1
|
Hosseini SF, Galefi A, Hosseini S, Shaabani A, Farrokhi N, Jahanfar M, Nourany M, Homaeigohar S, Alipour A, Shahsavarani H. Magnesium oxide nanoparticle reinforced pumpkin-derived nanostructured cellulose scaffold for enhanced bone regeneration. Int J Biol Macromol 2024; 281:136303. [PMID: 39370065 DOI: 10.1016/j.ijbiomac.2024.136303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Considering global surge in bone fracture prevalence, limitation in use of traditional healing approaches like bone grafts highlights the need for innovative regenerative strategies. Here, a novel green fabrication approach has reported for reinforcement of physicochemical performances of sustainable bioinspired extracellular matrix (ECM) based on decellularized pumpkin tissue coated with Magnesium oxide nanoparticles (hereafter called DM-Pumpkin) for enhanced bone regeneration. Compared to uncoated scaffold, DM-Pumpkin exhibited significantly improved surface roughness, mechanical stiffness, porosity, hydrophilicity, swelling, and biodegradation rate. Obtained nanoporous structure provides an ideal three-dimensional microenvironment for the attachment, migration and osteo-induction in human adipose-derived mesenchymal stem cells (h- AdMSCs). Calcium deposition and mineralization, alkaline phosphatase activity, and SEM imaging of the cells as well as increased expression of bone-related genes after 21 days incubation confirmed capability of DM-Pumpkin in mimicking the biological properties of bone tissue. The presence of MgONPs had a silencing effect on inflammatory factors and improved wound closure, verified by in vivo studies. Increased expression of collagen type I and osteocalcin in the h- AdMSCs cultured on DM-Pumpkin compared to control further corroborated gained results. Altogether, boosting physicochemical and biological properties of DM-Pumpkin due to surface modification is a promising approach for guided bone regeneration.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Hosseini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Galefi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, GC, 1983969411 Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mohammad Nourany
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
2
|
Gu Y, Zhang Q, Huang H, Ho KHW, Zhang Y, Yi C, Zheng Y, Chang RCC, Wang ES, Yang M. Tau‑targeting multifunctional nanocomposite based on tannic acid-metal for near-infrared fluorescence/magnetic resonance bimodal imaging-guided combinational therapy in Alzheimer's disease. Theranostics 2024; 14:6218-6235. [PMID: 39431022 PMCID: PMC11488108 DOI: 10.7150/thno.98462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Alzheimer's disease (AD) is hallmarked by amyloid-β (Aβ) plaques and hyperphosphorylated tau (p-tau) neurofibrillary tangles. While Aβ-centric therapies have shown promise, the complex pathology of AD requires a multifaceted therapeutic approach. The weak association between Aβ levels and cognitive decline highlights the need for alternative theranostic strategies. Currently, oxidative stress and tau hyperphosphorylation are now recognized as critical pathological events in AD. Thus, therapies that concurrently attenuate oxidative stress damage and inhibit tau pathology hold great potential for AD treatment. Methods: Herein, a multifunctional neuron-targeted nanocomposite is devised to realize dual imaging-guided AD therapy, integrating the inhibition of tau pathology and reactive oxygen species (ROS)-neutralizing biofunctions. The construction of the nanocomposite incorporates polyphenolic antioxidants tannic acid (TA)-based nanoparticles carrying manganese ions (Mn2+) and fluorescent dye IR780 iodide (IR780), coupled with a neuron-specific TPL peptide. The resulting IR780-Mn@TA-TPL nanoparticles (NPs) are comprehensively evaluated in both in vitro and in vivo AD models to assess their imaging capabilities and therapeutic efficacy. Results: The nanocomposite facilitates Mn-enhanced magnetic resonance (MR) imaging and near-infrared (NIR) fluorescence imaging. It effectively neutralizes toxic ROS and reduces tau hyperphosphorylation and aggregation. In AD rat models, the nanocomposite restores neuronal density in the hippocampus and significantly improves spatial memory. Conclusions: Such a neuron‑targeting multifunctional nanocomposite represents a potential theranostic strategy for AD, signifying a shift towards bimodal imaging-guided treatment approaches.
