1
|
Tian M, Li J, Mou Q, Liu M. Selective Oxyfunctionalization of Benzylic C-H with No Solvent. J Org Chem 2024; 89:16645-16652. [PMID: 39504509 DOI: 10.1021/acs.joc.4c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The direct selective oxyfunctionalization of C-H into C═O represents a highly useful, yet challenging, synthetic methodology. Herein, a one-step oxyfunctionalization of benzylic C-H into aryl ketone, with no overoxidation of the -OH functional group, is reported through mechanochemistry. The substrate scope is also tolerant of a wide range of different functional groups, providing a particularly sustainable yet widely adaptable route for the synthesis of aryl ketones, which represent both a classic synthetic precursor and a useful strategy for lignin monomer valorization. A series of mechanistic and spectroscopic investigations were also conducted to shed light on the unique C-H over -OH selectivity, opening up new avenues for oxidation chemistry.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
2
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Lei H, Wang B, Yang Y, Fan S, Wang S, Wei X. Ball-Milling-Enabled Nickel-Catalyzed Reductive 1,4-Alkylarylation of 1,3-Enynes under an Air Atmosphere. Org Lett 2024; 26:7688-7694. [PMID: 39207781 DOI: 10.1021/acs.orglett.4c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A ball-mill-enabled nickel-catalyzed 1,4-alkylarylation of 1,3-enynes with organic bromides has been developed, offering a versatile method for assembling tetrasubstituted allenes. This approach, the first of ball-milling-based remote radical coupling, overcomes the limitations of traditional solution-phase methods, such as the need for air- and moisture-sensitive reagents, the use of bulk solvents, and prolonged reaction times. Given the outstanding performance of ball-milling-based radical reduction coupling reactions, we anticipate further advancements in sustainable and efficient synthetic methodologies.
Collapse
Affiliation(s)
- Hao Lei
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bobo Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufang Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shu Fan
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, China
| | - Siyuan Wang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
4
|
Millward F, Zysman-Colman E. Mechanophotocatalysis: A Generalizable Approach to Solvent-minimized Photocatalytic Reactions for Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202316169. [PMID: 38263796 DOI: 10.1002/anie.202316169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
This proof-of-concept study cements the viability and generality of mechanophotocatalysis, merging mechanochemistry and photocatalysis to enable solvent-minimized photocatalytic reactions. We demonstrate the transmutation of four archetypal solution-state photocatalysis reactions to a solvent-minimized environment driven by the combined actions of milling, light, and photocatalysts. The chlorosulfonylation of alkenes and the pinacol coupling of aldehydes and ketones were conducted under solvent-free conditions with competitive or superior efficiencies to their solution-state analogues. Furthermore, decarboxylative alkylations are shown to function efficiently under solvent-minimized conditions, while the photoinduced energy transfer promoted [2+2] cycloaddition of chalcone experiences a significant initial rate enhancement over its solution-state variant. This work serves as a platform for future discoveries in an underexplored field: validating that solvent-minimized photocatalysis is not only generalizable and competitive with solution-state photocatalysis, but can also offer valuable advantages.
Collapse
Affiliation(s)
- Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
5
|
Chantrain V, Rensch T, Pickhardt W, Grätz S, Borchardt L. Continuous Direct Mechanocatalytic Suzuki-Miyaura Coupling via Twin-Screw Extrusion. Chemistry 2024; 30:e202304060. [PMID: 38206188 DOI: 10.1002/chem.202304060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
This work establishes the first direct mechanocatalytic reaction protocol within an extruder, focusing on the Suzuki-Miyaura reaction. Through the coating of either the extruder screws or barrel with Pd, we executed the cross-coupling reaction without the reliance on molecular catalyst compounds or powders, and solvents continuously. We identified the influence and interplay of crucial reaction parameters such as temperature, mechanical energy input, residence time, rheology, and catalyst contact time and finally obtained 36 % and 75 % of the reaction product after one and four reactor passes respectively.
