant, anti-cancer, and anti-inflammatory properties. It can be directly extracted from plants, vegetables, and related products and waste resources, but also chemically/enzymatically/microbially synthesized. However, certain process strategies have some limitations, such as high costs, reduced yield or high energy demand, thus implying significant environmental loads. In this context, the search for more sustainable and circular process schemes is key to the integration of resveratrol into the market value chain of the food, cosmetic and pharmaceutical sectors. The extraction of resveratrol has traditionally been based on conventional methods such as solvent extraction, but advanced green extraction techniques offer more efficient and environmentally friendly alternatives. This review analyses both conventional and green alternative extraction technologies, as well as its bioproduction through microbial fermentation, in terms of production capacity, yield, purity and sustainability. It also presents alternative biorefinery models based on resveratrol bioproduction using by-products and waste streams as resources, specifically considering wine residues, peanut shells and wood bark as input resources, and also following a circular approach. This critical review provides some insight into the opportunities that resveratrol offers for promoting sustainable development and circularity in the related market value chains, and thus provides some criteria for decision making for biorefinery models in which resveratrol is one of the targeted high value-added products. It also identifies the future challenges to promote the inclusion of resveratrol in value chains, with the scale-up of green technologies and its demonstrated economic feasibility being the most prominent.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carlos E Costa
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Teresa Moreira
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucília Domingues
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Wang C, Tang D, Xu W, Liu Y, Huang ZH, Shaw PC, Jiang RW. Glycosylation of the polyphenols from Resina draconis by glycosyltransferase YjiC1. Nat Prod Res 2023; 37:3245-3252. [PMID: 35437081 DOI: 10.1080/14786419.2022.2066100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Resina Draconis (RD), also known as 'dragon's blood', contains a broad range of natural compounds, such as flavonoids, stilbenes and dihydrochalcones. It is clinically used to enhance blood circulation. However, the major components of RD suffer from relatively poor water solubility. Glycosylation is a critical determinant for modulating solubility and improving bioavailability and bioactivity of natural products. Herein, we report a novel method to efficiently synthesize glycosidic derivatives of the major polyphenols in RD using a microbial glycosyltransferase, i.e., YjiC1. Solubility test showed that the synthetic glycosidic derivatives displayed higher water solubility than the raw materials. This research sheds light on the structural modification of natural products for higher water solubility, which is important for innovative drug discovery.
Collapse
Affiliation(s)
- Chen Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Ding Tang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Wei Xu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yan Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Zhao-He Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Pang-Chui Shaw
- School of Life Sciences and Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
4
|
Abo-Kadoum MA, Abouelela ME, Al Mousa AA, Abo-Dahab NF, Mosa MA, Helmy YA, Hassane AMA. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes. Front Microbiol 2022; 13:1010332. [PMID: 36304949 PMCID: PMC9593044 DOI: 10.3389/fmicb.2022.1010332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring polyphenolic stilbene compound produced by certain plant species in response to biotic and abiotic factors. Resveratrol has sparked a lot of interest due to its unique structure and approved therapeutic properties for the prevention and treatment of many diseases such as neurological disease, cardiovascular disease, diabetes, inflammation, cancer, and Alzheimer's disease. Over the last few decades, many studies have focused on the production of resveratrol from various natural sources and the optimization of large-scale production. Endophytic fungi isolated from various types of grapevines and Polygonum cuspidatum, the primary plant sources of resveratrol, demonstrated intriguing resveratrol-producing ability. Due to the increasing demand for resveratrol, one active area of research is the use of endophytic fungi and metabolic engineering techniques for resveratrol's large-scale production. The current review addresses an overview of endophytic fungi as a source for production, as well as biosynthesis pathways and relevant genes incorporated in resveratrol biosynthesis. Various approaches for optimizing resveratrol production from endophytic fungi, as well as their bio-transformation and bio-degradation, are explained in detail.
