1
|
Sk M, Saifi S, Bera S, Ghosh A, Aijaz A, Banerjee D. Reusable Ni-Immobilized MOF Catalyst for Dehydrogenation of N-Heterocycles Under Milder Conditions. Chemistry 2025; 31:e202404219. [PMID: 39656157 DOI: 10.1002/chem.202404219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Herein, we have demonstrated the design and synthesis of a novel Ni-immobilized MOF as heterogeneous catalyst for the dehydrogenation of N-heterocycles. A series of five and six-membered N-heteroarenes bearing one or more heteroatoms were synthesized in up to 98 % yield (>33 examples). Late stage functionalization to the synthesis of β-glucuronides inhibitor, antimalarial drug quinine, and the nonsteroidal anti-inflammatory drug (NSAID) indomethacin were obtained under milder reactions conditions. A series of mechanistic studies revealed the detection of H2 and H2O2 during the progress of the reactions and suggested the involvement of enamine-imine intermediate species for sequential dehydrogenation. Detailed characterization of the fresh catalyst and reused catalyst were performed using SEM, TEM, BET, PXRD, and EDX elemental mappings. The catalyst could be recycled up to four-times without much loss in catalytic activities. In-situ formed defects, pore size enlargement and additional Lewis acid sites within catalyst nanocrystals assisted in attaining high activity and selectivity to N-heteroarenes.
Collapse
Affiliation(s)
- Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shadab Saifi
- Department of Sciences and Humanities, Faculty of Chemistry, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh, 229304, India
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Adrija Ghosh
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Arshad Aijaz
- Department of Sciences and Humanities, Faculty of Chemistry, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh, 229304, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Liu Q, Tan X, Liao X, Lv J, Li X, Chen Z, Yang Y, Wu A, Zhao Y, Wu HB. Self-Limited Formation of Cobalt Nanoparticles for Spontaneous Hydrogen Production through Hydrazine Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311741. [PMID: 38470196 DOI: 10.1002/smll.202311741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Hydrogen (H2) has emerged as a highly promising energy carrier owing to its remarkable energy density and carbon emission-free properties. However, the widespread application of H2 fuel has been limited by the difficulty of storage. In this work, spontaneous electrochemical hydrogen production is demonstrated using hydrazine (N2H4) as a liquid hydrogen storage medium and enabled by a highly active Co catalyst for hydrazine electrooxidation reaction (HzOR). The HzOR electrocatalyst is developed by a self-limited growth of Co nanoparticles from a Co-based zeolitic imidazolate framework (ZIF), exhibiting abundant defective surface atoms as active sites for HzOR. Notably, these self-limited Co nanoparticles exhibit remarkable HzOR activity with a negative working potential of -0.1 V (at 10 mA cm-2) in 0.1 m N2H4/1 m KOH electrolyte. Density functional theory (DFT) calculations are employed to validate the superior performance of low-coordinated Co active sites in facilitating HzOR. By taking advantage of the potential difference between HzOR and the hydrogen evolution reaction (HER), a novel HzOR||HER electrochemical system is developed to spontaneously produce H2 without external energy input. Overall, the work offers valuable guidance for developing active HzOR catalyst. The novel HzOR||HER electrochemical system represents a promising and innovative solution for energy-efficient hydrogen production.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaobin Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiabao Lv
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaotong Li
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zerui Chen
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yue Yang
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Angjian Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314031, P. R. China
- Baima Lake Laboratory, Hangzhou, 310053, P. R. China
| | - Yan Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hao Bin Wu
- Institute for Composites Science Innovation (InCSI), State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
3
|
Fang Y, Li L, Gan Y, Gu J, Zhang W, Liu J, Zhang D, Liu Q. Ultrafast and Durable Sodium-Ion Storage of Pseudocapacitive VN@C Hybrid Nanorods from Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309783. [PMID: 38295009 DOI: 10.1002/smll.202309783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Indexed: 02/02/2024]
Abstract
Vanadium nitride (VN) is a promising electrode material for sodium-ion storage due to its multivalent states and high electrical conductivity. However, its electrochemical performance has not been fully explored and the storage mechanism remains to be clarified up to date. Here, the possibility of VN/carbon hybrid nanorods synthesized from a metal-organic framework for ultrafast and durable sodium-ion storage is demonstrated. The VN/carbon electrode delivers a high specific capacity (352 mA h g-1), fast-charging capability (within 47.5 s), and ultralong cycling stability (10 000 cycles) for sodium-ion storage. In situ XRD characterization and density functional theory (DFT) calculations reveal that surface-redox reactions at vanadium sites are the dominant sodium-ion storage mechanism. An energy-power balanced hybrid capacitor device is verified by assembling the VN/carbon anode and active carbon cathode, and it shows a maximum energy density of 103 Wh kg-1 at a power density of 113 W kg-1.