Collapse
Affiliation(s)
- Viviene Chantrain
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tilo Rensch
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Wilm Pickhardt
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
6
|
Templ J, Schnürch M. Allylation of C-, N-, and O-Nucleophiles via a Mechanochemically-Driven Tsuji-Trost Reaction Suitable for Late-Stage Modification of Bioactive Molecules. Angew Chem Int Ed Engl 2024; 63:e202314637. [PMID: 37931225 PMCID: PMC10952285 DOI: 10.1002/anie.202314637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
We present the first solvent-free, mechanochemical protocol for a palladium-catalyzed Tsuji-Trost allylation. This approach features exceptionally low catalyst loadings (0.5 mol %), short reaction times (<90 min), and a simple setup, eliminating the need for air or moisture precautions, making the process highly efficient and environmentally benign. We introduce solid, nontoxic, and easy-to-handle allyl trimethylammonium salts as valuable alternative to volatile or hazardous reagents. Our approach enables the allylation of various O-, N-, and C-nucleophiles in yields up to 99 % even for structurally complex bioactive compounds, owing to its mild conditions and exceptional functional group tolerance.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| |
Collapse
|
7
|
Templ J, Schnürch M. Allylation of C-, N-, and O-Nucleophiles via a Mechanochemically-Driven Tsuji-Trost Reaction Suitable for Late-Stage Modification of Bioactive Molecules. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 136:e202314637. [PMID: 38516646 PMCID: PMC10953357 DOI: 10.1002/ange.202314637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 03/23/2024]
Abstract
We present the first solvent-free, mechanochemical protocol for a palladium-catalyzed Tsuji-Trost allylation. This approach features exceptionally low catalyst loadings (0.5 mol %), short reaction times (<90 min), and a simple setup, eliminating the need for air or moisture precautions, making the process highly efficient and environmentally benign. We introduce solid, nontoxic, and easy-to-handle allyl trimethylammonium salts as valuable alternative to volatile or hazardous reagents. Our approach enables the allylation of various O-, N-, and C-nucleophiles in yields up to 99 % even for structurally complex bioactive compounds, owing to its mild conditions and exceptional functional group tolerance.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU WienGetreidemarkt 9/E1631060ViennaAustria
| |
Collapse
|
8
|
Wenger LE, Hanusa TP. Synthesis without solvent: consequences for mechanochemical reactivity. Chem Commun (Camb) 2023; 59:14210-14222. [PMID: 37953718 DOI: 10.1039/d3cc04929a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Solvents are so nearly omnipresent in synthetic chemistry that a classic question for their use has been: "What is the best solvent for this reaction?" The increasing use of mechanochemical approaches to synthesis-by grinding, milling, extrusion, or other means-and usually with no, or only limited, amounts of solvent, has raised an alternative question for the synthetic chemist: "What happens if there is no solvent?" This review focuses on a three-part answer to that question: when there is little change ("solvent-optional" reactions); when solvent needs to be present in some form, even if only in the amounts provided by liquid-assisted (LAG) or solvate-assisted grinding; and those cases in which mechanochemistry allows access to compounds that cannot be obtained from solution-based routes. The emphasis here is on inorganic and organometallic systems, including selected examples of mechanosynthesis and mechanocatalysis. Issues of mechanochemical depictions and the adequacy of LAG descriptions are also reviewed.
Collapse
Affiliation(s)
- Lauren E Wenger
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, USA.
| | - Timothy P Hanusa
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37235, USA.
| |
Collapse
|
9
|
Čarný T, Kisszékelyi P, Markovič M, Gracza T, Koóš P, Šebesta R. Mechanochemical Pd-Catalyzed Amino- and Oxycarbonylations using FeBr 2(CO) 4 as a CO Source. Org Lett 2023. [PMID: 38018997 DOI: 10.1021/acs.orglett.3c03440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Herein, we describe the development of mechanochemical amino- and oxycarbonylation employing FeBr2(CO)4 as a solid CO source. This Pd/XantPhos-catalyzed reaction affords a range of carboxamides and esters from aryl iodides and various amines or phenols. Both primary and secondary amines, including amino acids, can be employed as N-nucleophiles.
