1
|
Uzunkaya Ç, Gökkaya İ, Akkaya D, Šoral M, Seyhan G, Barut B, Abdullah Yilmaz M, Renda G. Phytochemical Analysis and Assessment of Antioxidant and Enzyme Inhibitory Activity of Alchemilla pseudocartalinica Juz. Chem Biodivers 2024:e202401217. [PMID: 39344428 DOI: 10.1002/cbdv.202401217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to evaluate and compare the antioxidant capacity and enzyme inhibitory activity of extracts, sub-extracts, and fractions prepared from the aerial parts and roots of A. pseudocartalinica. The phytochemical content of the active extracts was also analyzed. According to the results, ellagic acid (38.42 mg/g) was the major compound in the aerial part methanol extract and catechin (185.30 mg/g) in the root methanol extract. The DPPH inhibition activity of all fractions was monitored, with the most active one (Fr B) reaching an IC50 value of (4.92±0.59 μg/mL). All the fractions prepared from the aerial parts' water sub-extract showed higher a-glucosidase inhibitory activity than the positive control acarbose. In the tyrosinase assay, Fr B (58.81±7.50 μg/mL) exhibited the highest inhibitory actions among all fractions. The structure of the major substances of the most active fraction were elucidated as quercetin 7-O-β-glucopyranosyl-3-O-β-glucuronopyranoside- (1), and α-[(2-formyl-5-hydroxymethyl)pyrrol-1-yl]aspartic acid (2).
Collapse
Affiliation(s)
- Çağla Uzunkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacognosy, 61080, Trabzon, Türkiye
| | - İçim Gökkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacognosy, 61080, Trabzon, Türkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Türkiye
| | - Michal Šoral
- Slovak Academy of Sciences, Institute of Chemistry, Analytical Department, Dúbravská cesta 9, SK, 845 38, Slovak Republic
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Türkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, 61080, Trabzon, Türkiye
| | - Mustafa Abdullah Yilmaz
- Dicle University, Science and Technology Research and Application Center, Diyarbakır, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Türkiye
| | - Gülin Renda
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacognosy, 61080, Trabzon, Türkiye
| |
Collapse
|
2
|
Anajirih N, Abdeen A, Taher ES, Abdelkader A, Abd-Ellatieff HA, Gewaily MS, Ahmed NE, Al-Serwi RH, Sorour SM, Abdelkareem HM, Ebrahim E, El-Sherbiny M, Imbrea F, Imbrea I, Ramadan MM, Habotta OA. Alchemilla vulgaris modulates isoproterenol-induced cardiotoxicity: interplay of oxidative stress, inflammation, autophagy, and apoptosis. Front Pharmacol 2024; 15:1394557. [PMID: 39170697 PMCID: PMC11335554 DOI: 10.3389/fphar.2024.1394557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction: Isoproterenol (ISO) is regarded as an adrenergic non-selective β agonist. It regulates myocardial contractility and may cause damage to cardiac tissues. Alchemilla vulgaris (AV) is an herbal plant that has garnered considerable attention due to its anti-inflammatory and antioxidant bioactive components. The present investigation assessed the cardioprotective potential of AV towards ISO-induced myocardial damage. Methods: Four groups of mice were utilized: control that received saline, an ISO group (85 mg/kg, S.C.), ISO + AV100, and ISO + AV200 groups (mice received 100 or 200 mg/kg AV orally along with ISO). Results and discussion: ISO induced notable cardiac damage demonstrated by clear histopathological disruption and alterations in biochemical parameters. Intriguingly, AV treatment mitigates ISO provoked oxidative stress elucidated by a substantial enhancement in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) content, as well as a considerable reduction in malondialdehyde (MDA) concentrations. In addition, notable downregulation of inflammatory biomarkers (IL-1β, TNF-α, and RAGE) and the NF-κB/p65 pathway was observed in ISO-exposed animals following AV treatment. Furthermore, the pro-apoptotic marker Bax was downregulated together with autophagy markers Beclin1 and LC3 with in ISO-exposed animals when treated with AV. Pre-treatment with AV significantly alleviated ISO-induced cardiac damage in a dose related manner, possibly due to their antioxidant and anti-inflammatory properties. Interestingly, when AV was given at higher doses, a remarkable restoration of ISO-induced cardiac injury was revealed.