Collapse
Affiliation(s)
- Yan Fang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Gan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiajun Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Su J, Jiang L, Xiao B, Liu Z, Wang H, Zhu Y, Wang J, Zhu X. Dipole-Dipole Tuned Electronic Reconfiguration of Defective Carbon Sites for Efficient Oxygen Reduction into H 2O 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310317. [PMID: 38155499 DOI: 10.1002/smll.202310317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Metal-free carbon-based materials are one of the most promising electrocatalysts toward 2-electron oxygen reduction reaction (2e-ORR) for on-site production of hydrogen peroxide (H2O2), which however suffer from uncontrollable carbonizations and inferior 2e-ORR selectivity. To this end, a polydopamine (PDA)-modified carbon catalyst with a dipole-dipole enhancement is developed via a calcination-free method. The H2O2 yield rate outstandingly reaches 1.8 mol gcat -1 h-1 with high faradaic efficiency of above 95% under a wide potential range of 0.4-0.7 VRHE, overwhelming most of carbon electrocatalysts. Meanwhile, within a lab-made flow cell, the synthesized ORR electrode features an exceptional stability for over 250 h, achieved a pure H2O2 production efficacy of 306 g kWh-1. By virtue of its industrial-level capabilities, the established flow cell manages to perform a rapid pulp bleaching within 30 min. The superior performance and enhanced selectivity of 2e-ORR is experimentally revealed and attributed to the electronic reconfiguration on defective carbon sites induced by non-covalent dipole-dipole influence between PDA and carbon, thereby prohibiting the cleavage of O-O in OOH intermediates. This proposed strategy of dipole-dipole effects is universally applicable over 1D carbon nanotubes and 2D graphene, providing a practical route to design 2e-ORR catalysts.
Collapse
Affiliation(s)
- Jiaxin Su
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Lei Jiang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Bingbing Xiao
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Zixian Liu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Heng Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Yongfa Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jun Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| | - Xiaofeng Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, P. R. China
| |
Collapse
|
5
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Bhattacharyya P, Parmar PR, Basak S, Dubey KK, Sutradhar S, Bandyopadhyay D, Chakrabarti S. Metal organic framework-derived recyclable magnetic coral Co@Co 3O 4/C for adsorptive removal of antibiotics from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50520-50536. [PMID: 36795201 PMCID: PMC9932418 DOI: 10.1007/s11356-023-25846-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 04/16/2023]
Abstract
The menace posed by antibiotic contamination to humanity has increased due to the absence of efficient antibiotic removal processes in the conventional waste water treatment methods from the hospitals, households, animal husbandry, and pharma industry. Importantly, only a few commercially available adsorbents are magnetic, porous, and have the ability to selectively bind and separate various classes of antibiotics from the slurries. Herein, we report the synthesis of a coral-like Co@Co3O4/C nanohybrid for the remediation of three different classes of antibiotics - quinolone, tetracycline, and sulphonamide. The coral like Co@Co3O4/C materials are synthesized via a facile room temperature wet chemical method followed by annealing in a controlled atmosphere. The materials demonstrate an attractive porous structure with an excellent surface-to-mass ratio of 554.8 m2 g-1 alongside superior magnetic responses. A time-varying adsorption study of aqueous nalidixic acid solution on Co@Co3O4/C nanohybrids indicates that these coral-like Co@Co3O4/C nanohybrids could achieve a high removal efficiency of 99.98% at pH 6 in 120 min. The adsorption kinetics data of Co@Co3O4/C nanohybrids follow a pseudo-second-order reaction kinetics suggesting a chemisorption effect. The adsorbent has also shown its merit in reusability for four adsorption-desorption cycles without showing significant change in the removal efficiency. More in-depth studies validate that the excellent adsorption capability of Co@Co3O4/C adsorbent attributing to the electrostatic and π-π interaction between adsorbent and various antibiotics. Concisely, the adsorbent manifests the potential for the removal of a wide range of antibiotics from the water alongside showing their utility in the hassle-free magnetic separation.