Collapse
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Péter Kisszékelyi
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Tibor Gracza
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, SK-812 37 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
10
|
Pan Q, Wu Y, Zheng A, Wang X, Li X, Wang W, Gao M, Bibi Z, Chaudhary S, Sun Y. Mechanochemical Synthesis of PdO 2 Nanoparticles Immobilized over Silica Gel for Catalytic Suzuki-Miyaura Cross-Coupling Reactions Leading to the C-3 Modification of 1 H-Indazole with Phenylboronic Acids. Molecules 2023; 28:7190. [PMID: 37894668 PMCID: PMC10609228 DOI: 10.3390/molecules28207190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
The C-3 modification of 1H-indazole has produced active pharmaceuticals for the treatment of cancer and HIV. But, so far, this transformation has seemed less available, due to the lack of efficient C-C bond formation at the less reactive C-3 position. In this work, a series of silica gel-supported PdO2 nanoparticles of 25-66 nm size were prepared by ball milling silica gel with divalent palladium precursors, and then employed as catalysts for the Suzuki-Miyaura cross-coupling of 1H-indazole derivative with phenylboronic acid. All the synthesized catalysts showed much higher cross-coupling yields than their palladium precursors, and could also be reused three times without losing high activity and selectivity in a toluene/water/ethanol mixed solvent. Although the palladium precursors showed an order of activity of PdCl2(dppf, 1,1'-bis(diphenylphosphino)ferrocene) > PdCl2(dtbpf, 1,1'-bis(di-tert-butylphosphino)ferrocene) > Pd(OAc, acetate)2, the synthesized catalysts showed an order of C1 (from Pd(OAc)2) > C3 (from PdCl2(dtbpf)) > C2 (from PdCl2(dppf)), which conformed to the orders of BET (Brunauer-Emmett-Teller) surface areas and acidities of these catalysts. Notably, the most inexpensive Pd(OAc)2 can be used as a palladium precursor for the synthesis of the best catalyst through simple ball milling. This work provides a highly active and inexpensive series of catalysts for C-3 modification of 1H-indazole, which are significant for the large-scale production of 1H-indazole-based pharmaceuticals.
Collapse
Affiliation(s)
- Qin Pan
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| | - Yong Wu
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| | - Aqun Zheng
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Xiangdong Wang
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| | - Xiaoyong Li
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| | - Wanqin Wang
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| | - Min Gao
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| | - Zainab Bibi
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Sidra Chaudhary
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Yang Sun
- Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Xi’an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, No. 28 Xianning West Road, Xi’an 710049, China
- Xixian New District Xingyi Advanced Materials Technology Co., Ltd., Room 1046, 1st Floor, Hongdelou Building No. 20, Science and Technology Innovation Port, Xi’an 712000, China
| |
Collapse
|
11
|
Kubota K, Kondo K, Seo T, Jin M, Ito H. Solid-state mechanochemical cross-coupling of insoluble substrates into insoluble products by removable solubilizing silyl groups: uniform synthesis of nonsubstituted linear oligothiophenes. RSC Adv 2023; 13:28652-28657. [PMID: 37780729 PMCID: PMC10540273 DOI: 10.1039/d3ra05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Conventional solution-based organic reactions that involve insoluble substrates are challenging and inefficient. Furthermore, even if the reaction is successful, the corresponding products are insoluble in most cases, making their isolation and subsequent transformations difficult. Hence, the conversion of insoluble compounds into insoluble products remains a challenge in practical synthetic chemistry. In this study, we showcase a potential solution to address these solubility issues by combining a mechanochemical cross-coupling approach with removable solubilizing silyl groups. Our strategy involves solid-state Suzuki-Miyaura cross-coupling reactions between organoboron nucleophiles bearing a silyl group with long alkyl chains and insoluble polyaromatic halides. The silyl group on the nucleophile can act as a solubilizing group that enables product isolation via silica gel column chromatography and can be easily removed by the addition of fluoride anions to form the desired insoluble coupling products with sufficient purity. Furthermore, we demonstrate that after aromatic electrophilic bromination of the desilylated products, sequential solid-state cross-coupling of the obtained insoluble brominated substrates, followed by desilylation, afforded further π-extended functional molecules. Using this conceptually new protocol, we achieved the first uniform synthesis of the longest nonsubstituted linear insoluble 9-mer oligothiophene.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Keisuke Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
12
|
Seo T, Kubota K, Ito H. Mechanochemistry-Directed Ligand Design: Development of a High-Performance Phosphine Ligand for Palladium-Catalyzed Mechanochemical Organoboron Cross-Coupling. J Am Chem Soc 2023; 145:6823-6837. [PMID: 36892233 DOI: 10.1021/jacs.2c13543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Mechanochemical synthesis that uses transition-metal catalysts has attracted significant attention due to its numerous advantages, including low solvent waste, short reaction times, and the avoidance of problems associated with the low solubility of starting materials. However, even though the mechanochemical reaction environment is largely different from that of homogeneous solution systems, transition-metal catalysts, which were originally developed for use in solution, have been used directly in mechanochemical reactions without any molecular-level modifications to ensure their suitability for mechanochemistry. Alas, this has limited the development of more efficient mechanochemical cross-coupling processes. Here, we report a conceptually distinct approach, whereby a mechanochemistry-directed design is used to develop ligands for mechanochemical Suzuki-Miyaura cross-coupling reactions. The ligand development was guided by the experimental observation of catalyst deactivation via the aggregation of palladium species, a problem that is particularly prominent in solid-state reactions. By embedding the ligand into a poly(ethylene glycol) (PEG) polymer, we found that phosphine-ligated palladium(0) species could be immobilized in the fluid phase created by the PEG chains, preventing the physical mixing of the catalyst into the crystalline solid phase and thus undesired catalyst deactivation. This catalytic system showed high catalytic activity in reactions of polyaromatic substrates close to room temperature. These substrates usually require elevated temperatures to be reactive in the presence of catalyst systems with conventional ligands such as SPhos. The present study hence provides important insights for the design of high-performance catalysts for solid-state reactions and has the potential to inspire the development of industrially attractive, almost solvent-free mechanochemical cross-coupling technologies.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
13
|
Margetić D. Recent applications of mechanochemistry in synthetic organic chemistry. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
The promotion of chemical reactions by an unconventional energy source, mechanical energy (mechanochemistry) has increasing number of applications in organic synthesis. The advantages of mechanochemistry are versatile, from reduction of solvent use, increase of reaction efficiency to better environmental sustainability. This paper gives a short review on the recent developments in the fast growing field of organic mechanochemistry which are illustrated by selected examples.