Collapse
Affiliation(s)
- M. A. Abo-Kadoum
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A. Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdallah M. A. Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Zhou J, Liang M, Lin Y, Pang H, Wei Y, Huang R, Du L. Application of β-Glucosidase in a Biphasic System for the Efficient Conversion of Polydatin to Resveratrol. Molecules 2022; 27:1514. [PMID: 35268615 PMCID: PMC8911618 DOI: 10.3390/molecules27051514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, an ingredient of traditional Chinese medicine, has beneficial effects on human health and huge potential for application in modern medicine. Polydatin is extracted from plants and then deglycosylated into resveratrol; enzymatic methods are preferred for this reaction. In this study, a β-D-glucosidase from Sphingomonas showed high efficiency in transforming polydatin into resveratrol and was tolerant toward organic solvents. Applying this enzyme in a biphasic transformation system resulted in 95.3% conversion of 20% concentration crude polydatin to resveratrol in 4 h. We thus report a new method for high-efficiency, clean production of resveratrol.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Meng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Yu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Hao Pang
- Guangxi Key Laboratory of Bio-Refinery, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Daling Road No. 98, Nanning 530007, China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzymatic Technology, College of Life Science and Technology, Guangxi University, Daxue Road No. 100, Nanning 530005, China; (J.Z.); (M.L.); (Y.L.); (Y.W.); (R.H.)
| |
Collapse
|
6
|
Ha SK, Kang MC, Lee S, Darlami O, Shin D, Choi I, Kim KH, Kim SY. Generation of Stilbene Glycoside with Promising Cell Rejuvenation Activity through Biotransformation by the Entomopathogenic Fungus Beauveria bassiana. Biomedicines 2021; 9:555. [PMID: 34067529 PMCID: PMC8156121 DOI: 10.3390/biomedicines9050555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
A stilbene glycoside (resvebassianol A) (1) with a unique sugar unit, 4-O-methyl-D-glucopyranose, was identified through biotransformation of resveratrol (RSV) by the entomopathogenic fungus Beauveria bassiana to obtain a superior RSV metabolite with enhanced safety. Its structure, including its absolute configurations, was determined using spectroscopic data, HRESIMS, and chemical reactions. Microarray analysis showed that the expression levels of filaggrin, HAS2-AS1, and CERS3 were higher, while those of IL23A, IL1A, and CXCL8 were lower in the resvebassianol A-treated group than in the RSV-treated group, as confirmed by qRT-PCR. Compound 1 exhibited the same regenerative and anti-inflammatory effects as RSV with no cytotoxicity in skin keratinocytes and TNF-α/IFN-γ-stimulated HIEC-6 cells, suggesting that compound 1 is a safe and stable methylglycosylated RSV. Our findings suggest that our biotransformation method can be an efficient biosynthetic platform for producing a broad range of natural glycosides with enhanced safety.
Collapse
Affiliation(s)
- Sang Keun Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea;
- Divison of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min Cheol Kang
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Korea
| | - Om Darlami
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Inwook Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| |
Collapse
|
7
|
Liu J, Zhang X, Yan T, Wang F, Li J, Jia L, Jia J, Hu G. Screening of an Endophyte Transforming Polydatin to Resveratrol from Reynoutria Japonica Houtt and the Optimization of Its Transformation Parameters. Molecules 2020; 25:E4830. [PMID: 33092209 PMCID: PMC7587952 DOI: 10.3390/molecules25204830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Resveratrol showed various kinds of bioactivities, such as antioxidant, antimicrobial, anticancer effects and, therefore, has been used widely as an important ingredient in medication, healthy foods and cosmetics. However, in nature, resveratrol usually exists at low content and more often exists as polydatin. Therefore, it becomes important to find the cost-effective and environmental-friendly way to transform polydatin to resveratrol. In this study, endophytes were isolated from the rhizome tissue of Reynoutria japonica and screened for transforming polydatin to resveratrol using reversed-phase high-performance liquid chromatography (RP-HPLC) and confirmed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. A bacterium identified as Bacillus aryabhattai using 16S rRNA phylogenetic tree analysis showed highest transformation rate. The transforming conditions were optimized including substrate concentration, substrate addition time, culture temperature and inoculation ratio. Our results demonstrated that the bacteria isolated from R. japonica rhizome tissue showed high activity in transforming polydatin into resveratrol. Crude extract of R. japonica root and rhizome (RJE) was also tested as substrate and it was found that the transformation was significantly inhibited at 10.0 mg/mL RJE. Emodin at equivalent concentration of 10.0 mg/mL RJE showed no inhibition activity, and glucose content in RJE was trace and far from enough to exhibit the inhibitory activity. Successive solvent partition followed by an inhibition activity assay revealed that the ethyl acetate fraction showed the main inhibition activity. However, due to the coexistence of polydatin and compounds with inhibitory activity, the concentration of RJE can only be used at limited concentration as substrate.
Collapse
Affiliation(s)
- Jin Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Xueqing Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Ting Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Faling Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Lingyun Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
- China-Korea Joint Laboratory of Molecular Pharmacognosy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gaosheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
- China-Korea Joint Laboratory of Molecular Pharmacognosy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|