Collapse
Affiliation(s)
- Puja Bhattacharyya
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201303, India
| | - Prathu Raja Parmar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sanchari Basak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201303, India
| | - Kashyap Kumar Dubey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201303, India.
| |
Collapse
|
7
|
Pariiska OO, Mazur DO, Asaula VM, Buryanov VV, Socha R, Kurys Y, Kolotilov SV, Koshechko VG, Pokhodenko VD. Influence of the Structure of Nanocomposites Based on Co,N,S-Doped Carbon and Co9S8 on the Catalytic Properties in the Processes of Quinoline and Its Methyl Derivatives Hydrogenation. THEOR EXP CHEM+ 2023. [DOI: 10.1007/s11237-023-09757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Correa JDS, Primo JDO, Balaba N, Pratsch C, Werner S, Toma HE, Anaissi FJ, Wattiez R, Zanette CM, Onderwater RCA, Bittencourt C. Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1202. [PMID: 37049296 PMCID: PMC10096983 DOI: 10.3390/nano13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Co-abietate and Cu-abietate complexes were obtained by a low-cost and eco-friendly route. The synthesis process used Pinus elliottii resin and an aqueous solution of CuSO4/CoSO4 at a mild temperature (80 °C) without organic solvents. The obtained complexes are functional pigments for commercial architectural paints with antipathogenic activity. The pigments were characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry (MS), thermogravimetry (TG), near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and colorimetric analysis. In addition, the antibacterial efficiency was evaluated using the minimum inhibitory concentration (MIC) test, and the antiviral tests followed an adaptation of the ISO 21702:2019 guideline. Finally, virus inactivation was measured using the RT-PCR protocol using 10% (w/w) of abietate complex in commercial white paint. The Co-abietate and Cu-abietate showed inactivation of >4 log against SARS-CoV-2 and a MIC value of 4.50 µg·mL-1 against both bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results suggest that the obtained Co-abietate and Cu-abietate complexes could be applied as pigments in architectural paints for healthcare centers, homes, and public places.
Collapse
Affiliation(s)
- Jamille de S. Correa
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Julia de O. Primo
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Nayara Balaba
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Christoph Pratsch
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Stephan Werner
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Henrique E. Toma
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Fauze J. Anaissi
- Departament of Chemistry, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | - Ruddy Wattiez
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium;
| | - Cristina M. Zanette
- Department of Food Engineering, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Elio Antonio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| | | | - Carla Bittencourt
- Department of Chemistry, University of Mons, Place du Parc 23, 7000 Mons, Belgium;
| |
Collapse
|
9
|
Zhang Y, Dai X, Wang J, Liang J, Rabeah J, Tian X, Yao X, Wang Y, Pang S. In Situ-Generated Cu I Catalytic System for Oxidative N-Formylation of N-Heterocycles and Acyclic Amines with Methanol. CHEMSUSCHEM 2023; 16:e202202104. [PMID: 36478405 DOI: 10.1002/cssc.202202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The development of a sustainable and simple catalytic system for N-formylation of N-heterocycles with methanol by direct coupling remains a challenge, owing to many competing side reactions, given the sensitivity of N-heterocycles to many catalytic oxidation or dehydrogenation systems. This work concerns the development of an in situ-generated CuI catalytic system for oxidative N-formylation of N-heterocycles with methanol that is based on the case study of a more typical 1,2,3,4-tetrahydroquinoline as substrate. Aside from N-heterocycles, some acyclic amines are also transformed into the corresponding N-formamides in moderate yields. Furthermore, a probable reaction mechanism and reaction pathway are proposed and extension of work based on some findings leads to a demonstration that the formed ⋅O2 - and ⋅OOH radicals in the catalytic system is related to the formation of undesired tar-like products.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Xingchao Dai
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jixue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Junxi Liang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, 730030, Lanzhou, Gansu, P. R. China
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Xia Tian
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Xiaoqiang Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Yanbin Wang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, 730030, Lanzhou, Gansu, P. R. China
| | - Shaofeng Pang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, 730030, Lanzhou, Gansu, P. R. China
| |
Collapse
|
10
|
Li X, Yuan Z, Liu Y, Yang H, Nie J, Wang G, Liu B. Nitrogen-Doped Carbon as a Highly Active Metal-Free Catalyst for the Selective Oxidative Dehydrogenation of N-Heterocycles. CHEMSUSCHEM 2022; 15:e202200753. [PMID: 35504842 DOI: 10.1002/cssc.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
N-heteroarenes represents one of the most important chemicals in pharmaceuticals and other bio-active molecules, which can be easily accessed from the oxidation of N-heterocycles over metal catalysts. Herein, the metal-free oxidative dehydrogenation of N-heterocycles into N-heteroarenes was developed using molecular oxygen as the terminal oxidant. The nitrogen-doped carbon materials were facilely prepared via the simple pyrolysis process using biomass (carboxymethyl cellulose sodium) and dicyandiamide as the carbon and nitrogen source, respectively, and they were discovered to be robust for the oxidative dehydrogenation of N-heterocycles into N-heteroarenes under mild conditions (80 °C under 1 bar O2 ) with water as the green solvent. Diverse N-heterocycles including 1,2,3,4-tetrahydroisoquinolines, indolines and 1,2,3,4-tetrahydroquinoxalines were smoothly converted into N-heteroarenes with high to excellent yields (76->99 %). Superoxide radical (⋅O2 - ) and hydroxyl radical (⋅OH) were probed as the reactive oxygen species for the oxidation of N-heterocycles into N-heteroarenes. More importantly, the nitrogen-doped carbon catalyst can be reused with a high stability. The method provides an environmentally friendly and economical route to access important N-hetero-aromatic commodities.
