1
|
Langer J, Hartmann L, Snyder NL. Synthesis of a multivalent α-1,2-mannobiose ligand for targeting C-type lectins. RSC Adv 2024; 14:37950-37959. [PMID: 39610811 PMCID: PMC11603336 DOI: 10.1039/d4ra06526c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
The importance of lectins in biological processes such as pathogen recognition, cell adhesion, and cell recognition is well documented. C-Type lectins, which require calcium for binding, play an important role in the innate immune response by engaging carbohydrates presented as part of the human and pathogen glycocalyx. For example, lectins such as MBL, Dectin-2, langerin and DC-SIGN selectively recognize mannose rich (high-mannose) structures presented as part of the glycocalyx. One common sugar binding motif that is recognized by these lectins on the pathogen glycocalyx is α-1,2-mannobiose, a disaccharide that consists of two mannose units connected via a α-1,2-linkage. To study the binding of these motifs in different contexts, synthetic replicas of α-1,2-mannobiose that can be presented in a multivalent fashion mimicking their presentation on the glycocalyx are required. Here we present the synthesis of a novel α-1,2-mannobiose analog bearing an azido linker from known precursors using a split and combine approach guided by neighboring group participation. Our approach makes it possible to achieve comparatively high yields and stereoselectivities while reducing the number of steps required to prepare such structures. We also introduce, for the first time, the trivalent presentation of our α-1,2-mannobiose ligand on a precision glycomacromolecule using copper-catalyzed azide-alkyne cycloaddition (CuAAC) to create high-mannose mimetics. Such structures have the potential to serve as probes for unlocking the rules of engagement between high-mannose glycans and C-type lectins like langerin and DC-SIGN.
Collapse
Affiliation(s)
- Jannis Langer
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 Düsseldorf 40225 Germany
- Institute for Macromolecular Chemistry, University Freiburg Stefan-Meier-Str. 31 79104 Freiburg i.Br. Germany
| | - Laura Hartmann
- Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 Düsseldorf 40225 Germany
- Institute for Macromolecular Chemistry, University Freiburg Stefan-Meier-Str. 31 79104 Freiburg i.Br. Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College Davidson NC 28035 USA
| |
Collapse
|
2
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
3
|
Lete M, Hoffmann M, Schomann N, Martínez-Castillo A, Peccati F, Konietzny PB, Delgado S, Snyder NL, Jiménez-Oses G, Abrescia NGA, Ardá A, Hartmann L, Jiménez-Barbero J. Molecular Recognition of Glycan-Bearing Glycomacromolecules Presented at Membrane Surfaces by Lectins: An NMR View. ACS OMEGA 2023; 8:16883-16895. [PMID: 37214724 PMCID: PMC10193412 DOI: 10.1021/acsomega.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Lectin-glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan-lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.
Collapse
Affiliation(s)
- Marta
G. Lete
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Miriam Hoffmann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Nils Schomann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Ane Martínez-Castillo
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Francesca Peccati
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Patrick B. Konietzny
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sandra Delgado
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
| | - Nicole L. Snyder
- Department
of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Gonzalo Jiménez-Oses
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
| | - Nicola G. A. Abrescia
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas, Instituto de Salud Carlos
III, Madrid 28029, Spain
| | - Ana Ardá
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
| | - Laura Hartmann
- Department
of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research
& Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Bizkaia, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| |
Collapse
|
4
|
Ezhilarasan D. Unraveling the pathophysiologic role of galectin-3 in chronically injured liver. J Cell Physiol 2023; 238:673-686. [PMID: 36745560 DOI: 10.1002/jcp.30956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Galectin-3 (Gal-3) previously referred to as S-type lectins, is a soluble protein that specifically binds to β-galactoside carbohydrates with high specificity. Gal-3 plays a pivotal role in a variety of pathophysiological processes such as cell proliferation, inflammation, differentiation, angiogenesis, transformation and apoptosis, pre-mRNA splicing, metabolic syndromes, fibrosis, and host defense. The role of Gal-3 has also been implicated in liver diseases. Gal-3 is activated upon a hepatotoxic insult to the liver and its level has been shown to be upregulated in fatty liver diseases, inflammation, nonalcoholic steatohepatitis, fibrosis, cholangitis, cirrhosis, and hepatocellular carcinoma (HCC). Gal-3 directly interacts with the NOD-like receptor family, pyrin domain containing 3, and activates the inflammasome in macrophages of the liver. In the chronically injured liver, Gal-3 secreted by injured hepatocytes and immune cells, activates hepatic stellate cells (HSCs) in a paracrine fashion to acquire a myofibroblast like collagen-producing phenotype. Activated HSCs in the fibrotic liver secrete Gal-3 which acts via autocrine signaling to exacerbate extracellular matrix synthesis and fibrogenesis. In the stromal microenvironment, Gal-3 activates cancer cell proliferation, migration, invasiveness, and metastasis. Clinically, increased serum levels and Gal-3 expression were observed in the liver tissue of nonalcoholic steatohepatitis, fibrotic/cirrhotic, and HCC patients. The pathological role of Gal-3 has been experimentally and clinically reported in the progression of chronic liver disease. Therefore, this review discusses the pathological role of Gal-3 in the progression of chronic liver diseases.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
