1
|
Manickaraj SSM, Pandiyarajan S, Liao AH, Ramanathan S, Baskaran G, Selvaraj M, A Assiri M, Chuang HC. Supercritical-CO 2 mediated preparation of porous carbon from Araucaria heterophylla biomass: A proficient nanomolar detection platform for phenolic water pollutant. CHEMOSPHERE 2024; 364:143050. [PMID: 39121967 DOI: 10.1016/j.chemosphere.2024.143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
4-aminophenol (AP), an aromatic phenolic compound, is commonly found in commercial products that eventually enter and pollute environmental water sources. The precise detection and quantification of AP in environmental samples are critical for comprehensively assessing contamination levels, safeguarding public health, and formulating effective remediation strategies. In the shed of light, this work proposes an electrochemical sensing platform for detecting and quantifying AP using Araucaria heterophylla biomass-derived activated carbon (AH-AC) prepared via the SC-CO2 pathway. To evaluate the significance of SC-CO2-mediated chemical activation (SC-AHAC), a comparative study with conventional activation methods (C-AHAC) was also conducted. The physical characterizations such as structural, morphological, optical, and elemental analysis demonstrate the greater ID/IG value and enhanced surface functionalities of SC-AHAC than C-AHAC. The obtained lower empirical factor (R) value of 1.89 for SC-AHAC suggests increased disorder and a higher presence of single-layer amorphous carbon compared to C-AHAC (2.03). In the electrochemical analysis, the active surface area of the SC-AHAC modified electrode (0.069 cm2) is higher than that of the C-AHAC modified electrode (0.061 cm2), demonstrating the significance of SC-CO2 activation. Further, the quantitative analysis on SC-AHAC@SPCE resulted in a sensitivity of 3.225 μA μM-1 cm-2 with the detection limit and quantification limit of 2.13 and 7.11 nM L-1, respectively, in the linear range of 0.01-582.5 μM L-1 at the oxidation potential of 0.13V. This suggests that the prepared SC-AHAC could be a promising electrocatalyst for AP detection in the environmental and healthcare sectors.
Collapse
Affiliation(s)
- Shobana Sebastin Mary Manickaraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Sabarison Pandiyarajan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106344, Taiwan; Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, 114201, Taiwan
| | - Subramanian Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 106344, Taiwan.
| |
Collapse
|
2
|
Kim T, Jung H, Choi H, Lee W, Patil UM, Parale VG, Kim Y, Kim J, Kim SH, Park HH. Partially oxidized inter-doped RuNi alloy aerogel for the hydrogen evolution reaction in both alkaline and acidic media. MATERIALS HORIZONS 2024; 11:4123-4132. [PMID: 38894689 DOI: 10.1039/d4mh00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A facile reduction and doping process is employed with the supercritical ethanol drying method to form RuNi alloy aerogels. The optimized heterostructure comprising RuNi metal, RuO2, and NiO phases is synthesized through partial oxidation. When applied to the surface of Ni foam, the multiphase aerogels form a morphology of highly porous 0D colloidal aerogel networks on the surface. RuNi alloy-Ni foam oxidized at 350 °C (RuNi-350@NF) has an overpotential of 89 and 61 mV in 1 M KOH and 0.5 M H2SO4 media at 50 mA cm-2, as well as satisfactory long-term stability. Additionally, the Tafel slopes in alkaline and acidic media are found to be 34 and 30.9 mV dec-1, respectively. Furthermore, it exhibits long-term stability (35 h) in alkaline and acidic media at high current densities of 50 mA cm-2, respectively. This study presents a novel strategy for developing exceptionally efficient and free-standing 3D porous aerogel electrocatalysts with potential applications in hydrogen production.