Collapse
Affiliation(s)
- Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ziliang Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
- Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hanmin Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Jiabao Nie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Guanghui Wang
- Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Bing Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Wang S, Wang M, Liu Z, Liu S, Chen Y, Li M, Zhang H, Wu Q, Guo J, Feng X, Chen Z, Pan Y. Synergetic Function of the Single-Atom Ru-N 4 Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15250-15258. [PMID: 35333511 DOI: 10.1021/acsami.2c00652] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen production by water splitting and seawater electrolysis is a promising alternative to develop clean hydrogen energy. The construction of high-efficiency and durable electrocatalysts for the hydrogen evolution reaction (HER) in a wide pH range and seawater is critical to overcoming the sluggish kinetic process. Herein, we develop an efficient catalytic material composed of a single-atom Ru-N4 site and Ru nanoparticles anchored on nitrogen-doped carbon (Ru1+NPs/N-C) through the coordination-pyrolysis strategy of the melamine formaldehyde resin. The Ru1+NPs/N-C catalyst shows outstanding HER activity with the smallest overpotentials, the lowest Tafel slopes, the highest mass activity and turnover frequency, as well as excellent stability in both acidic and alkaline media. Moreover, Ru1+NPs/N-C shows comparable hydrogen production performance and a higher faradic efficiency to 20% Pt/C in natural seawater and artificial simulated seawater. Theoretical calculations demonstrate that the strong synergistic effects between the Ru-N4 site and Ru nanoparticles modify the electronic structure to accelerate the HER kinetics. Ru nanoparticles can effectively realize dissociation of H2O to generate adsorbed hydrogen and also promote the single-atom Ru-N4 site to combine adsorbed hydrogen to H2 and desorption. This work provides a new perspective for designing high-efficiency hydrogen production electrocatalysts for large-scale seawater electrolysis.
Collapse
Affiliation(s)
- Songrui Wang
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, China
| | - Yanju Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Hui Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Qikang Wu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jiahui Guo
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xueqing Feng
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zheng Chen
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
12
|
Tian W, Lin J, Zhang H, Duan X, Wang H, Sun H, Wang S. Kinetics and mechanism of synergistic adsorption and persulfate activation by N-doped porous carbon for antibiotics removals in single and binary solutions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127083. [PMID: 34488092 DOI: 10.1016/j.jhazmat.2021.127083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Porous carbon serves as a green material for efficient wastewater purification by adsorption and advanced oxidation processes. However, a clear understanding of the simultaneous removal of multiple pollutants in water is still ambiguous. Herein, the synergistic effect of adsorption and peroxydisulfate (PS) activation on kinetics and mechanism of removing single and binary antibiotic pollutants, sulfamethoxazole (SMX) and ibuprofen (IBP), from water by biomass-derived N-doped porous carbon was investigated. Our findings suggest that adsorption contributed to efficient removals of SMX/IBP. Comparative quenching experiments and electrochemical analysis demonstrated that hydroxyl (•OH) and sulfate (SO4•-) radicals, as well as singlet oxygen (1O2) led to the catalytic degradation of SMX, while only 1O2 reacted for IBP oxidation. Superoxide ion (O2•-) radicals were not related to SMX/IBP degradation. Electron transfer pathway accounted for PS activation but was not involved in direct SMX/IBP oxidation. Only slight differences were found between the degradation kinetics of SMX and IBP in the binary and single SMX or IBP solutions. This arose from the non-selective effect of adsorption and 1O2 attack for SMX/IBP removal, and the weak selective oxidation process of SMX by •OH and SO4•-. This study provides a new viewpoint on the role of adsorption in catalysis and enriches the mechanistic study of multi-component antibiotic degradation.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia; Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Jingkai Lin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia.
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Lu X, Qin J, Xian C, Nie J, Li X, He J, Liu B. Cobalt nanoparticles supported on microporous nitrogen-doped carbon for efficient catalytic transfer hydrogenation reaction between nitroarenes and N-heterocycles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation reaction between nitroarenes and saturated N-heterocycles to simultaneously synthesize value-added anilines and unsaturated N-heterocycles is attractive due to its low-cost, atomic economic, and environmental-friendly properties. Herein, we...