6
|
Konietzny PB, Freytag J, Feldhof MI, Müller JC, Ohl D, Stehle T, Hartmann L. Synthesis of Homo- and Heteromultivalent Fucosylated and Sialylated Oligosaccharide Conjugates via Preactivated N-Methyloxyamine Precision Macromolecules and Their Binding to Polyomavirus Capsid Proteins. Biomacromolecules 2022; 23:5273-5284. [PMID: 36398945 DOI: 10.1021/acs.biomac.2c01092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycoconjugates are a versatile class of bioactive molecules that have found application as vaccines and antivirals and in cancer therapy. Their synthesis typically involves elaborate functionalization and use of protecting groups on the carbohydrate component in order to ensure efficient and selective conjugation. Alternatively, non-functionalized, non-protected carbohydrates isolated from biological sources or derived through biotechnological methods can be directly conjugated via N-methyloxyamine groups. In this study, we introduce such N-methyloxyamine groups into a variety of multivalent scaffolds─from small to oligomeric to polymeric scaffolds─making use of solid-phase polymer synthesis to assemble monodisperse sequence-defined macromolecules. These scaffolds are then successfully functionalized with different types of human milk oligosaccharides deriving a library of homo- and heteromultivalent glycoconjugates. Glycomacromolecules presenting oligosaccharide side chains with either α2,3- or α2,6-linked terminal sialic acid are used in a binding study with two types of polyomavirus capsid proteins showing that the multivalent presentation through the N-methyloxyamine-derived scaffolds increases the number of contacts with the protein. Overall, a straightforward route to derive glycoconjugates from complex oligosaccharides with high variability yet control in the multivalent scaffold is presented, and applicability of the derived structures is demonstrated.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Jasmin Freytag
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Melina I Feldhof
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Joshua C Müller
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Daniel Ohl
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
8
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Ou C, Li C, Feng C, Tong X, Vasta GR, Wang LX. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorg Med Chem 2022; 72:116974. [PMID: 36108470 PMCID: PMC10349921 DOI: 10.1016/j.bmc.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Human galectin 3 (Gal-3) has been implicated to play important roles in different biological recognition processes such as tumor growth and cancer metastasis. High-affinity Gal-3 ligands are desirable for functional studies and as inhibitors for potential therapeutic development. We report here a facile synthesis of β-cyclodextrin (CD)-based Tn and TF antigen-containing multivalent ligands via a click reaction. Binding studies indicated that the synthetic multivalent glycan ligands demonstrated a clear clustering effect in binding to human Gal-3, with up to 153-fold enhanced relative affinity in comparison with the monomeric glycan ligand. The GalNAc (Tn antigen) containing heptavalent ligand showed the highest affinity for human Gal-3 among the synthetic ligands tested, with an EC50 of 1.4 μM in binding to human Gal-3. A cell-based assay revealed that the synthetic CD-based multivalent ligands could efficiently inhibit Gal-3 binding to human airway epithelial cells, with an inhibitory capacity consistent with their binding affinity measured by SPR. The synthetic cyclodextrin-based ligands described in this study should be valuable for functional studies of human Gal-3 and potentially for therapeutic applications.
Collapse
Affiliation(s)
- Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
10
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Yang J, Firdaus F, Azuar A, Khalil ZG, Marasini N, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Cell-Penetrating Peptides-Based Liposomal Delivery System Enhanced Immunogenicity of Peptide-Based Vaccine against Group A Streptococcus. Vaccines (Basel) 2021; 9:499. [PMID: 34066099 PMCID: PMC8151947 DOI: 10.3390/vaccines9050499] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Peptide-based vaccine development represents a highly promising strategy for preventing Group A Streptococcus (GAS) infection. However, these vaccines need to be administered with the help of a delivery system and/or immune adjuvant. Cell-penetrating peptides (CPPs) have been used as a powerful tool for delivering various therapeutic agents, including peptides, as they can overcome the permeability barrier of cell membranes. Here, we used CPPs to deliver our lead lipopeptide-based vaccine (LCP-1). CPPs were anchored through a spacer to LCP-1-bearing multilamellar and unilamellar liposomes and administered to Swiss outbred mice. Tat47-57 conjugated to two palmitic acids via a (Gly)6 spacer (to form a liposome-anchoring moiety) was the most efficient system for triggering immune responses when combined with multilamellar liposomes bearing LCP-1. The immunostimulatory potential of a variety of other CPPs was examined following intranasal administration in mice. Among them, LCP-1/liposomes/Tat47-57 and LCP-1/liposomes/KALA induced the highest antibody titers. The antibodies produced showed high opsonic activity against clinically isolated GAS strains D3840 and GC2 203. The use of the CPP-liposome delivery system is a promising strategy for liposome-based GAS vaccine development.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Farrhana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Y.); (F.F.); (A.A.); (W.M.H.); (I.T.)
