1
|
Suhag MH, Khatun A, Tateishi I, Furukawa M, Katsumata H, Kaneco S. Purification of aqueous orange II solution through adsorption and visible-light-induced photodegradation using ZnO-modified g-C 3N 4 composites. RSC Adv 2024; 14:17888-17900. [PMID: 38836168 PMCID: PMC11149495 DOI: 10.1039/d4ra01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Semiconductor-based remediation enables environmentally friendly methods of removing aqueous pollutants. Simply fabricated ZnO modified g-C3N4 composites were utilized as bifunctional adsorptive photocatalysts for orange II removal from aqueous solution through adsorption and photocatalysis processes. The adsorption isotherm data of the g-C3N4 (g-CN) and ZnO modified g-C3N4 (ZCN) composites on orange II solution were better fitted with the Langmuir isotherm compared to the Freundlich isotherm. The maximum adsorption capacity for ZCN-2.5 was slightly higher than that of bare g-CN. According to the adsorption thermodynamics investigation of ZCN-2.5 in orange II solution, the positive values of Gibb's free energy change (ΔG0) suggested a non-spontaneous adsorption process. Furthermore, the negative values of entropy change (ΔS) and enthalpy change (ΔH) indicated the decrement of randomness and exothermic nature during the adsorption process, respectively. The photocatalytic degradation kinetics of g-CN and ZCN composites indicated that the degradation process follows the pseudo-first-order reaction kinetic. The degradation rate of orange II with the ZCN-2.5 composite was 6.67 times higher than that obtained with bare g-CN. Possible adsorption and photocatalytic mechanisms have been proposed.
Collapse
Affiliation(s)
- Mahmudul Hassan Suhag
- Department of Applied Chemistry, Graduate School of Engineering, Mie University Tsu Mie 514-8507 Japan
- Department of Chemistry, University of Barishal Barishal 8254 Bangladesh
| | - Aklima Khatun
- Department of Applied Chemistry, Graduate School of Engineering, Mie University Tsu Mie 514-8507 Japan
| | - Ikki Tateishi
- Mie Global Environment Center for Education & Research, Mie University Tsu Mie 514-8507 Japan
| | - Mai Furukawa
- Department of Applied Chemistry, Graduate School of Engineering, Mie University Tsu Mie 514-8507 Japan
| | - Hideyuki Katsumata
- Department of Applied Chemistry, Graduate School of Engineering, Mie University Tsu Mie 514-8507 Japan
| | - Satoshi Kaneco
- Department of Applied Chemistry, Graduate School of Engineering, Mie University Tsu Mie 514-8507 Japan
| |
Collapse
|
2
|
Ben Aissa MA, Modwi A, Albadri AEAE, Saleh SM. Dependency of Crystal Violet Dye Removal Behaviors onto Mesoporous V2O5-g-C3N4 Constructed by Simplistic Ultrasonic Method. INORGANICS 2023. [DOI: 10.3390/inorganics11040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
This research examined the production of a V2O5-g-C3N4 nanocomposite to remove organic dyes from wastewater. To generate the V2O5-g-C3N4 nanocomposite, the sonication method was applied. The testing of V2O5-g-C3N4 with various dyes (basic fuchsin (BF), malachite green (MG), crystal violet (CV), Congo red (CR), and methyl orange (MO)) revealed that the nanocomposite has a high adsorption ability towards BF, MG, CV, and CR dyes in comparison with MO dye. It was established that the modification of pH influenced the removal of CV by the V2O5-g-C3N4 nanocomposite and that under optimal operating conditions, efficiency of 664.65 mg g−1 could be attained. The best models for CV adsorption onto the V2O5-g-C3N4 nanocomposite were found to be those based on pseudo-second-order adsorption kinetics and the Langmuir isotherm. According to the FTIR analysis results, the CV adsorption mechanism was connected to π–π interactions and the hydrogen bond.