Collapse
|
14
|
Sun K, Shan H, Ma R, Wang P, Neumann H, Lu GP, Beller M. Catalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materials. Chem Sci 2022; 13:6865-6872. [PMID: 35774164 PMCID: PMC9200114 DOI: 10.1039/d2sc01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
A metal-free oxidative dehydrogenation of N-heterocycles utilizing a nitrogen/phosphorus co-doped porous carbon (NPCH) catalyst is reported. The optimal material is robust against traditional poisoning agents and shows high antioxidant resistance. It exhibits good catalytic performance for the synthesis of various quinoline, indole, isoquinoline, and quinoxaline ‘on-water’ under air atmosphere. The active sites in the NPCH catalyst are proposed to be phosphorus and nitrogen centers within the porous carbon network. Green oxidations made easy. Metal-free dehydrogenation of N-heterocycles are possible in using N,P-co-doped porous carbon materials “on” water using air.![]()
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Hongbin Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Rui Ma
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Peng Wang
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Helfried Neumann
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
15
|
Bera A, Bera S, Banerjee D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem Commun (Camb) 2021; 57:13042-13058. [PMID: 34781335 DOI: 10.1039/d1cc04919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-active molecules having N-heteroarene core are widely used for numerous medicinal applications and as lifesaving drugs. In this direction, dehydrogenation of partially saturated aromatic N-heterocycles shows utmost importance for the synthesis of heterocycles. This feature article highlights the recent advances, from 2009 to April 2021, on the dehydrogenation of N-heteroaromatics. Notable features considering the development of newer catalysis for dehydrogenations are: (i) approaches based on precious metal catalysis, (ii) newer strategies and catalyst development technology using non-precious metal-catalysts for N-heterocycles having one or more heteroatoms, (iii) Synthesis of five or six-membered N-heterocycles using photocatalysis, electrocatalytic, and organo-catalytic approaches using different homogeneous and heterogeneous conditions' (iv) metal free (base and acid-promoted) dehydrogenation along with I2, N-hydroxyphthalimide (NHPI) and bio catalyzed miscellaneous examples have also been discussed, (v) mechanistic studies for various dehydrogenation reactions and (vi) synthetic applications of various bio-active molecules including post-drug derivatization are discussed.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
16
|
Liu S, Zhang Y, Ge B, Zheng F, Zhang N, Zuo M, Yang Y, Chen Q. Constructing Graphitic-Nitrogen-Bonded Pentagons in Interlayer-Expanded Graphene Matrix toward Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction. MALAYSIAN JOURNAL OF MICROBIOLOGY 2021; 33:e2103133. [PMID: 34467573 DOI: 10.1002/adma.202103133] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Metal-free carbon-based materials with high electrocatalytic activity are promising catalysts for the oxygen reduction reaction (ORR) in several renewable energy systems. However, the performance of carbon-based materials is far inferior to that of Pt-based catalysts in acid electrolytes. Here, a novel carbon-based electrocatalyst is reported toward ORR in 0.1 m HClO4 with half-wave potential of 0.81 V and better durability (100 h reaction time) than commercial 20 wt% Pt/C. It is achieved by constructing graphitic-nitrogen (GN)-bonded pentagons in graphitic carbon to improve the intrinsic activity of the carbon sites and increasing the amount of active sites via expanding the interlayer spacing. X-ray absorption spectroscopy and aberration-corrected electron microscopy characterizations confirm the formation of GN-bonded pentagons in this carbon material. Raman and X-ray photoelectron spectroscopy reveal that the activity is linearly associated with the amounts of both pentagons and adjacent GN atoms. Density function theory further demonstrates that adjacent GN atoms significantly increase the charge density at the carbon atom of a GN-bonded pentagon, which is the activity origin for the ORR.
Collapse
Affiliation(s)
- Shuai Liu
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yongchao Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Fangcai Zheng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Nan Zhang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Zuo
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of Chinese, Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
17
|
Niu X, Yang L. Manganese(III) Acetate Catalyzed Aerobic Dehydrogenation of Tertiary Indolines, Tetrahydroquinolines and an
N
‐Unsubstituted Indoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
| | - Lei Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou People's Republic of China
| |
Collapse
|
18
|
Puche M, Liu L, Concepción P, Sorribes I, Corma A. Tuning the Catalytic Performance of Cobalt Nanoparticles by Tungsten Doping for Efficient and Selective Hydrogenation of Quinolines under Mild Conditions. ACS Catal 2021; 11:8197-8210. [PMID: 35633841 PMCID: PMC9131458 DOI: 10.1021/acscatal.1c01561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Non-noble bimetallic CoW nanoparticles (NPs) partially embedded in a carbon matrix (CoW@C) have been prepared by a facile hydrothermal carbon-coating methodology followed by pyrolysis under an inert atmosphere. The bimetallic NPs, constituted by a multishell core-shell structure with a metallic Co core, a W-enriched shell involving Co7W6 alloyed structures, and small WO3 patches partially covering the surface of these NPs, have been established as excellent catalysts for the selective hydrogenation of quinolines to their corresponding 1,2,3,4-tetrahydroquinolines under mild conditions of pressure and temperature. It has been found that this bimetallic catalyst displays superior catalytic performance toward the formation of the target products than the monometallic Co@C, which can be attributed to the presence of the CoW alloyed structures.