Collapse
Affiliation(s)
- Nuha Anajirih
- Department of Medical Emergency Services, College of Health Sciences in Al-Qunfudah, UmmAl-Qura University, Mecca, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hoda A. Abd-Ellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nashwa E. Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rasha H. Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Heba M. Abdelkareem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
- Department of Medical Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Mutah University, Mutah, Jordan
| | - Elturabi Ebrahim
- Medical‐Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Florin Imbrea
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences “King Mihai I” From Timisoara, Timisoara, Romania
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” From Timisoara, Timisoara, Romania
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Bekić S, Petri E, Krstić S, Ćelić A, Jovanović-Šanta S. Detection of isoflavones and phytoestrogen-rich plant extracts binding to estrogen receptor β using a yeast-based fluorescent assay. Anal Biochem 2024; 690:115529. [PMID: 38582243 DOI: 10.1016/j.ab.2024.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Alchemilla vulgaris L., Trifolium pratense L. and Glycyrrhiza glabra L. are important remedies in traditional medicine, known for many usages, including treating gynecological diseases. Despite folkloric use of the plant materials, there is a lack of scientific data to support their therapeutic application. The aims of the present study were to evaluate the relative binding affinities (RBAs) of plant-derived phytoestrogens for estrogen receptor β (ERβ) using fluorescent biosensor in yeast and to apply this assay for the assessment of the potential of plant materials towards ERs and treatment of estrogen-related disorders. Ligand-binding domain of ERβ fused with yellow fluorescent protein (ERβ LBD-YFP) was expressed in S. cerevisiae and fluorescence was detected by fluorimetry and fluorescence microscopy. Structural basis for experimental results was explored by molecular docking. Yeast-based fluorescent assay was successfully optimized and applied for identification of natural phenolic compounds and phytoestrogen-rich plant extracts that interact with ERβ-LBD, making this biosensor a valuable tool for screening estrogenic potential of a variety of plant extracts. This assay can be used for preliminary testing of plant-derived or fungal extracts, but also other sources of environmental substances with ER-modulating activity in order to assess their possible effects on the female reproductive system.
Collapse
Affiliation(s)
- Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
| | - Sanja Krstić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia; Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010, Graz, Austria.
| | - Andjelka Ćelić
- Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| |
Collapse
|
4
|
Jelača S, Jovanovic I, Bovan D, Pavlovic S, Gajovic N, Dunđerović D, Dajić-Stevanović Z, Acović A, Mijatović S, Maksimović-Ivanić D. Antimelanoma Effects of Alchemilla vulgaris: A Comprehensive In Vitro and In Vivo Study. Diseases 2024; 12:125. [PMID: 38920557 PMCID: PMC11202689 DOI: 10.3390/diseases12060125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Due to the rich ethnobotanical and growing evidence-based medicine records, the Alchemillae herba, i.e., the upper parts of the Lady's mantle (Alchemilla vulgaris L.), was used for the assessment of antimelanoma activity. The ethanolic extract of A. vulgaris strongly suppressed the viability of B16F1, B16F10, 518A2, and Fem-X cell lines. In contrast to the in vitro study, where the B16F1 cells were more sensitive to the treatment than the more aggressive counterpart B16F10, the results obtained in vivo using the corresponding syngeneic murine model were quite the opposite. The higher sensitivity of B16F10 tumors in vivo may be attributed to a more complex response to the extract compared to one triggered in vitro. In addition, the strong immunosuppressive microenvironment in the B16F1 model is impaired by the treatment, as evidenced by enhanced antigen-presenting potential of dendritic cells, influx and activity of CD4+ T and CD8+ T lymphocytes, decreased presence of T regulatory lymphocytes, and attenuation of anti-inflammatory cytokine production. All these effects are supported by the absence of systemic toxicity. A. vulgaris extract treatment results in a sustained and enhanced ability to reduce melanoma growth, followed by the restoration of innate and adopted antitumor immunity without affecting the overall physiology of the host.
Collapse
Affiliation(s)
- Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (I.J.); (S.P.); (N.G.)
| | - Dijana Bovan
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| | - Sladjana Pavlovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (I.J.); (S.P.); (N.G.)
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (I.J.); (S.P.); (N.G.)