Collapse
|
3
|
Wei X, Pan Y, Li M, Linghu W, Guo X. Mechanism of Eu(III), La(III), Nd(III), and Th(IV) removal by g-C3N4 based on spectroscopic analyses and DFT theoretical calculations. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Wang T, Zhang H, Liu Y, Zhang L, Xing B. Ultrathin porous carbon nanosheet as an efficient adsorbent for the removal of bisphenol A: The overlooked role of topological defects. CHEMOSPHERE 2022; 306:135549. [PMID: 35780996 DOI: 10.1016/j.chemosphere.2022.135549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 05/27/2023]
Abstract
Carbon-based materials are emerging as a type of inexpensive and efficient adsorbent, although their genuine adsorption site is still debatable. Herein, we present a novel approach for designing and constructing an ultra-thin defect-rich hierarchically porous carbon nanosheet (ZG-C). The ZG-C sample demonstrated a high adsorption capacity for bisphenol A (BPA) (602.2 mg/g) along with a fast adsorption process (20 min), and stable reusability (the decline efficiency was 9.14% after five consecutive cycles). Based on comprehensive experiments and a number of characterizations, the high adsorption capacity of ZG-C for BPA was connected with the hierarchical porous structure of ZG-C and multiple intrinsic defects of ZG-C. The results of density functional theory (DFT) further demonstrated that topological defects played an indispensable role in promoting adsorption, and its adsorption energy (-0.595 eV) for BPA was much higher than that of other intrinsic defects. This study not only provides an innovative and simple strategy for preparing hierarchically porous carbon-based adsorbent with abundant intrinsic defects for the efficient removal of BPA, but also significantly contributes to the understanding of the application of carbon-based materials to remove bisphenols.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huixue Zhang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
5
|
Ran X, Wang L, Xiao B, Lei L, Zhu J, Liu Z, Xi X, Feng G, Li R, Feng J. Effective Removal of Methylene Blue on EuVO 4/g-C 3N 4 Mesoporous Nanosheets via Coupling Adsorption and Photocatalysis. Int J Mol Sci 2022; 23:ijms231710003. [PMID: 36077402 PMCID: PMC9456035 DOI: 10.3390/ijms231710003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, we first manufactured ultrathin g-C3N4 (CN) nanosheets by thermal etching and ultrasonic techniques. Then, EuVO4 (EV) nanoparticles were loaded onto CN nanosheets to form EuVO4/g-C3N4 heterojunctions (EVCs). The ultrathin and porous structure of the EVCs increased the specific surface area and reaction active sites. The formation of the heterostructure extended visible light absorption and accelerated the separation of charge carriers. These two factors were advantageous to promote the synergistic effect of adsorption and photocatalysis, and ultimately enhanced the adsorption capability and photocatalytic removal efficiency of methylene blue (MB). EVC-2 (2 wt% of EV) exhibited the highest adsorption and photocatalytic performance. Almost 100% of MB was eliminated via the adsorption–photocatalysis synergistic process over EVC-2. The MB adsorption capability of EVC-2 was 6.2 times that of CN, and the zero-orderreaction rate constant was 5 times that of CN. The MB adsorption on EVC-2 followed the pseudo second-order kinetics model and the adsorption isotherm data complied with the Langmuir isotherm model. The photocatalytic degradation data of MB on EVC-2 obeyed the zero-order kinetics equation in 0–10 min and abided by the first-order kinetics equation for10–30 min. This study provided a promising EVC heterojunctions with superior synergetic effect of adsorption and photocatalysis for the potential application in wastewater treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jian Feng
- Correspondence: ; Tel.: +86-851-88174017
| |
Collapse
|
6
|
Lignite-Based N-Doped Porous Carbon as an Efficient Adsorbent for Phenol Adsorption. Processes (Basel) 2022. [DOI: 10.3390/pr10091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The treatment of phenolic-containing wastewater has received increased attention in recent years. In this study, the N-doped porous carbons were prepared from lignite with tripolycyanamide as the N source, and their phenol adsorption behaviors were investigated. Results clearly showed that the addition of tripolycyanamide largely improved the surface area, micropore volume, N content and thus the phenol adsorption capacity of lignite-based carbons. The N-doped sample prepared at 700 °C showed a surface area of 1630 m2/g and a phenol adsorption capacity as high as 182.4 mg/g at 20 °C, which were 2.0 and 1.6 times that of the lignite-based carbon without N-doping. Pseudo-second order and Freundlich adsorption isotherm models could better explain the phenol adsorption behaviors over lignite-based N-doped porous carbon. Theoretical calculations demonstrated that phenol adsorption energies over graphitic-N (−72 kJ/mol) and pyrrolic-N (−74 kJ/mol) groups were slightly lower than that over the N-free graphite layer (−71 kJ/mol), supporting that these N-containing groups contribute to enhance the phenol adsorption capacity. The adsorption mechanism of phenol over porous carbon might be interpreted by the π–π dispersion interactions between aromatic-ring and carbon planes, which could be enhanced by N-doping through increasing π electron densities in the carbon plane.