Collapse
Affiliation(s)
- Marta Puche
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | | - Patricia Concepción
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Iván Sorribes
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología
Química, Universitat Politècnica de València-Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
19
|
Kumar Kar A, Srivastava R. Reductive Formylation of Nitroarenes using HCOOH over Bimetallic C−N Framework Derived from the Integration of MOF and COF. ChemCatChem 2021. [DOI: 10.1002/cctc.202100412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ashish Kumar Kar
- Catalysis Research Laboratory Department of Chemistry Indian Institute of Technology Ropar 140001 Rupnagar Punjab India
| | - Rajendra Srivastava
- Catalysis Research Laboratory Department of Chemistry Indian Institute of Technology Ropar 140001 Rupnagar Punjab India
| |
Collapse
|
20
|
Tian W, Lin J, Zhang H, Duan X, Sun H, Wang H, Wang S. Enhanced removals of micropollutants in binary organic systems by biomass derived porous carbon/peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124459. [PMID: 33172679 DOI: 10.1016/j.jhazmat.2020.124459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 05/28/2023]
Abstract
Water pollution usually involves multiple pollutants, and their degradation mechanisms are complicated. In this study, we investigated the degradation of single and binary pollutants (phenol and p-hydroxybenzoic acid (HBA)) in water, using biomass-derived N-doped porous carbon (Y-PC) for peroxymonosulfate (PMS) activation and we found better kinetics and efficiencies of degradation in binary pollutants than single pollutant systems. Electron paramagnetic resonance (EPR), quenching experiments, and electrochemical tests indicated that •OH, SO4•-, O2•-, and 1O2 accounted for the catalytic oxidation of phenol/HBA, while the electron-transfer pathway had an additional contribution to phenol degradation. We unveiled that the HBA degradation rate was similar in the binary and single systems due to the non-selective attack of the micropollutants by •OH, SO4•-, O2•- and 1O2. However, phenol degradation rate was significantly accelerated in the binary phenol/HBA system as compared to that in the single phenol solution, due to the exclusive and selective role of electron transfer pathway. In the binary micropollutant system, a fortified electron-transfer pathway over phenol directly expedited its decomposition and contributed indirectly to this process. This study provides new insights into porous carbon-based advanced oxidation processes for the simultaneous removal of multicomponent contaminants in practical applications.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingkai Lin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
21
|
Li J, Zhao S, Zhang L, Jiang SP, Yang SZ, Wang S, Sun H, Johannessen B, Liu S. Cobalt Single Atoms Embedded in Nitrogen-Doped Graphene for Selective Oxidation of Benzyl Alcohol by Activated Peroxymonosulfate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004579. [PMID: 33464724 DOI: 10.1002/smll.202004579] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Indexed: 06/12/2023]
Abstract
The development of novel single atom catalyst (SAC) is highly desirable in organic synthesis to achieve the maximized atomic efficiency. Here, a Co-based SAC on nitrogen-doped graphene (SACo@NG) with high Co content of 4.1 wt% is reported. Various characterization results suggest that the monodispersed Co atoms are coordinated with N atoms to form robust and highly effective catalytic centers to activate peroxymonosulfate (PMS) for organic selective oxidation. The catalytic performance of the SACo@NG/PMS system is conducted on the selective oxidation of benzyl alcohol (BzOH) showing high efficiency with over 90% conversion and benzaldehyde selectivity within 180 min under mild conditions. Both radical and non-radical processes occurred in the selective oxidation of BzOH, but the non-radical oxidation plays the dominant role which is accomplished by the adsorption of BzOH/PMS on the surface of SACo@NG and the subsequent electron transfer through the carbon matrix. This work provides new insights to the preparation of efficient transition metal-based single atom catalysts and their potential applications in PMS mediated selective oxidation of alcohols.