| |
Collapse
|
13
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
14
|
Dixon CF, Nottingham AN, Lozano AF, Sizemore JA, Russell LA, Valiton C, Newell KL, Babin D, Bridges WT, Parris MR, Shchirov DV, Snyder NL, Ruppel JV. Synthesis and evaluation of porphyrin glycoconjugates varying in linker length: preliminary effects on the photodynamic inactivation of Mycobacterium smegmatis. RSC Adv 2021; 2021:7037-7042. [PMID: 34336191 PMCID: PMC8320722 DOI: 10.1039/d0ra10793j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
Porphyrins have served as common photosensitizing agents in photomedicine due to their unique properties and broad therapeutic potential. While photodynamic therapy (PDT) offers a promising avenue for novel drug development, limitations in application due to selectivity, and the inherent hydrophobicity and poor solubility of porphyrins and other organic photosensitizers has been noted. Porphyrin glycoconjugates have recently gained attention for their potential to overcome these limitations. However, little has been done to explore the effects of the linker between the carbohydrate and porphyrin analog. Here we report the synthesis of over 30 new carbohydrate-porphyrin conjugates which vary in the nature of the sugar (Gal, Glc, GalNAc, GlcNAc, Lac and Tre) and the distance between the porphyrin macrocycle and the carbohydrate. Porphyrin glycoconjugates were synthesized in three steps from a readily available meso-brominated diphenylporphyrin analog by (i) C-O coupling of an appropriate TMS-protected alkynol consisting of two to six carbon spacers (ii) removal of the TMS protecting group, and (iii) CuAAC conjugation with an appropriate glycosyl azide. First studies with trehalose-based glycoporphyrins and M. smeg were used to determine the effects of the linker in photodynamic inactivation (PDI) studies. Preliminary results demonstrated an increase in photodynamic inactivation with a decrease in linker length. Investigations are underway to determine the mechanism for these results.
Collapse
Affiliation(s)
| | - Ana N. Nottingham
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | - Logan A. Russell
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | - Dominique Babin
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | | | | | | - Nicole L. Snyder
- Davidson College, Department of ChemistryBox 7120DavidsonNC 28035USA
| | | |
Collapse
|
15
|
Belkhadem K, Cao Y, Roy R. Synthesis of Galectin Inhibitors by Regioselective 3'- O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Molecules 2020; 26:E115. [PMID: 33383774 PMCID: PMC7795656 DOI: 10.3390/molecules26010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022] Open
Abstract
Vanillin-based lactoside derivatives were synthetized using phase-transfer catalyzed reactions from per-O-acetylated lactosyl bromide. The aldehyde group of the vanillin moiety was then modified to generate a series of related analogs having variable functionalities in the para- position of the aromatic residue. The corresponding unprotected lactosides, obtained by Zemplén transesterification, were regioselectively 3'-O-sulfated using tin chemistry activation followed by treatment with sulfur trioxide-trimethylamine complex (Men3N-SO3). Additional derivatives were also prepared from the vanillin's aldehyde using a Knoevenagel reaction to provide extended α, β-unsaturated carboxylic acid which was next reduced to the saturated counterpart.
Collapse
Affiliation(s)
- Karima Belkhadem
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
| | - Yihong Cao
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
| | - René Roy
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
16
|
Fischer L, Steffens RC, Paul TJ, Hartmann L. Catechol-functionalized sequence-defined glycomacromolecules as covalent inhibitors of bacterial adhesion. Polym Chem 2020. [DOI: 10.1039/d0py00975j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we present the synthesis of catechol functionalized sequence-defined glycomacromolecules that can covalently block the binding site of lectins and bacterial adhesins.
Collapse
Affiliation(s)
- Lukas Fischer
- Institut für Organische und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Ricarda C. Steffens
- Institut für Organische und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Tanja J. Paul
- Institut für Organische und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Laura Hartmann
- Institut für Organische und Makromolekulare Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
17
|
Shamout F, Monaco A, Yilmaz G, Becer CR, Hartmann L. Synthesis of Brush‐Like Glycopolymers with Monodisperse, Sequence‐Defined Side Chains and Their Interactions with Plant and Animal Lectins. Macromol Rapid Commun 2019; 41:e1900459. [DOI: 10.1002/marc.201900459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Fadi Shamout
- Department for Organic Chemistry and Macromolecular ChemistryHeinrich Heine University DuesseldorfUniversitätsstraße 1 Düsseldorf 40225 Germany
| | | | - Gokhan Yilmaz
- School of PharmacyUniversity of Nottingham Nottingham NG2 2RD UK
| | | | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular ChemistryHeinrich Heine University DuesseldorfUniversitätsstraße 1 Düsseldorf 40225 Germany
| |
Collapse
|