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia;
| | - Zora Dajić-Stevanović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Aleksandar Acović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (S.J.); (D.B.)
| |
Collapse
|
5
|
Bilušić T, Šola I, Čikeš Čulić V. Identification of Flavonoids, Antioxidant and Antiproliferative Activity of Aqueous Infusions of Calendula officinalis L., Chelidonium majus L., Teucrium chamaedrys L. and Alchemilla vulgaris L. Food Technol Biotechnol 2024; 62:49-58. [PMID: 38601959 PMCID: PMC11002451 DOI: 10.17113/ftb.62.01.24.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 04/12/2024] Open
Abstract
Research background The current changes in the global economy, characterised by the climate crisis and the economic and health impact of the COVID-19 pandemic, have led to a significant demand for medicinal herbs. This trend is expected to increase significantly by 2050. In this study, we investigated the biopotential of aqueous infusions of four medicinal plants: Calendula officinalis, Chelidonium majus, Teucrium chamaedrys and Alchemilla vulgaris. Experimental approach The flavonoid analysis of the aqueous infusions of the selected plants was carried out using the RP-HPLC technique. The antiproliferative activity of the prepared aqueous plant infusions was analysed against three human cancer cell lines (MDA-MD-231, T24 and A549), while the antioxidant potential was measured using three antioxidant methods (DPPH, FRAP and Rancimat assay). Results and conclusions T. chamaedrys had the highest total phenolics (expressed as GAE (2061±42) mg/L), free radical scavenging activity (IC50=1.9 mg/mL) and Fe(III) reducing antioxidant power (expressed as FeCl2 (9798±27) mg/L). At a concentration of 1 mg/mL, the antiproliferation of T24 by C. majus was 96 % and of MDA-MD-231 cells by A. vulgaris was 75 % after 72 h. After principal component analysis, T. chamaedrys and C. majus were grouped together. Quercetin glucoside and antioxidant capacity (DPPH) contributed the most to differentiate these infusions from the other two. Novelty and scientific contribution This study represents a comparative analysis of the biopotential of four medicinal plants. A new RP-HPLC method was developed to separate the flavonoids in the herbal infusions. This is the first report on the presence of kaempferol-3-O-rutinoside in C. officinalis and isorhamnetin-3-O-rutinoside in A. vulgaris aqueous infusion. For the first time, C. majus has been shown to contribute to the oxidative stability of edible oil. Furthermore, this is the first comparative study on the antiproliferative activity of selected medicinal plants against the cell lines MDA-MD-231, T24 and A549.
Collapse
Affiliation(s)
- Tea Bilušić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102 a, 10000 Zagreb, Croatia
| | | |
Collapse
|
6
|
Jakimiuk K, Tomczyk M. A review of the traditional uses, phytochemistry, pharmacology, and clinical evidence for the use of the genus Alchemilla (Rosaceae). JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117439. [PMID: 37981119 DOI: 10.1016/j.jep.2023.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Alchemilla L. (lady's mantle) comprises 1000 species, of which more than 300 have been characterized from Europe. Notably, as folk medicines, Alchemilla species have long been prescribed for the treatment of dysmenorrhea, pruritus vulvae, menopausal complaints, and related diseases in women. This review summarizes the traditional uses, highlights promising plant species, and focuses on phytochemical and biological studies to highlight future areas of research. AIM OF THE REVIEW This literature review aims to provide a comprehensive overview of Alchemilla species, covering their botany, traditional uses, phytochemistry, and biological and pharmacological activities, and to summarize the current research status to better understand the application value of Alchemilla plants in modern phytotherapy. MATERIALS AND METHODS The search strategy utilized the major thematic platforms Reaxys, Web of Science, Google Scholar, Scopus, ScienceDirect, PubMed, the USDA Plant Database and Kew Science (Royal Botanic Gardens) and was performed with the term Alchemilla. These platforms were systematically searched for articles published from 1960 to 2023. RESULTS AND DISCUSSION Alchemilla species, as members of the Rosaceae family, produce tannins, phenolic acids, flavonoids, anthocyanins, coumarins, triterpenes and violet compounds. Effort has been made with this comprehensive review of Alchemilla plants to highlight the recent developments and milestones achieved in modern phytochemistry and phytotherapy, underlaying a broad spectrum of the activities of these plants, such as antioxidant, anti-inflammatory, neuroprotective, antimicrobial, antiobesity, cardiovascular, anticancer, and wound healing effects. CONCLUSIONS An increasing number of studies on the plants in the Alchemilla genus have provided data about the main constituents and their importance in modern medicine. Both in vitro and in vivo studies have indicated that Alchemilla plants possess an extensive spectrum of biological activities. Regardless of the remarkable medical potential of Alchemilla extracts, clinical studies are limited and need to be performed to produce safer and less expensive plant-based drugs.