Collapse
Affiliation(s)
- Davor Margetić
- Laboratory for Physical Organic Chemistry, Division of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička c. 54 , 10000 Zagreb , Croatia
| |
Collapse
|
14
|
Reynes JF, García F. Temperature-Controlled Mechanochemistry Unlocks the Nickel-Catalyzed Suzuki-Miyaura-Type Coupling of Aryl Sulfamates at Different Scales. Angew Chem Int Ed Engl 2023; 62:e202215094. [PMID: 36331906 DOI: 10.1002/anie.202215094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Several mechanochemically heated processes have been published in recent years. However, precise control over the mechanochemical catalysed coupling reactions remained elusive. A recent report from Leitch, Browne and co-workers demonstrated how a programmable jar heater manifold delivers an efficient methodology for the Suzuki-Miyaura-type cross coupling reaction of aryl sulfamates and aryl boronic acid species. This methodology can be readily upscaled 200-fold using twin-screw extrusion methodologies.
Collapse
Affiliation(s)
- Javier F Reynes
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, 33006 Asturias, Oviedo, Spain
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, 33006 Asturias, Oviedo, Spain
| |
Collapse
|
15
|
Pétry N, Luttringer F, Bantreil X, Lamaty F. A mechanochemical approach to the synthesis of sydnones and derivatives. Faraday Discuss 2023; 241:114-127. [PMID: 36134497 DOI: 10.1039/d2fd00096b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sydnones are heterocyclic compounds which display important biological activities, including their abilities to react in 1,3-dipolar additions for applications in the development of new prodrugs. Capitalizing on our preliminary work on the mechanosynthesis of sydnones, an extension of this work to two related families of molecules, diarylsydnones and iminosydnones is reported. A ball-milling approach towards the synthesis of diaryl sydnones was developed, a necessary step for the synthesis of potential sydnone-based ligands of metal complexes. A mechanochemistry-based synthesis of iminosydnones was optimized, including the preparation of active pharmaceutical ingredients (API) related to feprosidnine, linsidomine, mesocarb and molsidomine. This work demonstrated that the ball-milling procedures were efficient and time saving through avoiding purification steps, and reduced the use of organic solvents.
Collapse
Affiliation(s)
- Nicolas Pétry
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Xavier Bantreil
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France. .,Institut Universitaire de France (IUF), France
| | - Frédéric Lamaty
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
16
|
Yoo K, Fabig S, Grätz S, Borchardt L. The impact of the physical state and the reaction phase in the direct mechanocatalytic Suzuki-Miyaura coupling reaction. Faraday Discuss 2023; 241:206-216. [PMID: 36200472 DOI: 10.1039/d2fd00100d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The direct mechanocatalytic Suzuki-Miyaura coupling reaction, utilizing palladium milling balls as active catalysts, was investigated regarding the physical state of the reagents and the reaction phase. The substitution patterns and functional groups of different aryl iodides were varied and different boronic acid derivates were utilized to achieve a wide range of substrate combinations. In the neat grinding experiments, liquid aryl iodides were more reactive than solid ones and a steric influence of the substituents, especially pronounced in ortho compounds, was observed. In order to overcome the general low reactivity of the solid phase, several liquid-assisted grinding experiments were conducted and the influence of substrate solubility and catalyst wettability analyzed. Among all LAG additives, EtOH showed the greatest impact on the reactivity, as it converts boronic acid derivatives into liquid and reactive esters under mechanochemical conditions, significantly speeding up the reaction.