Collapse
Affiliation(s)
- Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Honglin Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kwun Hei Willis Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne VIC 3000, Australia
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yifan Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Raymond Chuen Chung Chang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Emma Shujun Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Fouilloux J, Abbad-Andaloussi S, Langlois V, Dammak L, Renard E. Green Physical Modification of Polypropylene Fabrics by Cross-Linking Chitosan with Tannic Acid and Postmodification by Quaternary Ammonium Grafting to Improve Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:5609-5620. [PMID: 37966023 DOI: 10.1021/acsabm.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A green cross-linking and straightforward method to physically trap inert fibers in a network of chitosan was implemented. The cross-linking reaction involved a biosourced and biocompatible cross-linker [tannic acid (TA)] and mild conditions in water (pH = 8.5, O2 bubbling, 60 °C, 3 h). The steric hindrance of TA led to a low but effective cross-linking rate leaving parts of primary amines of chitosan available for postmodification such as the grafting of quaternary ammoniums for antibacterial purposes. Fabric's coatings were characterized by scanning electron microscopy coupled with energy-dispersive X-ray, infrared spectroscopy, and weight gain measurements. This allowed the optimization of process conditions. No significant antioxidant activity was observed on fabrics coated with chitosan cross-linked with TA, confirming the low cross-linking rate. This low cross-linking rate allowed grafting of quaternary ammoniums for antibacterial purposes, but it is possible to consider grafting other active molecules. Biological assays were conducted on this coating to assess its antibacterial properties. Reduction of bacterial colonization on both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), two of the major strains responsible for nosocomial infections, confirmed the potential of the coating for antibacterial purposes. This study displays a simple and ecofriendly process to coat inert fabrics with a chitosan network containing reactive functions (primary amines) available for grafting active molecules for various purposes.
Collapse
Affiliation(s)
- Julie Fouilloux
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| | - Samir Abbad-Andaloussi
- Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), Université Paris-Est (UPEC), UMR-MA 102, 61 Avenue Général de Gaulle, Créteil 94010, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| | - Lasâad Dammak
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| | - Estelle Renard
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est (UPEC), UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais 94320, France
| |
Collapse
|
4
|
Mahdavi H, Hosseini F, Ghanbari R. Incorporation of MIL-101(Fe)/Tannic acid-PEG to PES-TPU blend membrane to modify a membrane with riveting mechanical stability and separation performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Zhou X, Liu C, Han Y, Li C, Liu S, Li X, Zhao G, Jiang Y. An antibacterial chitosan-based hydrogel as a potential degradable bio-scaffold for alveolar ridge preservation. RSC Adv 2022; 12:32219-32229. [PMID: 36425700 PMCID: PMC9650614 DOI: 10.1039/d2ra05151f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Post-extraction, preventing the absorption of alveolar ridge to retain the supporting construction for implanted teeth is still a challenge. Herein, we developed modified chitosan (CS)-based hydrogel using N-hydroxysuccinimide-terminated 4-arm poly (ethylene glycol) (4-arm-PEG-NHS) as the crosslinking agent, after introducing it to the polyhexamethyleneguanidine hydrochloride (PHMB) solution, CS/PEG/PHMB hydrogel with the enhanced antibacterial properties was obtained. The CS/PEG hydrogel and CS/PEG/PHMB hydrogel prepared here showed excellent mechanical strength and their compressive strength could reach 440 kPa and 450 kPa, respectively. The composite hydrogel was designed to be directional porous, low cytotoxic, pH-sensitive, and degradable. The weight of the hydrogel was reduced by ∼30% after 28 days of incubation, and it swelled significantly in the acidic condition while it did not swell in the neutral and weakly alkaline environments, indicating an excellent biodegradability in the inflammation site. In vitro antibacterial experiments showed that the bacteriostatic rate of the CS/PEG/PHMB hydrogel against S. aureus was above 90%, which could effectively inhibit the spread of the bacteria and inflammation in the alveolar ridge. Additionally, the hybrid hydrogels demonstrated good biocompatibility with the NIH 3T3 fibroblast cells. Overall, the CS/PEG/PHMB hydrogel is a promising biological scaffold for maintaining the alveolar ridge and subsequently improving the success rate of the dental implant.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Congrui Liu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 P. R. China