Collapse
Affiliation(s)
- Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Ul. Mickiewicza 2a, 15-230 Białystok, Poland.
| |
Collapse
|
7
|
Foutsop AF, Ateufack G, Adassi BM, Yassi FB, Kom TD, Noungoua CM, Petsou A, Ngoupaye GT. The Aqueous Lyophilisate of Alchemilla Kiwuensis Engl. (Rosaceae) Displays Antiepileptogenic and Antiepileptic Effects on PTZ-induced Kindling in rats: Evidence of Modulation of Glutamatergic and GABAergic Pathways Coupled to Antioxidant Properties. Neurochem Res 2023; 48:3228-3248. [PMID: 37436614 DOI: 10.1007/s11064-023-03982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Alchemilla kiwuensis Engl. (Rosaceae) (A. kiwuensis) is an herbaceous plant traditionally used by Cameroonians to treat epilepsy and other central nervous system disorders. The present study evaluated the antiepileptogenic and antiepileptic effects of A. kiwuensis (40 mg/kg, 80 mg/kg) following Pentylenetetrazole (PTZ)-induced kindling as well as its sub-chronic toxicity. Following an initial i.p administration of a challenge dose (70 mg/kg), Wistar rats of both sexes received sub convulsive doses (35 mg/kg) of PTZ every other day, one hour after the oral gavage of animals with treatments, until two consecutive stage 4, in all animals of negative control. Seizure progression, latency, duration, and repetition were noted. Twenty-four hours later, animals were dissected to extract their hippocampi. The resulting homogenates were used to evaluate Malondialdehyde, reduced glutathione, catalase activity, GABA, GABA-Transaminase, glutamate, glutamate transporter 2, IL-1β and TGF-1 β. Sub-chronic toxicity was conducted according to OECD 407 guidelines. The lyophilisate of A. kiwuensis significantly increased the latency of seizure appearance, delayed seizure progression and decreased seizure repetition and duration. Biochemical analysis revealed that the lyophilisate significantly increased the catalase activity, reduced glutathione, GABA, glutamate transporter 2 and TGF-1B levels. The lyophilisate equally caused a significant decreased in the GABA-Transaminase activity, malondialdehyde, and IL-1 β levels. There was no noticeable sign of toxicity. A. kiwuensis possesses antiepileptic and antiepiletogenic effects by enhancing GABAergic neurotransmission and antioxidant properties, coupled to modulation of glutamatergic and neuroinflammatory pathways and is innocuous in a sub-chronic model. These justifies its local use for the treatment of epilepsy.
Collapse
Affiliation(s)
- Aurelien Fossueh Foutsop
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Gilbert Ateufack
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Blesdel Maxwell Adassi
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Francis Bray Yassi
- Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, P.O BOX: 454, Ngaoundéré, Cameroon
| | - Tatiana Diebo Kom
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Chretien Mbeugangkeng Noungoua
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon
| | - Adolph Petsou
- Department of Biological Sciences, Faculty of Sciences, University of Maroua, P.O BOX: 814, Maroua, Cameroon
| | - Gwladys Temkou Ngoupaye
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, Faculty of Sciences, University of Dschang, P.O BOX: 67, Dschang, Cameroon.
| |
Collapse
|
8
|
Beyond Traditional Use of Alchemilla vulgaris: Genoprotective and Antitumor Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238113. [PMID: 36500205 PMCID: PMC9740270 DOI: 10.3390/molecules27238113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Alchemilla vulgaris L. (lady's mantle) was used for centuries in Europe and Balkan countries for treatments of numerous conditions and diseases of the reproductive system, yet some of the biological activities of lady's mantle have been poorly studied and neglected. The present study aimed to estimate the potential of A. vulgaris ethanolic extract from Southeast Serbia to prevent and suppress tumor development in vitro, validated by antioxidant, genoprotective, and cytotoxic properties. A total of 45 compounds were detected by UHPLC-HRMS analysis in A. vulgaris ethanolic extract. Measurement of antioxidant activity revealed the significant potential of the tested extract to scavenge free radicals. In addition, the analysis of micronuclei showed an in vitro protective effect on chromosome aberrations in peripheral human lymphocytes. A. vulgaris extract strongly suppressed the growth of human cell lines derived from different types of tumors (MCF-7, A375, A549, and HCT116). The observed antitumor effect is realized through the blockade of cell division, caspase-dependent apoptosis, and autophagic cell death. Our study has shown that Alchemilla vulgaris L. is a valuable source of bioactive compounds able to protect the subcellular structure from damage, thus preventing tumorigenesis as well as suppressing tumor cell growth.