Collapse
Affiliation(s)
- Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Wonjun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Umakant M Patil
- Aerogel Materials Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Aerogel Materials Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Younghun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jiseung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sang-Hyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Aerogel Materials Research Center, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Mao L, Zhai B, Shi J, Kang X, Lu B, Liu Y, Cheng C, Jin H, Lichtfouse E, Guo L. Supercritical CH 3OH-Triggered Isotype Heterojunction and Groups in g-C 3N 4 for Enhanced Photocatalytic H 2 Evolution. ACS NANO 2024; 18:13939-13949. [PMID: 38749923 DOI: 10.1021/acsnano.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.
Collapse
Affiliation(s)
- Liuhao Mao
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Binjiang Zhai
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Xing Kang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Bingru Lu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Yanbing Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Cheng Cheng
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
4
|
Andersen HL, Granados-Miralles C, Jensen KMØ, Saura-Múzquiz M, Christensen M. The Chemistry of Spinel Ferrite Nanoparticle Nucleation, Crystallization, and Growth. ACS NANO 2024; 18:9852-9870. [PMID: 38526912 PMCID: PMC11008356 DOI: 10.1021/acsnano.3c08772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The nucleation, crystallization, and growth mechanisms of MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanocrystallites prepared from coprecipitated transition metal (TM) hydroxide precursors treated at sub-, near-, and supercritical hydrothermal conditions have been studied by in situ X-ray total scattering (TS) with pair distribution function (PDF) analysis, and in situ synchrotron powder X-ray diffraction (PXRD) with Rietveld analysis. The in situ TS experiments were carried out on 0.6 M TM hydroxide precursors prepared from aqueous metal chloride solutions using 24.5% NH4OH as the precipitating base. The PDF analysis reveals equivalent nucleation processes for the four spinel ferrite compounds under the studied hydrothermal conditions, where the TMs form edge-sharing octahedrally coordinated hydroxide units (monomers/dimers and in some cases trimers) in the aqueous precursor, which upon hydrothermal treatment nucleate through linking by tetrahedrally coordinated TMs. The in situ PXRD experiments were carried out on 1.2 M TM hydroxide precursors prepared from aqueous metal nitrate solutions using 16 M NaOH as the precipitating base. The crystallization and growth of the nanocrystallites were found to progress via different processes depending on the specific TMs and synthesis temperatures. The PXRD data show that MnFe2O4 and CoFe2O4 nanocrystallites rapidly grow (typically <1 min) to equilibrium sizes of 20-25 nm and 10-12 nm, respectively, regardless of applied temperature in the 170-420 °C range, indicating limited possibility of targeted size control. However, varying the reaction time (0-30 min) and temperature (150-400 °C) allows different sizes to be obtained for NiFe2O4 (3-30 nm) and ZnFe2O4 (3-12 nm) nanocrystallites. The mechanisms controlling the crystallization and growth (nucleation, growth by diffusion, Ostwald ripening, etc.) were examined by qualitative analysis of the evolution in refined scale factor (proportional to extent of crystallization) and mean crystallite volume (proportional to extent of growth). Interestingly, lower kinetic barriers are observed for the formation of the mixed spinels (MnFe2O4 and CoFe2O4) compared to the inverse (NiFe2O4) and normal (ZnFe2O4) spinel structured compounds, suggesting that the energy barrier for formation may be lowered when the TMs have no site preference.