| | - Yijun Han
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Can Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Sida Liu
- Institute for Advanced Technology, Shandong University Jinan 250061 P. R. China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 P. R. China
| | - Guoqing Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 P. R. China
| |
Collapse
|
6
|
Sharma A, Verma C, Mukhopadhyay S, Gupta A, Gupta B. Development of sodium alginate/glycerol/tannic acid coated cotton as antimicrobial system. Int J Biol Macromol 2022; 216:303-311. [PMID: 35777513 DOI: 10.1016/j.ijbiomac.2022.06.168] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 01/20/2023]
Abstract
Present study aims at developing antimicrobial cotton gauze by dip coating of sodium alginate (SA), glycerol (Gly) and tannic acid (TA) blend. SA blends were prepared with varying concentration of glycerol in the range of 10-40 %. Blended films were fabricated and characterized by Fourier transform-infrared (FTIR) spectroscopy, X-ray diffraction (XRD), tensile studies, and contact angle analysis. The mechanical behavior of films indicated significant decrease in the tensile strength and modulus with the increase in the glycerol content due to the plasticization effect. The hydrophilicity of the blend films increased with increase in the glycerol content. TA was added to the blend as an antimicrobial agent. These blends were coated on the cotton gauze by dip coating method and their characterizations were carried out by the scanning electron microscopy (SEM) which revealed a smooth coating of SA:Gly:TA blend on cotton gauze. Antimicrobial analysis of TA coated gauzes was carried out which showed >95 % viable colony reduction against E. coli and S. aureus. Cytocompatibility studies indicated excellent cell-compatible activity. These results implicated that such coated gauzes are promising candidate that hold the great potential to be utilized as infection-resistant material in the health care sector.
Collapse
Affiliation(s)
- Ankita Sharma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Amlan Gupta
- Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
7
|
Shao XH, Yang X, Zhou Y, Xia QC, Lu YP, Yan X, Chen C, Zheng TT, Zhang LL, Ma YN, Ma YX, Gao SZ. Antibacterial, wearable, transparent tannic acid-thioctic acid-phytic acid hydrogel for adhesive bandages. SOFT MATTER 2022; 18:2814-2828. [PMID: 35322837 DOI: 10.1039/d2sm00058j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Making a hydrogel-based first-aid bandage with green resources, desirable biocompatibility, universal adhesive properties, low cost and simple production is a long-standing research aspiration. Considering this, three naturally existing organic acids, namely tannic acid, thioctic acid and phytic acid, were used to construct a novel adhesive gel (TATAPA hydrogel) for epidermal tissue bandage applications. This hydrogel could be synthesized under mild conditions with no need for a freeze-thawing shaping procedure, and was transparent, moldable and stretchable with good stability under continuous water immersion. In lap-shear tests, the TATAPA hydrogel could adhere to various hydrophilic and hydrophobic surfaces. Moreover, in the case of skin tissue adhesion, the hydrogel could be easily peeled off from the skin, meeting wearability requirements. Rheological tests showed that the hydrogel possessed thermal sensitive properties derived from multi-supramolecular interactions. The methicillin-resistant Staphylococcus aureus (MRSA)-infected burn wound test demonstrated that the hydrogel had desirable antibacterial activity and was beneficial for wound healing. A femoral artery bleeding assay was also used to reveal that the TATAPA hydrogel could be directly pasted onto the bleeding site for hemostasis. Overall, this hydrogel demonstrates potential as a surgical bioadhesive for a broad range of medical applications.