Collapse
|
7
|
Muthukumar C, Iype E, Raju K, Pulletikurthi S, Prakash Kumar BG. Sunlight assisted photocatalytic degradation using the RSM-CCD optimized sustainable photocatalyst synthesized from galvanic wastewater. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Wang T, Xue L, Liu Y, Fang T, Zhang L, Xing B. Ring defects-rich and pyridinic N-doped graphene aerogel as floating adsorbent for efficient removal of tetracycline: Evidence from NEXAFS measurements and theoretical calculations. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128940. [PMID: 35462187 DOI: 10.1016/j.jhazmat.2022.128940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/27/2023]
Abstract
The rational design of carbon-based adsorbents with a high uptake efficiency for polar organic molecules is a key challenge in water purification research. Herein, we report a graphene aerogel that is doped with pyridinic-N and has abundant ring defects (denoted by DNGA). The aerogel sample exhibits a high adsorption capacity of 607.1 mg/g toward tetracycline (TC), a fast adsorption process (20 min), and good reusability (with a declining efficiency < 10.0% after five cycles), while being easy to recycle. C/N K-edge X-ray absorption near-edge structure (XANES) measurements demonstrate that the efficient adsorption capacity of the DNGA sample is related to the presence of ring defects and the pyridinic-N species. Density functional theory (DFT) calculations demonstrate that ring defects of type 5-8-5 and the pyridinic-N species at the edge location are primarily responsible for TC removal. In this study, we resolve a controversial issue regarding the origin of the adsorption performance origin of N-doped carbon-based adsorbents. The findings of this study can guide the development of novel and improved N-doped carbon-based adsorbents for the removal of target contaminants.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
9
|
George JK, Bhagat A, Bhaduri B, Verma N. Carbon Nanofiber-Bridged Carbon Nitride-Fe2O3 Photocatalyst: Hydrogen Generation and Degradation of Aqueous Organics. Catal Letters 2022. [DOI: 10.1007/s10562-022-03985-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Viswanathan VP, Nayarassery AN, Xavier MM, Mathew S. A 2D/1D heterojunction nanocomposite built from polymeric carbon nitride and MIL-88A(Fe) derived α-Fe 2O 3 for enhanced photocatalytic degradation of rhodamine B. NEW J CHEM 2022. [DOI: 10.1039/d1nj05439b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D/1D heterojunction α-Fe2O3/C3N4 photocatalysts containing α-Fe2O3 microrods and polymeric carbon nitride flakes are synthesised through the calcination of Fe-based metal-organic frameworks and boost the visible light photocatalytic degradation of rhodamine B.
Collapse
Affiliation(s)
| | - Adarsh N. Nayarassery
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, 13699, USA
| | - Marilyn Mary Xavier
- Department of Chemistry, Morning Star Home Science College, Angamaly South, 683573, Kerala, India
| | - Suresh Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
11
|
Wang T, Cheng Z, Liu Y, Tang W, Fang T, Xing B. Mechanistic understanding of highly selective adsorption of bisphenols on microporous-dominated nitrogen-doped framework carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143115. [PMID: 33127136 DOI: 10.1016/j.scitotenv.2020.143115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Producing a desirable adsorbent for removing endocrine disrupting compounds (EDCs) from aqueous solutions remains a major challenge. In this work, microporous-dominated nitrogen-doped framework carbons (MNFCs, s means the calcination temperature) with high specific surface area, ultra-microporous structure, and high nitrogen-doping can be obtained by a direct calcination of ethylene diamine tetraacetic acid tetrasodium (EDTA-4Na) without aid of any catalyst and nitrogen source. MNFCs were applied adsorbents to remove bisphenols from aqueous solution. Batch experiments showed MNFC-750 had a large adsorption capacity for bisphenols from aqueous solutions (409 mg/g for bisphenol A, 364 mg/g for bisphenol F, and 521 mg/g for bisphenol S) along with short equilibrium time (30 min), and good stability and reusability. Using multiple characterizations and comparative experiments along with theoretical calculations, we discovered that: (1) nitrogen-doping can significantly boost the adsorption capacity; (2) adsorption sites are mainly the pyridinic-N instead of pyrrolic-N and graphitic-N; and (3) the adsorption mechanisms were mainly driven by Lewis acid-base interaction, hydrophobic interaction, π-π interaction and hydrogen bond interaction. These findings indicate that MNFCs present a promising potential for practical applications and shed light on the rational design of nitrogen doped carbon-based adsorbents for efficient pollutant removal.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Cheng
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
12
|
Tao Q, Bi J, Huang X, Wei R, Wang T, Zhou Y, Hao H. Fabrication, application, optimization and working mechanism of Fe 2O 3 and its composites for contaminants elimination from wastewater. CHEMOSPHERE 2021; 263:127889. [PMID: 32828053 DOI: 10.1016/j.chemosphere.2020.127889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Fe2O3 and its composites have been extensively investigated and employed for the remediation of contaminated water with the characteristics of low cost, outstanding chemical stability, high efficiency of visible light utilization, excellent magnetic ability and abundant active sites for adsorption and degradation. In this review, the potentials of Fe2O3 in water remediation were discussed and summarized in detail. Firstly, various synthesis methods of Fe2O3 and its composites were reviewed and compared. Based on the structures and characteristics of the obtained materials, their applications and related mechanisms in pollutants removal were surveyed and discussed. Furthermore, several strategies for optimizing the remediation processes, including dispersion, immobilization, nano/micromotor construction and simultaneous decontamination, were also highlighted and discussed. Finally, recommendations for further work in the development of novel Fe2O3-related materials and its practical applications were proposed.