Collapse
Affiliation(s)
- Henrik L. Andersen
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
- Facultad
de Ciencias Físicas, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | | | - Kirsten M. Ø. Jensen
- Department
of Chemistry and Nanoscience Center, University
of Copenhagen, København Ø, 2100, Denmark
| | - Matilde Saura-Múzquiz
- Facultad
de Ciencias Físicas, Universidad
Complutense de Madrid, Madrid 28040, Spain
| | - Mogens Christensen
- Department
of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
5
|
Tao R, Wang Y, Zhang N, Zhang L, Khan MS, Xu H, Zhao J, Qi Z, Chen Y, Lu Y, Wang K, Wang Y, Jiang J. Bioactive chitosan-citral Schiff base zinc complex: A pH-responsive platform for potential therapeutic applications. Int J Biol Macromol 2024; 261:129857. [PMID: 38307438 DOI: 10.1016/j.ijbiomac.2024.129857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The application of CO2 supercritical fluid (SCF) technology has developed rapidly because of its non-toxic, environmentally friendly, mild reaction conditions and safety. The SCF technology can effectively speed up the reaction process of nano-material synthesis, and maintains a high degree of controllability and repeatability. This study mainly included carboxymethyl chitosan sodium salt (CCS), citral (CT), p-coumaric acid (CA), and ZnSO4 as raw materials to prepare CCS-CT-CA-Zn complex as a pH-responsive agent and was investigated using supercritical fluid technique. The coordination structure of Bridge-CCS-CT-CH3COO-CA-Zn-Schiff base/OH and the morphology of the complex agents were verified. The prepared CCS-CT-CA-Zn complex showed good dispersion and uniformity (mean size: 852 ± 202 nm, PdI: 0.301, and mean zeta potential: -31 ± 6 mV). Also, it has a good pH responsive release in an acid environment. Besides, both of CCS-CT-CA-Zn complex (DS-B) and its decomposed mixture in acid (DS-A) demonstrated significant antioxidant and anti-vibrio activity. Moreover, both DS-B complex and DS-A mixture inhibited biofilm formation, swimming, and swarming motilities of V. parahaemolyticus in a dose-dependent manner. This work will provide a scientific basis for the further design and development of natural products derived antibacterial-antioxidant complex agents, food additives and feed additives.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China
| | - Yinjuan Wang
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China
| | | | | | - Hao Xu
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China.
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, CAF, Hangzhou 311400, Zhejiang Province, China
| | - Yin Lu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Huaqiao University, Xiamen 361000, Fujian Province, China.
| | - Yangdong Wang
- Chinese Academy of Forestry Sciences, Beijing 100091, PR China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Huaqiao University, Xiamen 361000, Fujian Province, China.
| |
Collapse
|
6
|
Harish V, Ansari MM, Tewari D, Gaur M, Yadav AB, García-Betancourt ML, Abdel-Haleem FM, Bechelany M, Barhoum A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183226. [PMID: 36145012 PMCID: PMC9503496 DOI: 10.3390/nano12183226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/19/2023]
Abstract
Nanomaterials are materials with one or more nanoscale dimensions (internal or external) (i.e., 1 to 100 nm). The nanomaterial shape, size, porosity, surface chemistry, and composition are controlled at the nanoscale, and this offers interesting properties compared with bulk materials. This review describes how nanomaterials are classified, their fabrication, functionalization techniques, and growth-controlled mechanisms. First, the history of nanomaterials is summarized and then the different classification methods, based on their dimensionality (0-3D), composition (carbon, inorganic, organic, and hybrids), origin (natural, incidental, engineered, bioinspired), crystal phase (single phase, multiphase), and dispersion state (dispersed or aggregated), are presented. Then, the synthesis methods are discussed and classified in function of the starting material (bottom-up and top-down), reaction phase (gas, plasma, liquid, and solid), and nature of the dispersing forces (mechanical, physical, chemical, physicochemical, and biological). Finally, the challenges in synthesizing nanomaterials for research and commercial use are highlighted.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | | | - Fatehy M. Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, Giza 12613, Egypt
| | - Mikhael Bechelany
- Institut Europeen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Correspondence: (M.B.); or (A.B.)
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
- Correspondence: (M.B.); or (A.B.)