Collapse
Affiliation(s)
- Xian-Hui Shao
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital), Jinan 250014, China
| | - Yue Zhou
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qing-Chang Xia
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yun-Ping Lu
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiao Yan
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Ting-Ting Zheng
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lin-Lin Zhang
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yu-Ning Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yu-Xia Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shu-Zhong Gao
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
8
|
Chen C, Yang H, Yang X, Ma Q. Tannic acid: a crosslinker leading to versatile functional polymeric networks: a review. RSC Adv 2022; 12:7689-7711. [PMID: 35424749 PMCID: PMC8982347 DOI: 10.1039/d1ra07657d] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
With the thriving of mussel-inspired polyphenol chemistry as well as the demand for low-cost analogues to polydopamine in adhesive design, tannic acid has gradually become a research focus because of its wide availability, health benefits and special chemical properties. As a natural building block, tannic acid could be used as a crosslinker either supramolecularly or chemically, ensuring versatile functional polymeric networks for various applications. Up to now, a systematic summary on tannic-acid-based networks has still been waiting for an update and outlook. In this review, the common features of tannic acid are summarized in detail, followed by the introduction of covalent and non-covalent crosslinking methods leading to various tannic-acid-based materials. Moreover, recent progress in the application of tannic acid composites is also summarized, including bone regeneration, skin adhesives, wound dressings, drug loading and photothermal conversion. Above all, we also provide further prospects concerning tannic-acid-crosslinked materials.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Hao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital) Jinan 250014 China
| | - Xiao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital) Jinan 250014 China
| | - Qinghai Ma
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital) Jinan 250014 China
| |
Collapse
|
9
|
Lazzarini A, Colaiezzi R, Galante A, Passacantando M, Capista D, Ferella F, Alecci M, Crucianelli M. Hybrid polyphenolic Network/SPIONs aggregates with potential synergistic effects in MRI applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Osetrov K, Uspenskaya M, Sitnikova V. The Influence of Oxidant on Gelatin-Tannin Hydrogel Properties and Structure for Potential Biomedical Application. Polymers (Basel) 2021; 14:150. [PMID: 35012172 PMCID: PMC8747450 DOI: 10.3390/polym14010150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023] Open
Abstract
Nowadays, there is a widespread usage of sodium periodate as an oxidant for synthesizing gelatin-tannin hydrogels. The impact of iodine compounds could have a harmful effect on human health. The study focuses on the proposal of alternative oxidizing systems for tannin oxidation. Gelatin-tannin hydrogels were obtained based on the usage of H2O2/DMSO/KMnO4/KIO4 oxidants and characterized with sorption, thermal (TGA, DTG, DSC), mechanical, FTIR and other methods. The sorption experiments were carried out in a phosphate buffer (pH = 5.8/7.4/9) and distilled water and were investigated with Fick's law and pseudosecond order equation. The pH dependence of materials in acid media indicates the possibility of further usage as stimuli-responsive systems for drug delivery. Thermal transitions demonstrate the variation of structure with melting (306 ÷ 319 °C) and glass transition temperatures (261 ÷ 301 °C). The activation energy of water evaporation was calculated by isoconversional methods (Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa) ranging from 4 ÷ 18 to 14 ÷ 38 kJ/mole and model-fitting (Coats-Redfern, Kennedy-Clark) methods at 24.7 ÷ 45.3 kJ/mole, indicating the smooth growth of values with extent of conversion. The network parameters of the hydrogels were established by modified Flory-Rehner and rubber elasticity theories, which demonstrated differences in values (5.96 ÷ 21.27·10-3 mol/cm3), suggesting the limitations of theories. The sorption capacity, tensile strength and permeability for water/oxygen indicate that these materials may find their application in field of biomaterials.