Collapse
|
9
|
Kanak S, Krzemińska B, Celiński R, Bakalczuk M, Dos Santos Szewczyk K. Phenolic Composition and Antioxidant Activity of Alchemilla Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:2709. [PMID: 36297733 PMCID: PMC9609838 DOI: 10.3390/plants11202709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The genus Alchemilla, belonging to the Rosaceae family, is a rich source of interesting secondary metabolites, including mainly flavonoids, tannins, and phenolic acids, which display a variety of biological activities, such as anti-inflammatory, antimicrobial, and antioxidant. Alchemilla species are used in traditional medicine for treatment of acute diarrhea, wounds, dysmenorrhea, and menorrhagia. In this review, we focus on the phenolic compound composition and antioxidative activity of Alchemilla species. We can assume that phytomedicine and natural products chemistry are of significant importance due to the fact that extract combinations with various bioactive compounds possess the activity to protect the human body rather than disturb damaging factors.
Collapse
Affiliation(s)
- Sebastian Kanak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Barbara Krzemińska
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Rafał Celiński
- Department of Cardiology, Independent Public Provincial Specialist Hospital in Chełm, 22-100 Chełm, Poland
| | - Magdalena Bakalczuk
- Independent Unit of Functional Masticatory Disorders, Medical University of Lublin, 6 Chodźki Str., 20-093 Lublin, Poland
| | | |
Collapse
|
10
|
Phytochemical Characterization, Antimicrobial Activity and In Vitro Antiproliferative Potential of Alchemilla vulgaris Auct Root Extract against Prostate (PC-3), Breast (MCF-7) and Colorectal Adenocarcinoma (Caco-2) Cancer Cell Lines. PLANTS 2022; 11:plants11162140. [PMID: 36015443 PMCID: PMC9414443 DOI: 10.3390/plants11162140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022]
Abstract
Despite the proven biological activity of the aerial part extract of Alchemilla vulgaris, scarce information is available about the activity of the root extract. This encouraged us to initiate the current investigation to study the cytotoxic activity of A. vulgaris methanolic root extract against various cancer cell lines in vitro, along with its antimicrobial activity and phytochemical screening. MTT assay was applied to test the cytotoxic effect against the prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2), together with normal Vero cells. Flow cytometry was employed to assess cell cycle arrest and apoptosis vs. necrosis in PC-3 cells. The expression of apoptosis-related genes (BAX, BCL2 and P53) was quantified by qRT-PCR analysis. The obtained results showed strong antiproliferative activity on the three cancer cell lines and the normal Vero cells in a dose-dependent manner. A high selectivity index (SI) was recorded against the three cell lines with PC-3 cells showing the highest SI and the lowest IC50. This effect was associated with cell cycle arrest at G1 phase and induction of total apoptosis at 27.18% being mainly early apoptosis. Apoptosis induction was related to the upregulation of the proapoptotic genes P53 and BAX and the downregulation of the antiapoptotic gene BCL2. Additionally, the extract demonstrated in vitro antibacterial activity against Agrobacterium tumefaciens, Serratia marcescens and Acinetobacter johnsoni. Additionally, it showed antifungal activity against Rhizoctonia solani, Penicillium italicum and Fusarium oxysporium. Seven phenolic acids and seven flavonoids were detected. The predominant phenolic acids were cinnamic and caffeic acids, while hisperdin and querestin were the principal flavonoids. These findings provide clear evidence about the promising proapoptotic effect of A. vulgaris root extract, which contributes to laying the basis for broader and in-depth future investigations.
