1
|
Zhu Y, Chen B, Zhang X, Akbar MT, Wu T, Zhang Y, Zhi L, Shen Q. Exploration of the Muribaculaceae Family in the Gut Microbiota: Diversity, Metabolism, and Function. Nutrients 2024; 16:2660. [PMID: 39203797 PMCID: PMC11356848 DOI: 10.3390/nu16162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota are mainly composed of Bacteroidetes and Firmicutes and are crucial for metabolism and immunity. Muribaculaceae are a family of bacteria within the order Bacteroidetes. Muribaculaceae produce short-chain fatty acids via endogenous (mucin glycans) and exogenous polysaccharides (dietary fibres). The family exhibits a cross-feeding relationship with probiotics, such as Bifidobacterium and Lactobacillus. The alleviating effects of a plant-based diet on inflammatory bowel disease, obesity, and type 2 diabetes are associated with an increased abundance of Muribaculaceae, a potential probiotic bacterial family. This study reviews the current findings related to Muribaculaceae and systematically introduces their diversity, metabolism, and function. Additionally, the mechanisms of Muribaculaceae in the alleviation of chronic diseases and the limitations in this field of research are introduced.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Borui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Muhammad Toheed Akbar
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Li Zhi
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; (Y.Z.); (B.C.); (X.Z.); (M.T.A.); (T.W.); (Y.Z.); (L.Z.)
| |
Collapse
|
2
|
Saleh NEH, Ibrahim MY, Saad AH, Abdel-Hakeem EA, Saleh RK, Habeeb WN. The impact of consuming different types of high-caloric fat diet on the metabolic status, liver, and aortic integrity in rats. Sci Rep 2024; 14:18602. [PMID: 39127712 PMCID: PMC11316824 DOI: 10.1038/s41598-024-68299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Consumption of high-caloric diets contributes to the alarming number of overweight and obese individuals worldwide, which in turn leads to several diseases and multiple organ dysfunction. Not only has the number of calories taken per day but also the type of fat in the diet has an important impact on health. Accordingly, the purpose of the current study was to examine the impact of different types of high-caloric fat diets on the metabolic status and the integrity of the liver and aorta in albino rats. Adult male albino rats were divided into 6 groups: Control group, long chain-saturated fat group (SFD), long chain-monounsaturated fat (MUFAs) group, long chain-polyunsaturated fat (PUFAs) group, medium-chain fat (MCFAs) group, and short-chain fat (SCFAs) group. Body mass index (BMI), Lee index, and visceral fat amount were reported. Serum levels of insulin, liver transaminases, lipid profile, and different oxidative stress and inflammatory markers were evaluated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and adiponectin/leptin ratio were also calculated. Histopathological examinations of liver and aorta with Masson's trichrome stain, and immune-staining for Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) were also done. SFD group showed significantly elevated liver transaminases, inflammatory markers, HOMA-IR, dyslipidemia, reduced adiponectin, and deficient anti-oxidative response compared to other groups together with disturbed hepatic and aortic architecture. Other treated groups showed an improvement. PUFAs group showed the highest level of improvement. Not all high-fat diets are hazardous. Diets rich in PUFAs, MUFAs, MCFAs, or SCFAs may protect against the hazards of high caloric diet.
Collapse
Affiliation(s)
| | - Mariam Yahia Ibrahim
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Adel Hussein Saad
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Elshymaa A Abdel-Hakeem
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Rabeh Khairy Saleh
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| | - Wagdy N Habeeb
- Department of Medical Physiology, Faculty of Medicine, Minia University, El-Minia, 61511, Egypt
| |
Collapse
|
3
|
Dafne VJ, Manuel MA, Rocio CV. Chronobiotics, satiety signaling, and clock gene expression interplay. J Nutr Biochem 2024; 126:109564. [PMID: 38176625 DOI: 10.1016/j.jnutbio.2023.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
The biological clock regulates the way our body works throughout the day, including releasing hormones and food intake. Disruption of the biological clock (chronodisruption) may deregulate satiety, which is strictly regulated by hormones and neurotransmitters, leading to health problems like obesity. Nowadays, using bioactive compounds as a coadjutant for several pathologies is a common practice. Phenolic compounds and short-chain fatty acids, called "chronobiotics," can modulate diverse mechanisms along the body to exert beneficial effects, including satiety regulation and circadian clock resynchronization; however, the evidence of the interplay between those processes is limited. This review compiles the evidence of natural chronobiotics, mainly polyphenols and short-chain fatty acids that affect the circadian clock mechanism and process modifications in genes or proteins resulting in a signaling chain that modulates satiety hormones or hunger pathways.