| |
Collapse
|
7
|
Portehault D, Gómez-Recio I, Baron MA, Musumeci V, Aymonier C, Rouchon V, Le Godec Y. Geoinspired syntheses of materials and nanomaterials. Chem Soc Rev 2022; 51:4828-4866. [PMID: 35603716 DOI: 10.1039/d0cs01283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for new materials is intimately linked to the development of synthesis methods. In the current urge for the sustainable synthesis of materials, taking inspiration from Nature's ways to process matter appears as a virtuous approach. In this review, we address the concept of geoinspiration for the design of new materials and the exploration of new synthesis pathways. In geoinspiration, materials scientists take inspiration from the key features of various geological systems and processes occurring in nature, to trigger the formation of artificial materials and nanomaterials. We discuss several case studies of materials and nanomaterials to highlight the basic geoinspiration concepts underlying some synthesis methods: syntheses in water and supercritical water, thermal shock syntheses, molten salt synthesis and high pressure synthesis. We show that the materials emerging from geoinspiration exhibit properties differing from materials obtained by other pathways, thus demonstrating that the field opens up avenues to new families of materials and nanomaterials. This review focuses on synthesis methodologies, by drawing connections between geosciences and materials chemistry, nanosciences, green chemistry, and environmental sciences.
Collapse
Affiliation(s)
- David Portehault
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005 Paris, France.
| | - Isabel Gómez-Recio
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005 Paris, France.
| | - Marzena A Baron
- Sorbonne Université, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005 Paris, France.
| | - Valentina Musumeci
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Cyril Aymonier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Virgile Rouchon
- IFP Energies nouvelles (IFPEN), Rond point de l'échangeur de Solaize - BP 3, 69360 Solaize, France
| | - Yann Le Godec
- Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
8
|
Kusada K, Kitagawa H. Continuous-flow syntheses of alloy nanoparticles. MATERIALS HORIZONS 2022; 9:547-558. [PMID: 34812460 DOI: 10.1039/d1mh01413g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloy nanoparticles (NPs), including core-shell, segregated and solid-solution types, show a variety of attractive properties such as catalytic and optical properties and are used in a wide range of applications. Precise control and good reproducibility in the syntheses of alloy NPs are highly demanded because these properties are tunable by controlling alloy structures, compositions, particle sizes, and so on. To improve the efficiency and reproducibility of their syntheses, continuous-flow syntheses with various types of reactors have recently been developed instead of the current mainstream approach, batch syntheses. In this review, we focus on the continuous-flow syntheses of alloy NPs and first overview the flow syntheses of NPs, especially of alloy NPs. Subsequently, the details of flow reactors and their chemistry to synthesize core-shell, segregated, solid-solution types of alloy NPs, and high-entropy alloy NPs are introduced. Finally, the challenges and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- The Hakubi Centre for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Singh M, Dey ES, Bhand S, Dicko C. Supercritical Carbon Dioxide Impregnation of Gold Nanoparticles Demonstrates a New Route for the Fabrication of Hybrid Silk Materials. INSECTS 2021; 13:insects13010018. [PMID: 35055861 PMCID: PMC8777700 DOI: 10.3390/insects13010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
How many nanoparticles can we load in a fiber? How much will leak? Underlying is the relatively new question of the “space available” in fibers for nanoparticle loading. Here, using supercritical carbon dioxide (scCO2) as a carrier fluid, we explored the impregnation in four Indian silks (Mulberry, Eri, Muga, and Tasar) with five standard sizes of gold nanoparticles (5, 20, 50, 100 and 150 nm in diameter). All silks could be permanently impregnated with nanoparticles up to 150 nm in size under scCO2 impregnation. Accompanying structural changes indicated that the amorphous silk domains reorganized to accommodate the gold NPs. The mechanism was studied in detail in degummed Mulberry silk fibers (i.e., without the sericin coating) with the 5 nm nanoparticle. The combined effects of concentration, time of impregnation, scCO2 pressure, and temperature showed that only a narrow set of conditions allowed for permanent impregnation without deterioration of the properties of the silk fibers.
Collapse
Affiliation(s)
- Manish Singh
- Pure and Applied Biochemistry, Chemistry Deptartment, Lund University, Naturvetarvägen 14, 22362 Lund, Sweden; (M.S.); (E.S.D.)
| | - Estera S. Dey
- Pure and Applied Biochemistry, Chemistry Deptartment, Lund University, Naturvetarvägen 14, 22362 Lund, Sweden; (M.S.); (E.S.D.)
| | - Sunil Bhand
- Deptartment of Chemistry, Birla Institute of Technology and Science, KK Birla Goa Campus, Pilani 403726, Zuarinagar, Goa, India;
| | - Cedric Dicko
- Pure and Applied Biochemistry, Chemistry Deptartment, Lund University, Naturvetarvägen 14, 22362 Lund, Sweden; (M.S.); (E.S.D.)