Collapse
Affiliation(s)
- Kwangho Yoo
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Sven Fabig
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
17
|
Wang C, Yang L. An Efficient Solvent-free Synthesis of Spiro-substituted Cyclopropanes by Grinding. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2141042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Changqing Wang
- College of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, China
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang, China
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Jiujiang University, Jiujiang, China
| |
Collapse
|
18
|
Wang G, Geng Y, Zhao Z, Zhang Q, Li X, Wu Z, Bi S, Zhan H, Liu W. Exploring the In Situ Formation Mechanism of Polymeric Aluminum Chloride-Silica Gel Composites under Mechanical Grinding Conditions: As a High-Performance Nanocatalyst for the Synthesis of Xanthene and Pyrimidinone Compounds. ACS OMEGA 2022; 7:32577-32587. [PMID: 36120003 PMCID: PMC9476523 DOI: 10.1021/acsomega.2c04159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The use of mechanical ball milling to facilitate the synthesis of organic compounds has attracted intense interest from organic chemists. Herein, we report a new process for the preparation of xanthene and pyrimidinone compounds by a one-pot method using polymeric aluminum chloride (PAC), silica gel, and reaction raw materials under mechanical grinding conditions. During the grinding process, polymeric aluminum chloride and silica gel were reconstituted in situ to obtain a new composite catalyst (PAC-silica gel). This catalyst has good stability (six cycles) and wide applicability (22 substrates). The Al-O-Si active center formed by in situ grinding recombination was revealed to be the key to the effective catalytic performance of the PAC-silica gel composites by the comprehensive analysis of the catalytic materials before and after use. In addition, the mechanism of action of the catalyst was verified using density functional theory, and the synthetic pathway of the xanthene compound was reasonably speculated with the experimental data. Mechanical ball milling serves two purposes in this process: not only to induce the self-assembly of silica and PAC into new composites but also to act as a driving force for the catalytic reaction to take place. From a practical point of view, this "one-pot" catalytic method eliminates the need for a complex preparation process for catalytic materials. This is a successful example of the application of mechanochemistry in materials and organic synthesis, offering unlimited possibilities for the application of inorganic polymer materials in green synthesis and catalysis promoted by mechanochemistry.
Collapse
Affiliation(s)
- Gang Wang
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Yage Geng
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Zejing Zhao
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Qiuping Zhang
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiang Li
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Zhiqiang Wu
- College
of Chemistry and Chemical Engineering, Ningxia
Normal university, Guyuan 756000, P. R. China
| | - Shuxian Bi
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Haijuan Zhan
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Wanyi Liu
- State
Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical
Engineering, National Demonstration Center for Experimental Chemistry
Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
19
|
Bolt RRA, Raby‐Buck SE, Ingram K, Leitch JA, Browne DL. Temperature‐Controlled Mechanochemistry for the Nickel‐Catalyzed Suzuki–Miyaura‐Type Coupling of Aryl Sulfamates via Ball Milling and Twin‐Screw Extrusion. **. Angew Chem Int Ed Engl 2022; 61:e202210508. [PMID: 36082766 PMCID: PMC9828252 DOI: 10.1002/anie.202210508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/12/2023]
Abstract
The nickel catalyzed Suzuki-Miyaura-type coupling of aryl sulfamates and boronic acid derivatives enabled by temperature-controlled mechanochemistry via the development of a programmable PID-controlled jar heater is reported. This base-metal-catalyzed, solvent-free, all-under-air protocol was also scaled 200-fold using twin-screw extrusion technology affording decagram quantities of material.
Collapse
Affiliation(s)
- Robert R. A. Bolt
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| | - Sarah E. Raby‐Buck
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| | - Katharine Ingram
- Syngenta, Jealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
20
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
21
|
Panther LA, Guest DP, McGown A, Emerit H, Tareque RK, Jose A, Dadswell CM, Coles SJ, Tizzard GJ, González‐Méndez R, Goodall CAI, Bagley MC, Spencer J, Greenland BW. Solvent‐Free Synthesis of Core‐Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald–Hartwig Reactions. Chemistry 2022; 28:e202201444. [PMID: 35621283 PMCID: PMC9544761 DOI: 10.1002/chem.202201444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Solvent‐free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’‐bis(2‐ethylhexyl)‐2,6‐dibromo‐1,4,5,8‐naphthalenetetracarboxylic acid (Br2‐NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real‐world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.