Collapse
Affiliation(s)
- Jiaquan Li
- WA Schools of Mines, Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia, 6102, Australia
| | - Shiyong Zhao
- WA Schools of Mines, Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia, 6102, Australia
| | - Lianji Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - San Ping Jiang
- WA Schools of Mines, Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia, 6102, Australia
| | - Shi-Ze Yang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | | | - Shaomin Liu
- WA Schools of Mines, Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia, 6102, Australia
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
22
|
Kiani D, Baltrusaitis J. Immobilization and activation of cobalt-amine catalyst on NH4OH-treated activated carbon for ethylene dimerization. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Yang W, Zhu Y, Li J, Chen Z, Nosheen F, Zhang Q, Zhang Z. Understanding the dehydrogenation mechanism over iron nanoparticles catalysts based on density functional theory. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
25
|
Zhang Z, Liu W, Zhang Y, Bai J, Liu J. Bioinspired Atomic Manganese Site Accelerates Oxo-Dehydrogenation of N-Heterocycles over a Conjugated Tri-s-Triazine Framework. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhou Zhang
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Wengang Liu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Yuanyuan Zhang
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Jingwen Bai
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Jian Liu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| |
Collapse
|
26
|
Liu B, Guo W, Wang H, Si Q, Zhao Q, Luo H, Ren N. Activation of peroxymonosulfate by cobalt-impregnated biochar for atrazine degradation: The pivotal roles of persistent free radicals and ecotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122768. [PMID: 32768854 DOI: 10.1016/j.jhazmat.2020.122768] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Cobalt-mediated activation of peroxymonosulfate (PMS) has been extensively investigated for the degradation of emerging organic pollutants. In this study, PMS activation via cobalt-impregnated biochar towards atrazine (ATZ) degradation was systematically examined, and the underlying reaction mechanism was explicated. It was found that persistent free radicals (PFRs) contained in biochar play a pivotal role in PMS activation process. The PFRs enabled an efficient transfer electron to both cobalt atom and O2, facilitating the recycle of Co(III)/Co(II), and thereby leaded to an excellent catalytic performance. In contrast to oxic condition, the elimination of dissolved oxygen significantly retarded the ATZ degradation efficiency from 0.76 to 0.36 min-1. Radical scavenging experiments and electron paramagnetic resonance (EPR) analysis confirmed that the ATZ degradation was primarily due to SO4·- and, to a lesser extent, ·OH. In addition, dual descriptor (DD) method was carried out to reveal reactive sites on ATZ for radicals attacking and predicted derivatives. Meanwhile, the possible ATZ degradation pathways were accordingly proposed, and the ecotoxicity evaluation of the oxidation intermediates was also conducted by ECOSAR. Consequently, the cobalt-impregnated biochar could be an efficient and environmentally friendly catalyst to activate PMS for abatement and detoxication of ATZ.
Collapse
Affiliation(s)
- Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haichao Luo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
27
|
Du L, Shi L, Liu Y, Ling Y, Zhang Y, Zhou C, Xiong B. Nanonickel Oxides Prepared by Atomic Layer Deposition as Efficient Catalyst for the Dehydrogenation of N‐Heterocycles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liyong Du
- School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu Province 214122 China
| | - Li Shi
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yunxiao Liu
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yong Ling
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yanan Zhang
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 China
| | - Biao Xiong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| |
Collapse
|
28
|
Catalytically Active Co−N
x
Species Stabilized on Nitrogen‐doped Porous Carbon for Efficient Hydrogenation and Dehydrogenation of N‐heteroarenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Bera S, Bera A, Banerjee D. Nickel-Catalyzed Dehydrogenation of N-Heterocycles Using Molecular Oxygen. Org Lett 2020; 22:6458-6463. [DOI: 10.1021/acs.orglett.0c02271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sourajit Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Atanu Bera
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debasis Banerjee
- Laboratory of Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
30
|
Chen W, Tang H, Wang W, Fu Q, Luo J. Catalytic Aerobic Dehydrogenatin of
N
‐Heterocycles by
N
‐Hydoxyphthalimide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weidong Chen
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Hao Tang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Weilin Wang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 People's Republic of China
| | - Junfei Luo
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| |
Collapse
|
31
|
Dutta A, Chhetri B, Nongrum R, Kupar Kharmawlong G, Yadav AK, Nongkhlaw R. Ultrasound‐Assisted Synthesis of Nitrogen and Oxygen Containing Heterocycles Using Fluorinated Graphene Oxide as Catalyst: Evaluation of Their Anthelmintic Activities. ChemistrySelect 2020. [DOI: 10.1002/slct.202001442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arup Dutta
- Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Bhusan Chhetri
- Department of Zoology North-Eastern Hill University Shillong Meghalaya 793022 India) Institution
| | - Ridaphun Nongrum
- Department of Chemistry Sankardev College Shillong Meghalaya 793004 India
| | | | - Arun K. Yadav
- Department of Zoology North-Eastern Hill University Shillong Meghalaya 793022 India) Institution
| | - Rishanlang Nongkhlaw
- Department of Chemistry North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
32
|
Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/ t-BuONa/O 2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. J Org Chem 2020; 85:7501-7509. [PMID: 32368910 DOI: 10.1021/acs.joc.9b03447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic N-heterocycles such as quinolines, isoquinolines, and indolines are synthesized via sodium tert-butoxide-promoted oxidative dehydrogenation of the saturated heterocycles in DMSO solution. This reaction proceeds under mild reaction conditions and has a good functional group tolerance. Mechanistic studies suggest a radical pathway involving hydrogen abstraction of dimsyl radicals from the N-H bond or α-C-H of the substrates and subsequent oxidation of the nitrogen or α-aminoalkyl radicals.