- Correspondence:
| |
Collapse
|
10
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
11
|
Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions. Catalysts 2021. [DOI: 10.3390/catal11111311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lignin is one of the main components of lignocellulosic biomass and corresponds to the first renewable source of aromatic compounds. It is obtained as a by-product in 100 million tons per year, mainly from the paper industry, from which only 2–3% is upgraded for chemistry purposes, with the rest being used as an energy source. The richness of the functional groups in lignin makes it an attractive precursor for a wide variety of aromatic compounds. With this aim, we investigated the Pd-catalyzed depolymerization of lignin under mild oxidizing conditions (air, 150 °C, and aqueous NaOH) producing oxygenated aromatic compounds, such as vanillin, vanillic acid, and acetovanillone. Palladium catalysts were implemented following different strategies, involving nanoparticles stabilized in water, and nanoparticles were supported on TiO2. Significant conversion of lignin was observed in all cases; however, depending on the catalyst nature and the synthetic methods, differences were observed in terms of selectivity in aromatic monomers, mainly vanillin. All these aspects are discussed in detail in this report, which also provides new insights into the role that Pd-catalysts can play for the lignin depolymerization mechanism.
Collapse
|
12
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
13
|
Lovato ÉS, Donato LM, Lopes PP, Tanabe EH, Bertuol DA. Application of supercritical CO2 for delaminating photovoltaic panels to recover valuable materials. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Su W, Zhang H, Xing Y, Li X, Wang J, Cai C. A Bibliometric Analysis and Review of Supercritical Fluids for the Synthesis of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:336. [PMID: 33525541 PMCID: PMC7910895 DOI: 10.3390/nano11020336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022]
Abstract
Since the 1990s, supercritical fluids for the synthesis of nanomaterials have been paid more and more attention by researchers and have gradually become one of the most important ways to prepare nanomaterials. In this study, literature data on "supercritical fluids for the synthesis of nanomaterials" from 1998 to 2020 were obtained from the Web of Science database, and the data were processed and analyzed by the bibliometric method combined with Microsoft office 2019, Origin 2018, VOSviewer, and other software, so as to obtain the research status and development trend of "supercritical fluids for the synthesis of nanomaterials". The results show that since literature on "supercritical fluids for the synthesis of nanomaterials" appeared for the first time in 1998, the number of articles published every year has risen. In terms of this field, China has become the second-largest publishing country after the United States, and China and the United States display a lot of cooperation and exchanges in this field. "Supercritical CO2", "supercritical water", "supercritical antisolvent", "surface modification", and so on have become the research hotspots of "supercritical fluids for the synthesis of nanomaterials".
Collapse
Affiliation(s)
- Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.S.); (H.Z.); (X.L.); (J.W.); (C.C.)
- Key Laboratory of Knowledge Automation for Industrial Processes, Ministry of Education, Beijing 100083, China
| | - Hongshuo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.S.); (H.Z.); (X.L.); (J.W.); (C.C.)
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.S.); (H.Z.); (X.L.); (J.W.); (C.C.)