Collapse
|
11
|
Mansour AT, Mahboub HH, Elshopakey GE, Aziz EK, Alhajji AHM, Rayan G, Ghazzawy HS, El-Houseiny W. Physiological Performance, Antioxidant and Immune Status, Columnaris Resistance, and Growth of Nile Tilapia That Received Alchemilla vulgaris-Supplemented Diets. Antioxidants (Basel) 2022; 11:1494. [PMID: 36009213 PMCID: PMC9404728 DOI: 10.3390/antiox11081494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
The current perspective is a pioneering trial to assess the efficacy of the dietary supplementation of Alchemilla vulgaris powder (AVP) in the diet of Nile tilapia (Oreochromis niloticus) on growth performance, blood picture, hepatic and renal biomarkers, immune status, and serum and tissue antioxidant capacity and to investigate the resistance against Flavobacterium columnare challenge. Fish (n = 360) were distributed into six groups (three replicates each) and received increasing AVP supplementation levels (0, 2, 4, 6, 8, and 10 g kg-1) for 60 days. Furthermore, fish were exposed to the bacterial challenge of a virulent F. columnare strain and maintained under observation for 12 days. During the observation period, clinical signs and the cumulative mortality percentage were recorded. The results demonstrated that the growth performance, feed conversion ratio, and hematological profile were noticeably enhanced in the AVP-supplemented groups compared to the control. The most promising results of weight gain and feed conversion ratio were recorded in the groups with 6, 8, and 10 g AVP kg-1 diets in a linear regression trend. The levels of hepatorenal function indicators were maintained in a healthy range in the different dietary AVP-supplemented groups. In a dose-dependent manner, fish fed AVP dietary supplements displayed significant augmented serum levels of innate immune indicators (lysozyme, nitric oxide, and complement 3) and antioxidant biomarkers (Catalase (CAT), superoxide dismutase (SOD), total antioxidant (TAC), and reduced glutathione (GSH) with a marked decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels). Likewise, hepatic CAT and SOD activities were significantly improved, and the opposite trend was recorded with hepatic MDA. The highest AVP-supplemented dose (10 g/kg) recorded the highest immune-antioxidant status. Based on the study findings, we highlight the efficacy of AVP as a nutraceutical dietary supplementation for aquaculture to enhance growth, physiological performance, and immune-antioxidant status and as a natural economic antibacterial agent in O. niloticus for sustaining aquaculture. It could be concluded that the dietary supplementation of 10 g AVP/kg enhanced O. niloticus growth, physiological performance, immune-antioxidant status, and resistance against F. columnare.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Aquaculture and Animal Production Department, Agricultural & Food Sciences College, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.H.M.A.); (G.R.)
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Alexandria, Egypt
| | - Heba H. Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt;
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahlia, Egypt;
| | - Enas K. Aziz
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, El Sadat City 23897, Monufia, Egypt;
| | - Adnan H. M. Alhajji
- Aquaculture and Animal Production Department, Agricultural & Food Sciences College, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.H.M.A.); (G.R.)
| | - Gamal Rayan
- Aquaculture and Animal Production Department, Agricultural & Food Sciences College, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.H.M.A.); (G.R.)
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Walaa El-Houseiny
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Sharkia, Egypt;
| |
Collapse
|
12
|
Fukalova Fukalova T, Moreno-Peris E, García-Martínez MD, Raigón Jiménez MD. Assessment of the Volatile Profiles and Identification of Differentiating Aromas of Wild Undervalued Plants. Front Nutr 2022; 9:912680. [PMID: 35873421 PMCID: PMC9305174 DOI: 10.3389/fnut.2022.912680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022] Open
Abstract
Wild edible plants have played an important role in traditional diets, including the Mediterranean diet. Many of these plants have acquired an undervalued status, since they are under-appreciated in terms of their nutritional, organoleptic qualities, or their seasonality. However, some of these species are still used in local gastronomy for their aromatic and taste characteristics. This study has investigated the quantitative and qualitative aromatic characteristics of seven undervalued wild plants that determine their organoleptic characteristics. Volatiles of the fresh leaves of each species have been determined by head-space solid-phase microextraction, a sensitive and solvent-free technique, coupled with gas chromatography and mass spectrometry. A total of 37 compounds with remarkable quantitative and qualitative differences were identified. In general, benzenoids and monoterpenoids were the most abundant groups, while branched unsaturated hydrocarbons, fatty alcohols, and sesquiterpenoids were the minor groups. Benzyl nitrile, benzyl isothiocyanate, p-cymene, and 2-hexenal were the main individual volatiles, while benzyl alcohol, eugenol, and α-copaene were the differentiating aromas. The results display that the undervalued species studied could be a suitable choice to include as new environmentally friendly crops, providing a double benefit to producers, because they are a possible way to achieve sustainable production systems, and they are an alternative for consumers, because these plants provide flavors that have high organoleptic qualities.