Collapse
Affiliation(s)
- Ruchun Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Shusheng Yue
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wei Tan
- Clinic Laboratory, People's Hospital of Yichun City, Yichun, Jiangxi 336000, China
| | - Yongfa Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
33
|
Dong Y, Zhao H, Liu Z, Yang M, Zhang Z, Zhu T, Cheng H. Understanding the mechanism of the competitive adsorption in 8-methylquinoline hydrogenation over a Ru catalyst. RSC Adv 2020; 10:11039-11045. [PMID: 35495331 PMCID: PMC9050459 DOI: 10.1039/d0ra01277g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 11/21/2022] Open
Abstract
The competitive adsorption of 8-methylquinoline (8-MQL) and partially hydrogenated product, 4H-8-MQL, was studied by performing a combination of experiments and first-principles calculations over a selected Ru catalyst. A series of hydrogenation reactions were conducted with 8-MQL and 4H-8-MQL as initial reactants, respectively. 8-MQL exhibits stronger adsorption on catalyst surface active sites compared with 4H-8-MQL and the massive adsorption of 8-MQL hampers the further adsorption of 4H-8-MQL. The effects of temperature, pressure and solvent on the selectivity in 8-MQL hydrogenation were investigated as well. Full hydrogenation of 8-MQL to 10H-8-MQL was achieved within 120 min when the catalyst dosage increased from 5 wt% to 7 wt% under 160 °C and a hydrogen pressure of 7 MPa. The electronic charge of the N-heteroatom in 8-MQL and 4H-8-MQL was analyzed and the adsorption geometries of 8-MQL and 4H-8-MQL on the Ru(001) surface were optimized by DFT calculations to explain the competitive adsorption behaviors of 8-MQL and 4H-8-MQL.
Collapse
Affiliation(s)
- Yuan Dong
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Haoming Zhao
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Zhenjie Liu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Ming Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
- Zhejiang Institute, China University of Geosciences Hangzhou 311305 P. R. China
| | - Zhenlin Zhang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Ting Zhu
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| | - Hansong Cheng
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 P. R. China
| |
Collapse
|
34
|
Wu Y, Yu H, Guo Y, Jiang X, Qi Y, Sun B, Li H, Zheng J, Li X. A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles: boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity. Chem Sci 2019; 10:10459-10465. [PMID: 32190238 PMCID: PMC7066573 DOI: 10.1039/c9sc04365a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/10/2019] [Indexed: 11/21/2022] Open
Abstract
Hydrogenation of N-heterocycles is of great significance for their wide range of applications such as building blocks in drug and agrochemical syntheses and liquid organic hydrogen carriers (LOHCs). Pursuing a better hydrogenation performance and stereoselectivity, we successfully developed a rare earth hydride supported ruthenium catalyst Ru/YH3 for the hydrogenation of N-heterocycles, especially N-ethylcarbazole (NEC), the most promising LOHC. Full hydrogenation of NEC on Ru/YH3 can be achieved at 363 K and 1 MPa hydrogen pressure, which is currently the lowest compared to previous reported catalysts. Furthermore, Ru/YH3 shows the highest turnover number, namely the highest catalytic activity among the existing catalysts for hydrogenation of NEC. Most importantly, Ru/YH3 shows remarkable stereoselectivity for all-cis products, which is very favorable for the subsequent dehydrogenation. The excellent performance of Ru/YH3 originates from the new hydrogen transfer path from H2 to NEC via YH3. Ru/LaH3 and Ru/GdH3 also reveal good activity for hydrogenation of NEC and Ru/YH3 also possesses good activity for hydrogenation of 2-methylindole, indicating that the use of rare earth hydride supported catalysts is a highly effective strategy for developing better hydrogenation catalysts for N-heterocycles.
Collapse
Affiliation(s)
- Yong Wu
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hongen Yu
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yanru Guo
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaojing Jiang
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yue Qi
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Bingxue Sun
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Haiwen Li
- Platform of Inter/Transdisciplinary Energy Research (Q-PIT) , International Research Center for Hydrogen Energy , International Institute for Carbon-Neutral Energy Research (I2CNER) , Kyushu University , 744 Motooka Nishi-ku , Fukuoka 819-0395 , Japan . ; ; Tel: +86-10-62765930
| | - Jie Zheng
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xingguo Li
- Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|