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinyan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.S.); (H.Z.); (X.L.); (J.W.); (C.C.)
| | - Jiaqing Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.S.); (H.Z.); (X.L.); (J.W.); (C.C.)
| | - Changqing Cai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (W.S.); (H.Z.); (X.L.); (J.W.); (C.C.)
| |
Collapse
|
15
|
Siril PF, Türk M. Synthesis of Metal Nanostructures Using Supercritical Carbon Dioxide: A Green and Upscalable Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001972. [PMID: 33164289 DOI: 10.1002/smll.202001972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Metallic nanostructures have numerous applications as industrial catalysts and sensing platforms. Supercritical carbon dioxide (scCO2 ) is a green medium for the scalable preparation of nanomaterials. Supercritical fluid reactive deposition (SFRD) and other allied techniques can be employed for the mass production of metal nanostructures for various applications. The present article reviews the recent reports on the scCO2 -assisted preparation of zero-valent metal nanomaterials and their applications. A brief description of the science of pure supercritical fluids, especially CO2 , and the basics of binary mixtures composed of scCO2 and a low volatile substance, e.g., an organometallic precursor are presented. The benefits of using scCO2 for preparing metal nanomaterials, especially as a green solvent, are also being highlighted. The experimental conditions that are useful for the tuning of particle properties are reviewed thoroughly. The range of modifications to the classical SFRD methods and the variety of metallic nanomaterials that can be synthesized are reviewed and presented. Finally, the broad ranges of applications that are reported for the metallic nanomaterials that are synthesized using scCO2 are reviewed. A brief summary along with perspectives about future research directions is also presented.
Collapse
Affiliation(s)
- Prem Felix Siril
- School of Basic Sciences, Indian Institute of Technology Mandi (IIT Mandi), Mandi, Himachal Pradesh, 175005, India
| | - Michael Türk
- Institut für Technische Thermodynamik and Kältetechnik, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 21, 76131, Karlsruhe, Germany
| |
Collapse
|
16
|
Kerru N, Gummidi L, Maddila S, Jonnalagadda SB. Polyethylene glycol (PEG‐400) Mediated One‐pot Green Synthesis of 4,7‐Dihydro‐2
H
‐pyrazolo[3,4‐
b
]pyridines Under Catalyst‐free Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| | - Suresh Maddila
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| |
Collapse
|
17
|
Baki A, Löwa N, Remmo A, Wiekhorst F, Bleul R. Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1845. [PMID: 32942715 PMCID: PMC7560047 DOI: 10.3390/nano10091845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/11/2023]
Abstract
Micromixer technology is a novel approach to manufacture magnetic single-core iron oxide nanoparticles that offer huge potential for biomedical applications. This platform allows a continuous, scalable, and highly controllable synthesis of magnetic nanoparticles with biocompatible educts via aqueous synthesis route. Since each biomedical application requires specific physical and chemical properties, a comprehensive understanding of the synthesis mechanisms is not only mandatory to control the size and shape of desired nanoparticle systems but, above all, to obtain the envisaged magnetic particle characteristics. The accurate process control of the micromixer technology can be maintained by adjusting two parameters: the synthesis temperature and the residence time. To this end, we performed a systematic variation of these two control parameters synthesizing magnetic nanoparticle systems, which were analyzed afterward by structural (transmission electron microscopy and differential sedimentation centrifugation) and, especially, magnetic characterization methods (magnetic particle spectroscopy and AC susceptibility). Furthermore, we investigated the reproducibility of the microtechnological nanoparticle manufacturing process compared to batch preparation. Our characterization demonstrated the high magnetic quality of single-core iron oxide nanoparticles with core diameters in the range of 20 nm to 40 nm synthesized by micromixer technology. Moreover, we demonstrated the high capability of a newly developed benchtop magnetic particle spectroscopy device that directly monitored the magnetic properties of the magnetic nanoparticles with the highest sensitivity and millisecond temporal resolution during continuous micromixer synthesis.