Collapse
Affiliation(s)
- Lydia A. Panther
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Daniel P. Guest
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Andrew McGown
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Hugo Emerit
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Raysa Khan Tareque
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Arathy Jose
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Chris M. Dadswell
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Simon J. Coles
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Graham J. Tizzard
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Ramón González‐Méndez
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Charles A. I. Goodall
- Faculty of Engineering & Science FES Engineering & Science School Operations University of Greenwich Old Royal Naval College Park Row London SE10 9LS UK
| | - Mark C. Bagley
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - John Spencer
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
- Sussex Drug Discovery Centre School of Life Sciences University of Sussex Falmer, Brighton BN1 9QG UK
| | - Barnaby W. Greenland
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| |
Collapse
|
22
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Kraus FJL, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki-Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022; 61:e202205003. [PMID: 35638133 PMCID: PMC9543434 DOI: 10.1002/anie.202205003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The molecular Suzuki cross-coupling reaction was conducted mechanochemically, without solvents, ligands, or catalyst powders. Utilizing one catalytically active palladium milling ball, products could be formed in quantitative yield in as little as 30 min. In contrast to previous reports, the adjustment of milling parameters led to the complete elimination of abrasion from the catalyst ball, thus enabling the first reported systematic catalyst analysis. XPS, in situ XRD, and reference experiments provided evidence that the milling ball surface was the location of the catalysis, allowing a mechanism to be proposed. The versatility of the approach was demonstrated by extending the substrate scope to deactivated and even sterically hindered aryl iodides and bromides.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Claudio Beaković
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maike Mayer
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maximilian Wohlgemuth
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | | | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY)Notkestraße 8522607HamburgGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
23
|
Čarný T, Peňaška T, Andrejčák S, Šebesta R. Mechanochemical Pd‐Catalyzed Cross‐Coupling of Arylhalides and Organozinc Pivalates. Chemistry 2022; 28:e202202040. [DOI: 10.1002/chem.202202040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Tibor Peňaška
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
24
|
Kubota K, Baba E, Seo T, Ishiyama T, Ito H. Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry. Beilstein J Org Chem 2022; 18:855-862. [PMID: 35957749 PMCID: PMC9344555 DOI: 10.3762/bjoc.18.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 01/04/2023] Open
Abstract
This study describes the solid-state palladium-catalyzed cross-coupling between aryl halides and bis(pinacolato)diboron using ball milling. The reactions were completed within 10 min for most aryl halides to afford a variety of synthetically useful arylboronates in high yields. Notably, all experimental operations could be performed in air, and did not require the use of large amounts of dry and degassed organic solvents. The utility of this method was further demonstrated by gram-scale synthesis under solvent-free, mechanochemical conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Emiru Baba
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tatsuo Ishiyama
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
25
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Leon Kraus FJ, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki‐Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wilm Pickhardt
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Claudio Beaković
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Maike Mayer
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | | | | | - Martin Etter
- DESY Accelerator Centre: Deutsches Elektronen-Synchrotron DESY GERMANY
| | - Sven Grätz
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Lars Borchardt
- Ruhr-Universitat Bochum Inorganic Chemistry Universitätsstraße 150 44801 Bochum GERMANY
| |
Collapse
|
26
|
Mechanochemical Dimerization of Aldoximes to Furoxans. Molecules 2022; 27:molecules27082604. [PMID: 35458802 PMCID: PMC9027020 DOI: 10.3390/molecules27082604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Solvent-free mechanical milling is a new, environmentally friendly and cost-effective technology that is now widely used in the field of organic synthesis. The mechanochemical solvent-free synthesis of furoxans from aldoximes was achieved through dimerization of the in situ generated nitrile oxides in the presence of sodium chloride, Oxone and a base. A variety of furoxans was obtained with up to a 92% yield. The present protocol has the advantages of high reaction efficiency and mild reaction conditions.