Collapse
Affiliation(s)
- Konstantin Osetrov
- Bioengineering Institute, ITMO University, 197101 Saint-Petersburg, Russia; (M.U.); (V.S.)
| | | | | |
Collapse
|
11
|
Asadi N, Mehdipour A, Ghorbani M, Mesgari-Abbasi M, Akbarzadeh A, Davaran S. A novel multifunctional bilayer scaffold based on chitosan nanofiber/alginate-gelatin methacrylate hydrogel for full-thickness wound healing. Int J Biol Macromol 2021; 193:734-747. [PMID: 34717980 DOI: 10.1016/j.ijbiomac.2021.10.180] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/14/2022]
Abstract
Due to their lack of multifunctionality, the majority of traditional wound dressings do not support all the clinical requirements. Bilayer wound dressings with multifunctional properties can be attractive for effective skin regeneration. In the present study, we designed a multifunctional bilayer scaffold containing Chitosan-Polycaprolactone (PC) nanofiber and tannic acid (TA) reinforced methacrylate gelatin (GM)/alginate (Al) hydrogel (GM/Al/TA). PC nanofibers were coated with GM/Al/TA hydrogel to obtain a bilayer nanocomposite scaffold (Bi-TA). The GM/Al/TA hydrogel layer of Bi-TA showed antibacterial, free radical scavenging, and biocompatibility properties. Also, PC nanofiber acted as a barrier for preventing bacterial invasion and moisture loss of the hydrogel layer. The wound healing performance of the Bi-TA scaffold was investigated via a full-thickness wound model. In addition, the histopathological and immunohistochemical (IHC) stainings of transforming growth factor-β1(TGF-β1) and tumor necrosis factor-α (TNF-α) were assessed. The results indicated an enhanced wound closure rate, effective collagen deposition, quick re-epithelialization, more skin appendages, and replacement of defect area with normal skin tissue by Bi-TA scaffold compared to other groups. Additionally, the regulation of TGF-β1 and TNF-α was observed by Bi-TA dressing. Overall, the Bi-TA with appropriate structural and multifunctional properties can be an excellent candidate for developing effective dressings for wound healing applications.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Zhen L, Lange H, Zongo L, Crestini C. Chemical Derivatization of Commercially Available Condensed and Hydrolyzable Tannins. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:10154-10166. [PMID: 34484990 PMCID: PMC8411582 DOI: 10.1021/acssuschemeng.1c02114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Indexed: 05/03/2023]
Abstract
Novel valorization routes for tannins were opened by the development of a simple, straightforward, robust, and flexible approach to the selective functionalization of condensed and hydrolyzable tannins. Irrespective of the different degrees of polymerization, different commercial tannins were efficiently functionalized by the generation of an ether linkage bound to a short linker carrying the desired functional group. Functionalizations could be realized at varying degrees of technical loadings, i.e., amounts of introduced tannin-alien functionalities per number of phenolic hydroxyl groups. The same strategy was found suitable for the synthesis of polyethylene glycol-functionalized tannin copolymers. Condensed tannins functionalized with carboxylic acid moieties could be converted into a tannin-oligopeptide hybrid.
Collapse
Affiliation(s)
- Lili Zhen
- University
of Rome “Tor Vergata”, Department of Chemical Science
and Technologies, Via
della Ricerca Scientifica, 00133 Rome, Italy
- CSGI—Center
for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Heiko Lange
- CSGI—Center
for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- Department
of Earth and Environmental Sciences, University
of Milan-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Luc Zongo
- University
of Rome “Tor Vergata”, Department of Chemical Science
and Technologies, Via
della Ricerca Scientifica, 00133 Rome, Italy
| | - Claudia Crestini
- CSGI—Center
for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- University
of Venice “Ca” Foscari’, Department of Molecular
Science and Nanosystems, Via Torino 155, 30170 Venice Mestre, Italy
| |
Collapse
|
13
|
Guo Z, Xie W, Lu J, Guo X, Xu J, Xu W, Chi Y, Takuya N, Wu H, Zhao L. Tannic acid-based metal phenolic networks for bio-applications: a review. J Mater Chem B 2021; 9:4098-4110. [PMID: 33913461 DOI: 10.1039/d1tb00383f] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tannic acid (TA), a large polyphenolic molecule, has long been known for use in food additives, antioxidants, bio-sorbents, animal feed and adhesives due to its intrinsic properties such as antioxidation, metal chelation, and polymerization. Recently, there has been a renewed interest in fabricating engineered advanced materials with TA modification for novel bio-applications. The modification process involves various interactions/reactions based on its diverse chemical structure, contributed by abundant aromatic rings and hydroxyl groups. In addition, the obtained composites are endowed with retained TA activity and novel enhanced properties. Therefore, the aim of this review is to highlight the recent biomedical application of TA-based metal phenolic networks (TA-MPNs) by focusing on their intrinsic properties and the endowed ability for novel engineered functional composites. The potential contributions of TA-MPNs in "Tumor Theranostics", "Anti-Bacterial Ability", "Wound Repair for Skin Regeneration" and "Bone Tissue Regeneration Applications" are summarized in this paper.