Collapse
Affiliation(s)
- Qingqing Tao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingtao Bi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rongli Wei
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanan Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
13
|
Wang T, Zheng L, Liu Y, Tang W, Fang T, Xing B. A novel ternary magnetic Fe 3O 4/g-C 3N 4/Carbon layer composite for efficient removal of Cr (VI): A combined approach using both batch experiments and theoretical calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138928. [PMID: 32388371 DOI: 10.1016/j.scitotenv.2020.138928] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution has posed a potential hazard to the ecological environment and human health. Herein, a novel ternary magnetic adsorbent (Fe3O4/g-C3N4/Carbon layer, Carbon layer: hydrothermal products from sucrose) was synthesized through a simple hydrothermal carbonization (HTC) method for removal of hexavalent chromium (Cr (VI)) removal. The Carbon layer (CL) formed during the HTC of carbon precursors (sucrose) acted as a reducing agent. Also, it has abundant oxygen-containing groups on its surface. The Fe3O4/g-C3N4/CL had a high removal capacity for Cr (VI) (50.09 mg/g), and excellent regeneration and magnetic separation performance. Importantly, the Fe3O4/g-C3N4/CL could not only improve the adsorption ability for Cr (VI), but also strengthen the immobilization of Cr (III). Based on the comprehensive experiments and characterization, combined with DFT calculations, we proposed that, the first time, the removal of Cr (VI) was controlled by three consecutive processes: (1) ion exchange of Cr (VI) by hydroxyl groups, (2) reduction of Cr (VI) to Cr (III) by electron-donor (oxygen-containing) groups (EDGs), and (3) complexation of Cr (III) by amine groups. This study provides a new avenue for the removal of toxic oxygen anions and reveals an original removal mechanism of Fe3O4/g-C3N4/CLx (x = hydrothermal products from carbon precursors (glucose, ascorbic acid, cellulose)).
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lewen Zheng
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Superior Adsorption and Photocatalytic Degradation Capability of Mesoporous LaFeO3/g-C3N4 for Removal of Oxytetracycline. Catalysts 2020. [DOI: 10.3390/catal10030301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesoporous LaFeO3/g-C3N4 Z-scheme heterojunctions (LFC) were synthesized via the incorporation of LaFeO3 nanoparticles and porous g-C3N4 ultrathin nanosheets. The as prepared LFC were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, powder X-ray diffraction, Raman spectra and N2 adsorption analysis. The structural analysis indicated that the reheating process and the addition of NH4Cl in the thermal polymerization were the key factors to get porous g-C3N4 ultrathin nanosheets and to obtain high specific surface areas of LFC. It remarkably enhanced the adsorption capacity and photocatalytic degradation of LFC for removal of oxytetracycline (OTC). The effect of the mass percentage of LaFeO3 in LFC, pH and temperature on the OTC adsorption was investigated. The LaFeO3/g-C3N4 heterojunction with 2 wt % LaFeO3 (2-LFC) exhibited highest saturated adsorption capacity (101.67 mg g−1) and largest photocatalytic degradation rate constant (1.35 L g−1 min−1), which was about 9 and 5 times higher than that of bulk g-C3N4 (CN), respectively. This work provided a facile method to prepare mesoporous LaFeO3/g-C3N4 heterojunctions with especially well adsorption and photocatalytic activities for OTC, which can facilitate its practical applications in pollution control.
Collapse
|