Collapse
Affiliation(s)
- Velásquez-Jiménez Dafne
- Research and Graduate Studies in Food Science, School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico
| | - Miranda-Anaya Manuel
- Multidisciplinary Unit for Teaching and Research (UMDI), School of Sciences, Autonomous National University of Mexico, Queretaro, Mexico
| | - Campos-Vega Rocio
- Research and Graduate Studies in Food Science, School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico.
| |
Collapse
|
4
|
Zhang M, Yu A, Wu H, Xiong X, Li J, Chen L. Lactobacillus acidophilus and Bacillus subtilis significantly change the growth performance, serum immunity and cecal microbiota of Cherry Valley ducks during the fattening period. Anim Sci J 2024; 95:e13946. [PMID: 38651265 DOI: 10.1111/asj.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024]
Abstract
This study explored the effects of a Bacillus subtilis and Lactobacillus acidophilus mixture containing the co-fermented products of the two probiotics on growth performance, serum immunity and cecal microbiota of Cherry Valley ducks. This study included 480 one-day-old Cherry Valley ducks divided into four feeding groups: basal diet (control group) and basal diet supplemented with 300, 500, or 700 mg/kg of the probiotic powder; the ducks were raised for 42 days. Compared with the control group, body weight on day 42 and the average daily gain on days 15-42 significantly increased (p < 0.05), and the feed conversion rate significantly decreased (p < 0.05) in the experimental groups. Furthermore, the serum immunoglobulin (Ig) A, IgG, IgM, and interleukin (IL)-4 levels increased significantly (p < 0.05), and IL-1β, IL-2, and tumor necrosis factor-α decreased significantly (p < 0.05) in the experimental groups. Finally, Sellimonas, Prevotellaceae NK3B31 group, Lachnospiraceae NK4A136 group and Butyricoccus played an important role in the cecal microbiota of the experimental group. Thus, the probiotic powder has impacts on the growth performance, serum immunity and cecal microbiota of Cherry Valley Ducks.
Collapse
Affiliation(s)
- Menghui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Anan Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hongzhi Wu
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Insititute, Haikou, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
5
|
Magro DO, Rossoni C, Saad-Hossne R, Santos A. INTERACTION BETWEEN FOOD PYRAMID AND GUT MICROBIOTA. A NEW NUTRITIONAL APPROACH. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:132-136. [PMID: 37194771 DOI: 10.1590/s0004-2803.202301000-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/08/2022] [Indexed: 05/18/2023]
Abstract
The food pyramid is a pre-established nutritional education tool. The integration between the intestinal microbiome, food groups, and SCFA-producing bacteria, which benefit from the ingestion of these foods, has the potential to further improve and innovate healthy eating. The diet-microbiome interaction needs to be incorporated into nutrition science, and the food pyramid might assist in this interaction and nutritional learning. Against this context, this brief communication proposes through the food pyramid, the interactions between the intestinal microbiota, food groups, and SCFAs-producing bacteria.