Collapse
Affiliation(s)
- Abdulkader Baki
- Devision Energy and Chemical Technology, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Norbert Löwa
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Amani Remmo
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, 8.2 Biosignals, Abbestraße 2-12, 10587 Berlin, Germany
| | - Regina Bleul
- Devision Energy and Chemical Technology, Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| |
Collapse
|
18
|
Mesoza Cordova DL, Kam TM, Gannon RN, Lu P, Johnson DC. Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors. J Am Chem Soc 2020; 142:13145-13154. [PMID: 32602716 DOI: 10.1021/jacs.0c05505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In solid-state chemistry, the direct reaction of elements at low temperatures is limited by low solid-state interdiffusion rates. This and the limited number of processing parameters often prevent the synthesis of metastable compounds. Precisely controlling the number of atoms and nanoarchitecture of layered elemental precursors enabled the selective synthesis of two closely related metastable tin vanadium selenides via near-diffusionless reactions at low temperatures. Although the nanoarchitectures of the precursors required to form [(SnSe2)0.80]1(VSe2)1 and [(SnSe)1.15]1(VSe2)1 are very similar, controlling the local composition of the Sn|Se layers in the precursors enables the selective synthesis of either compound. The metastable alloy SnxV1-xSe2 was preferentially formed over [(SnSe2)0.80]1(VSe2)1, which has the identical composition, by modifying the nanoarchitecture of the precursor. Ex situ in-plane X-ray diffraction and X-ray reflectivity collected as a function of annealing temperature provided information on lateral and perpendicular growth of [(SnSe2)0.80]1(VSe2)1. The presence of Laue oscillations throughout the self-assembly provided atomic-scale information on the thickness of the [(SnSe2)0.80]1(VSe2)1 domains, giving insights into the self-assembly process. A reaction mechanism is proposed and used to rationalize how composition and nanoarchitecture control the reaction pathway through the free energy landscape.
Collapse
Affiliation(s)
- Dmitri Leo Mesoza Cordova
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Taryn Mieko Kam
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Renae N Gannon
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David C Johnson
- Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
19
|
De Matteis V, Rizzello L, Cascione M, Liatsi-Douvitsa E, Apriceno A, Rinaldi R. Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1083. [PMID: 32486479 PMCID: PMC7353186 DOI: 10.3390/nano10061083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023]
Abstract
: In the past years, there is a growing interest in the application of nanoscaled materials in cancer therapy because of their unique physico-chemical properties. However, the dark side of their usability is limited by their possible toxic behaviour and accumulation in living organisms. Starting from this assumption, the search for a green alternative to produce nanoparticles (NPs) or the discovery of green molecules, is a challenge in order to obtain safe materials. In particular, gold (Au NPs) and silver (Ag NPs) NPs are particularly suitable because of their unique physico-chemical properties, in particular plasmonic behaviour that makes them useful as active anticancer agents. These NPs can be obtained by green approaches, alternative to conventional chemical methods, owing to the use of phytochemicals, carbohydrates, and other biomolecules present in plants, fungi, and bacteria, reducing toxic effects. In addition, we analysed the use of green and stimuli-responsive polymeric bio-inspired nanovesicles, mainly used in drug delivery applications that have revolutionised the way of drugs supply. Finally, we reported the last examples on the use of metallic and Au NPs as self-propelling systems as new concept of nanorobot, which is able to respond and move towards specific physical or chemical stimuli in biological entities.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Loris Rizzello
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10–12, 08028 Barcelona, Spain; (L.R.); (A.A.)
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Eva Liatsi-Douvitsa
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK;
| | - Azzurra Apriceno
- The Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10–12, 08028 Barcelona, Spain; (L.R.); (A.A.)
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London WC1H 0AJ, UK;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (R.R.)
| |
Collapse
|
20
|
Gutiérrez Ortiz FJ, Kruse A. The use of process simulation in supercritical fluids applications. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00465c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modelling and simulation from micro- to macro-scale are needed to attain a broader commercialization of supercritical technologies.
Collapse
Affiliation(s)
- Francisco Javier Gutiérrez Ortiz
- Department of Chemical and Environmental Engineering
- Escuela Técnica Superior de Ingeniería
- University of Seville
- 41092 Sevilla
- Spain
| | - Andrea Kruse
- Department of Conversion Technologies and of Biobased Products
- Institute of Agricultural Engineering
- University of Hohenheim
- 70599 Stuttgart
- Germany
| |
Collapse
|