Collapse
|
27
|
Zhang J, Zhang P, Ma Y, Szostak M. Mechanochemical Synthesis of Ketones via Chemoselective Suzuki-Miyaura Cross-Coupling of Acyl Chlorides. Org Lett 2022; 24:2338-2343. [PMID: 35297638 DOI: 10.1021/acs.orglett.2c00519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The direct synthesis of ketones via acyl Suzuki-Miyaura cross-coupling of widely available acyl chlorides is a central transformation in organic synthesis. Herein, we report the first mechanochemical solvent-free method for highly chemoselective synthesis of ketones from acyl chlorides and boronic acids. This acylation reaction is conducted in the solid state, in the absence of potentially harmful solvents, for a short reaction time and shows excellent selectivity for C(acyl)-Cl bond cleavage.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
28
|
Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Sustainable Mechanosynthesis of Biologically Active Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ophélie Bento
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | | | | | - Nicolas Pétry
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Xavier Bantreil
- IBMM: Institut des Biomolecules Max Mousseron Chemistry FRANCE
| | - Frédéric Lamaty
- IBMM: Institut des Biomolecules Max Mousseron Chemistry 1919 Rte de Mende 34293 Montpellier FRANCE
| |
Collapse
|
29
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Kubota K, Endo T, Uesugi M, Hayashi Y, Ito H. Solid-State C-N Cross-Coupling Reactions with Carbazoles as Nitrogen Nucleophiles Using Mechanochemistry. CHEMSUSCHEM 2022; 15:e202102132. [PMID: 34816600 DOI: 10.1002/cssc.202102132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The palladium-catalyzed solid-state C-N cross-coupling of carbazoles with aryl halides via a high-temperature ball-milling technique has been reported. This reaction allowed simple, fast, and efficient synthesis of N-arylcarbazole derivatives in good to excellent yields without the use of large amounts of organic solvents in air. Importantly, the developed solid-state coupling approach enabled the cross-coupling of poorly soluble aryl halides with large polyaromatic structures that are barely reactive under conventional solution-based conditions.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tsubura Endo
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Minami Uesugi
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuta Hayashi
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
31
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
32
|
Kubota K, Kondo K, Seo T, Ito H. Insight into the Reactivity Profile of Solid-State Aryl Bromides in Suzuki-Miyaura Cross-Coupling Reactions Using Ball Milling. Synlett 2022. [DOI: 10.1055/a-1748-3797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite recent advances in solid-state organic synthesis using ball milling, insight into the unique reactivity of solid-state substrates, which is often different from that in solution, has been poorly explored. In this study, we investigated the relationship between the reactivity and melting points of aryl halides in solid-state Suzuki-Miyaura cross-coupling reactions and the effect of reaction temperature on these processes. We found that aryl halides with high melting points showed significantly low reactivity in the solid-state cross-coupling near room temperature, but the reactions were notably accelerated by increasing the reaction temperature. Given that the reaction temperature is much lower than the melting points of these substrates, the acceleration effect is most likely ascribed to the weakening of the intermolecular interactions between the substrate molecules in the solid-state. The present study provides important perspectives for the rational design of efficient solid-state organic transformations using ball milling.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Keisuke Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Hajime Ito
- Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Torres-Pastor MÁ, Espro C, Selva M, Perosa A, Romero Reyes AA, Osman SM, Luque R, Rodríguez-Padrón D. Glycerol Valorization towards a Benzoxazine Derivative through a Milling and Microwave Sequential Strategy. Molecules 2022; 27:632. [PMID: 35163895 PMCID: PMC8838984 DOI: 10.3390/molecules27030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Glycerol and aminophenol intermolecular condensation has been investigated through a milling and microwave-assisted sequential strategy, towards the synthesis of a benzoxaxine derivative. Mechanochemical activation prior to the microwave-assisted process could improve the probability of contact between the reagents, and greatly favors the higher conversion of aminophenol. At the same time, following a mechanochemical-microwave sequential approach could tune the selectivity towards the formation of a benzoxazine derivative, which could find application in a wide range of biomedical areas.
Collapse
Affiliation(s)
- Miguel Ángel Torres-Pastor
- Grupo FQM-383, Departamento de Química Orgánica, Universidad de Cordoba, 14014 Cordoba, Spain; (M.Á.T.-P.); (A.A.R.R.)
| | - Claudia Espro
- Dipartimento di Ingegneria, Università di Messina, 98100 Messina, Italy
| | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi, UniversitàCa’ Foscari di Venezia, 30123 Venezia, Italy; (M.S.); (A.P.)
| | - Alvise Perosa
- Dipartimento di Scienze Molecolari e Nanosistemi, UniversitàCa’ Foscari di Venezia, 30123 Venezia, Italy; (M.S.); (A.P.)
| | - Antonio A. Romero Reyes
- Grupo FQM-383, Departamento de Química Orgánica, Universidad de Cordoba, 14014 Cordoba, Spain; (M.Á.T.-P.); (A.A.R.R.)
| | - Sameh M. Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rafael Luque
- Grupo FQM-383, Departamento de Química Orgánica, Universidad de Cordoba, 14014 Cordoba, Spain; (M.Á.T.-P.); (A.A.R.R.)