Collapse
Affiliation(s)
- Daniela O Magro
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP, Brasil
| | - Carina Rossoni
- Instituto of Environmental Health, Faculty of Medicine (ISAMB), Universidade de Lisboa, Lisbon, Portugal
| | - Rogerio Saad-Hossne
- Universidade Estadual Paulista, Faculdade de Medicina, Departamento de Cirurgia, Botucatu, SP, Brasil
| | - Andrey Santos
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas, SP, Brasil
| |
Collapse
|
6
|
Bai J, Cai Y, Huang Z, Gu Y, Huang N, Sun R, Zhang G, Liu R. Shouhui Tongbian Capsule ameliorates constipation via gut microbiota-5-HT-intestinal motility axis. Biomed Pharmacother 2022; 154:113627. [PMID: 36058152 DOI: 10.1016/j.biopha.2022.113627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Constipation has become an epidemic enteric medical problem, accompanied with increasing long-term sequelae. Gut microbiota and serotonin (5-HT) have been believed as predominant player in the treatment of constipation. In clinical practices, Shouhui Tongbian Capsule (SHTB) was found to effectively improve constipation symptoms and promote gastrointestinal motility. However, the specific mechanism of SHTB is not clearly elucidated. Our current study aims to explore the therapeutic effects of SHTB against the development of constipation and the underlying mechanisms related to gut bacterial and 5-HT. We established loperamide hydrochloride (LH)-induced experimental constipation mouse model to evaluate the effect of SHTB. 16S RNA sequencing, fecal microbiota transplants (FMT), high performance liquid chromatograph, and molecular biological analysis were performed to investigate the potential mechanisms of SHTB. Our data demonstrated that SHTB significantly ameliorated LH-induced experimental constipation and accelerated enteric motility via promoting 5-HT biosynthesis in enterochromaffin cells and enteric neuron growth of the enteric nervous system (ENS) in both the small intestine and colon. Additionally, SHTB significantly modulated gut microbiota dysbiosis and potentially altered microbiota metabolites to enhance intestinal 5-HT production. Finally, FMT study confirmed that the effects of SHTB on 5-HT production and constipation are dependent on modulating intestinal microbiota dysbiosis. In conclusion, our current study deciphered therapeutic mechanism of SHTB in the treatment of experimental constipation from perspectives of gut microbiota-5-HT-intetinal motility axis and provides novel insights into the appropriate and safe application of SHTB in the clinic.
Collapse
Affiliation(s)
- Jinzhao Bai
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China
| | - Yajie Cai
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China
| | - Zhiyan Huang
- Lunan Hope Pharmaceutical Co., Ltd., Linyi 276006, China; Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi 276006, China
| | - Yiqing Gu
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China
| | - Nana Huang
- The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Rong Sun
- The Second Hospital of Shandong University, Ji'nan 250033, China.
| | - Guimin Zhang
- Lunan Hope Pharmaceutical Co., Ltd., Linyi 276006, China; Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi 276006, China.
| | - Runping Liu
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China.
| |
Collapse
|
7
|
Khan A, Ali H, Rehman UU, Belduz AO, Bibi A, Abdurahman MA, Shah AA, Badshah M, Hasan F, Kilic AO, Ullah A, Jahan S, Rehman MMU, Mansoor R, Khan S. Prebiotic potential of enzymatically prepared resistant starch in reshaping gut microbiota and their respond to body physiology. PLoS One 2022; 17:e0267318. [PMID: 35576192 PMCID: PMC9109903 DOI: 10.1371/journal.pone.0267318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
The increase in consumer demand for high-quality food products has led to growth in the use of new technologies and ingredients. Resistant starch (RS) is a recently recognised source of fibre and has received much attention for its potential health benefits and functional properties. However, knowledge about the fate of RS in modulating complex intestinal communities, the microbial members involved in its degradation, enhancement of microbial metabolites, and its functional role in body physiology is still limited. For this purpose, the current study was designed to ratify the physiological and functional health benefits of enzymatically prepared resistant starch (EM-RSIII) from maize flour. To approve the beneficial health effects as prebiotic, EM-RSIII was supplemented in rat diets. After 21 days of the experiment, EM-RSIII fed rats showed a significant reduction in body weight gain, fecal pH, glycemic response, serum lipid profile, insulin level and reshaping gut microbiota, and enhancing short-chain fatty acid compared to control. The count of butyrate-producing and starch utilizing bacteria, such as Lactobacillus, Enterococcus, and Pediococcus genus in rat’s gut, elevated after the consumption of medium and high doses of EM-RSIII, while the E. coli completely suppressed in high EM-RSIII fed rats. Short-chain fatty acids precisely increased in feces of EM-RSIII feed rats. Correlation analysis demonstrated that the effect of butyrate on functional and physiological alteration on the body had been investigated during the current study. Conclusively, the present study demonstrated the unprecedented effect of utilising EM-RSIII as a diet on body physiology and redesigning gut microorganisms.