Collapse
Affiliation(s)
- Zhenhu Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingsong Lu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Guo
- Department of Urology, National Center of Gerontology, Beijing Hospital, Beijing 100730, China and Peking Union Medical College, Beijing 100730, China
| | - Jianzhong Xu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wanling Xu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nonaka Takuya
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Zhu X, Guan B, Sun Z, Tian X, Li X. Fabrication of an injectable hydrogel with inherent photothermal effects from tannic acid for synergistic photothermal-chemotherapy. J Mater Chem B 2021; 9:6084-6091. [PMID: 34286812 DOI: 10.1039/d1tb01057c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing injectable hydrogels with near-infrared (NIR)-responsive photothermal effects has increasingly become a promising strategy for local cancer treatment via combinational photothermal-chemotherapy. Herein, a biocompatible hydrogel with a remarkable shear-thinning and recovery capability for injection application was fabricated from 4-arm-PEG-SH and tannic acid through chemical crosslinking and multiple physical interactions. Benefiting from the formation of dynamic TA/Fe3+ complexes within gel networks, the obtained hydrogel exhibited an intrinsic NIR absorption property for photothermal ablation of tumor cells, and enhanced cellular uptake of chemotherapeutic drugs. Both in vitro and in vivo experiments revealed that the injectable hydrogel exhibited an excellent biocompatibility and a synergistic therapeutic effect on tumor growth via combinational photothermal-chemotherapy. Therefore, this work provides a promising attempt to develop an injectable and NIR-responsive hydrogel from TA/Fe3+ complexes, which could work as a localized drug delivery platform for synergistic photothermal-chemotherapy.
Collapse
Affiliation(s)
- Xiao Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | - Ziling Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Indurkar A, Pandit A, Jain R, Dandekar P. Plant based cross-linkers for tissue engineering applications. J Biomater Appl 2020; 36:76-94. [PMID: 33342347 DOI: 10.1177/0885328220979273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Utility of plant-based materials in tissue engineering has exponentially increased over the years. Recent efforts in this area have been focused on substituting synthetic cross-linkers with natural ones derived from biological sources. These cross-linkers are essentially derived from the vegetative components of plants therefore suitably categorised as 'green' and renewable materials. Utilization of plant based cross-linkers in scaffolds and hydrogels offers several advantages compared to the synthetic ones. Natural compounds, like ferulic acid and genipin, when incorporated into scaffolds can promote cellular proliferation and growth, by regulation of growth factors. They participate in crucial activities, thus providing impetus for cell growth, function, differentiation and angiogenesis. Several natural compounds inherently possess anti-microbial, antioxidant and anti-inflammatory effects, which enhance the inherent characteristics of the scaffolds. Versatility of natural cross-linkers can be exploited for diverse applications. Integrating such potent molecules can enable the scaffold to display relevant characteristics for each function. This review article focuses on the recent developments with plant based cross-linkers that are employed for scaffold synthesis and their applications, which may be explored to synthesize scaffolds suitable for diverse biomedical applications.
Collapse
Affiliation(s)
- Abhishek Indurkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ashish Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|