Collapse
Affiliation(s)
- Tamara Fukalova Fukalova
- Facultad de Ciencias Químicas, Laboratorio de Fitoquímica y Productos Biológicos, Universidad Central del Ecuador, Quito, Ecuador
| | - Estela Moreno-Peris
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María Dolores García-Martínez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - María Dolores Raigón Jiménez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: María Dolores Raigón Jiménez
| |
Collapse
|
13
|
Synthesis, Physicochemical, Thermal and Antioxidative Properties of Zn(II) Coordination Compounds with Pyrazole-Type Ligand. INORGANICS 2022. [DOI: 10.3390/inorganics10020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The reactions of pyrazole derivative, i.e., ethyl-5-amino-1-methyl-1H-pyrazole-4-carboxylate (L) with zinc halogenides in methanolic solution and zinc nitrate and zinc acetate in acetonic solution are described. The formulae of synthesized compounds are ZnL2Cl2 (1), [ZnL2Br2] (2), ZnL2I2·0.5MeOH (3), [Zn(L)2(H2O)4](NO3)2 (4), and {ZnL(OAc)2}2 (5). Two complexes are obtained in form of single crystals: [ZnL2Br2] (2) and [Zn(L)2(H2O)4](NO3)2 (4). Their crystal and molecular structure were determined by single-crystal X-ray structure analysis. The FTIR spectra of compounds prove the complex formation with all five zinc salts. The complexes are characterized by conductometric and thermoanalytical measurements, and their antioxidative activity was also tested by the scavenging effect on the DPPH radical. Conductometric results, solvolytic stability, and antioxidative activity of the compounds are in correlation.
Collapse
|
14
|
Kovač MJ, Jokić S, Jerković I, Molnar M. Optimization of Deep Eutectic Solvent Extraction of Phenolic Acids and Tannins from Alchemilla vulgaris L. PLANTS (BASEL, SWITZERLAND) 2022; 11:474. [PMID: 35214807 PMCID: PMC8876725 DOI: 10.3390/plants11040474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Alchemilla vulgaris L. is a good source of antioxidant components with an emphasis on phenolic acids and tannins. In this study, gallic acid, ellagic acid, and hydrolyzable tannins (HT) were extracted from this plant with different deep eutectic solvents (DESs), varying the amount of added H2O, temperature and extraction time. Seventeen DESs (n = 3) were used for the extraction, of which choline chloride:urea (1:2) proved to be the most suitable. The selection of the best solvent was followed by the examination of the influence of the extraction type and parameters using response surface methodology (RSM). Gallic acid content was in the range of 0.00-1.89 µg mg-1, ellagic acid content was 0.00-12.76 µg mg-1 and hydrolyzable tannin (HT) content was 3.06-181.26 µgTAE mg-1, depending on the used technique and the extraction conditions. According to the results, extraction by stirring and heating was the most suitable since the highest amounts of gallic acid, ellagic acid, and HT were extracted, and the obtained optimal values using response surface methodology (RSM) are confirmed by experimentally obtained values.
Collapse
Affiliation(s)
- Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| |
Collapse
|
15
|
Ali JS, Saleem H, Mannan A, Zengin G, Mahomoodally MF, Locatelli M, Abidin SAZ, Ahemad N, Zia M. Metabolic fingerprinting, antioxidant characterization, and enzyme-inhibitory response of Monotheca buxifolia (Falc.) A. DC. extracts. BMC Complement Med Ther 2020; 20:313. [PMID: 33066787 PMCID: PMC7568377 DOI: 10.1186/s12906-020-03093-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant. METHODS In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts. RESULTS Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems. CONCLUSIONS UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.
Collapse
Affiliation(s)
- Joham Sarfraz Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Hammad Saleem
- School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan.
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Abbottabad campus Abbottabad, Abbottabad, Pakistan
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus/Konya, Turkey
| | | | - Marcello Locatelli
- Department of Pharmacy, University 'G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometery (LCMS) Platform, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, 45320, Pakistan.
| |
Collapse
|