Collapse
Affiliation(s)
- Anum Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Huma Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ubaid Ur Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Osman Belduz
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Amna Bibi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Osman Kilic
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Asad Ullah
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Maqsood Ur Rehman
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rashid Mansoor
- Department of Statistical Science, University College London, London, United Kingdom
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Gao Y, Yang R, Guo L, Wang Y, Liu WJ, Ai S, Woon TH, Wang Z, Zhai Y, Wang Z, Peng L. Qing-Re-Xiao-Zheng Formula Modulates Gut Microbiota and Inhibits Inflammation in Mice With Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:719950. [PMID: 34604258 PMCID: PMC8481597 DOI: 10.3389/fmed.2021.719950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Evidence indicates that the metabolic inflammation induced by gut microbiota dysbiosis contributes to diabetic kidney disease. Prebiotic supplementations to prevent gut microbiota dysbiosis, inhibit inflammatory responses, and protect the renal function in DKD. Qing-Re-Xiao-Zheng formula (QRXZF) is a Traditional Chinese Medicine (TCM) formula that has been used for DKD treatment in China. Recently, there are growing studies show that regulation of gut microbiota is a potential therapeutic strategy for DKD as it is able to reduce metabolic inflammation associated with DKD. However, it is unknown whether QRXZF is effective for DKD by regulating of gut microbiota. In this study, we investigated the reno-protective effect of QRXZF by exploring its potential mechanism between gut microbiota and downstream inflammatory pathways mediated by gut-derived lipopolysaccharide (LPS) in the kidney. High-fat diet (HFD) and streptozotocin injection-induced DKD mice model was established to assess the QRXZF effect in vivo. Mice treated with QRXZF for 8 weeks had significantly lower levels of urinary albumin, serum cholesterol and triglycerides. The renal injuries observed through histological analysis were attenuated as well. Also, mice in the QRXZF group had higher levels of Zonula occludens protein-1 (ZO-1) expression, lower levels of serum fluorescein-isothiocyanate (FITC)-dextran and less-damaged colonic mucosa as compared to the DKD group, implying the benefit role for the gut barrier integrity. QRXZF treatment also reversed gut dysbiosis and reduced levels of gut-derived LPS. Notably, the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), which are important inflammation pathways in DKD, were suppressed in the QRXZF groups. In conclusion, our results indicated that the reno-protective effects of QRXZF was probably associated with modulating gut microbiota and inhibiting inflammatory responses in the kidney.
Collapse
Affiliation(s)
- Yabin Gao
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruibing Yang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Guo
- Jitang College of North China University of Science and Technology, Hebei, China
| | - Yaoxian Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sinan Ai
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Zheng Wang
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuanyuan Zhai
- College of Life Sciences, Hebei University, Hebei, China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zhen Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
9
|
Boukid F, Rosell CM, Rosene S, Bover-Cid S, Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:6390-6420. [PMID: 33775185 DOI: 10.1080/10408398.2021.1901649] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.
Collapse
Affiliation(s)
- Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain
| | - Sara Rosene
- General Mills, Golden Valley, Minnesota, USA
| | - Sara Bover-Cid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety and Functionality Programme, Monells, Catalonia, Spain
| |
Collapse
|
10
|
Wu Y, Hu H, Dai X, Zhang H, Xu F, Hu H, Guo Z. Comparative Study of the Nutritional Properties of 67 Potato Cultivars (Solanum tuberosum L.) Grown in China Using the Nutrient-Rich Foods (NRF 11.3) Index. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:169-176. [PMID: 32124165 DOI: 10.1007/s11130-020-00795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The overall nutritional properties of tubers from 67 potato cultivars were systematically evaluated in this study by adopting the Nutrient-Rich Foods (NRF11.3) Index Model. The macronutrients including dry matter, crude protein, total dietary fiber, and starch contents were found to be in the range of 14.8-30.5 g/100 g fresh weight, 5.71-12.0, 1.99-3.39, and 56.0-75.5 g/100 g dry weight, respectively. Additionally, the amounts of vitamin C, K and Fe were 22.6-86.6, 1457-3111, and 1.40-5.06 mg/100 g dry weight, respectively. The NRF11.3 index model has a score of 66.4-102 per 100 kcal for male and 70.8-107 per 100 kcal for female over 18 years old. This model was utilized to determine the macrocomponents and micronutrients of diverse potato cultivars and aid in comprehensive nutritional study on potato as a desirable raw material for staple food processing to human nutrition and daily intake.
Collapse
Affiliation(s)
- Yu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Xiaofeng Dai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Hong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China.
- Hefei CAAS Nutridoer Co. Ltd., Hefei, 238000, China.
| | - Fen Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, 100193, China
| | - Hanmin Hu
- Seed Administration Station of Anding District, Dingxi, 743000, China
| | - Zhiqian Guo
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, 756000, China
| |
Collapse
|