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Scientific Center for Molecular Design and Synthesis of Innovative Compounds for the Medical Industry, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | | |
Collapse
|
34
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
35
|
Osakada K, Nishihara Y. Transmetalation of boronic acids and their derivatives: mechanistic elucidation and relevance to catalysis. Dalton Trans 2021; 51:777-796. [PMID: 34951434 DOI: 10.1039/d1dt02986j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Suzuki-Miyaura reaction (the cross-coupling reaction of boronic acids with organic halides catalysed by Pd complexes) has been recognised as a useful synthetic organic reaction that forms a C(sp2)-C(sp2) bond. The catalytic cycle of the reaction involves the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. It migrates the aryl and alkenyl groups of boronic acid to Pd and produces a Pd-C bond. Many studies have investigated the mechanism of transmetalation. They elucidated the mechanism of the organometallic reaction and its role as a fundamental step in catalytic reactions. This perspective reviews studies on the transmetalation of aryl- and alkenylboronic acids with Pd(II) complexes. Emphasis was laid on the structures and chemical properties of the intermediate Pd complexes and the effects of OH- on the pathways of the catalytic Suzuki-Miyaura reaction. The reactions of arylboronic acids with Rh(I)-OH complexes were investigated, which are relevant to the mechanism of Rh-catalysed addition of aryl boronic acids to enones and aldehydes. Recent studies on the transmetalation of boronic acids with other late transition metals such as Fe(II), Co(I), Pt(II), Au(III), and Au(I) are presented with the related catalytic reactions and their utilisation in the synthesis of aromatic molecules and π-conjugated materials.
Collapse
Affiliation(s)
- Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama 226-8503, Japan. .,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
36
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
37
|
Takahashi R, Seo T, Kubota K, Ito H. Palladium-Catalyzed Solid-State Polyfluoroarylation of Aryl Halides Using Mechanochemistry. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rikuro Takahashi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
38
|
DeGroot HP, Hanusa TP. Solvate-Assisted Grinding: Metal Solvates as Solvent Sources in Mechanochemically Driven Organometallic Reactions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Henry P. DeGroot
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Timothy P. Hanusa
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
39
|
Bera SK, Mal P. Mechanochemical-Cascaded C-N Cross-Coupling and Halogenation Using N-Bromo- and N-Chlorosuccinimide as Bifunctional Reagents. J Org Chem 2021; 86:14144-14159. [PMID: 34423985 DOI: 10.1021/acs.joc.1c01742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploration of alternative energy sources for chemical transformations has gained significant interest from chemists, and mechanochemistry is one of those sources. Herein, we report the use of N-bromosuccinimides (NBS) and N-chlorosuccinimides (NCS) as bifunctional reagents for a cascaded C-N bond formation and subsequent halogenation reactions. Under the solvent-free mechanochemical (ball-milling) conditions, the synthesis of a wide range of phenanthridinone derivatives from N-methoxy-[1,1'-biphenyl]-2-carboxamides is accomplished. During the reactions, NBS and NCS first assisted the oxidative C-N coupling reaction and subsequently promoted a halogenation reaction. Thus, the role of NBS and NCS was established to be bifunctional. Overall, a mild, solvent-free, convenient, one-pot, and direct synthesis of various bromo- and chloro-substituted phenanthridinone derivatives was achieved.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
40
|
Tanemura K. Acceleration under solvent-drop grinding: Synthesis of bis(indolyl)methanes using small amounts of organic solvents or ionic liquids. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Lamola JL, Moshapo PT, Holzapfel CW, Maumela MC. Evaluation of P-bridged biaryl phosphine ligands in palladium-catalysed Suzuki-Miyaura cross-coupling reactions. RSC Adv 2021; 11:26883-26891. [PMID: 35480011 PMCID: PMC9037619 DOI: 10.1039/d1ra04947j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
A family of biaryl phosphacyclic ligands derived from phobane and phosphatrioxa-adamantane frameworks is described. The rigid biaryl phosphacycles are efficient for Suzuki-Miyaura cross-coupling of aryl bromides and chlorides. In particular, coupling reactions of the challenging sterically hindered and heterocyclic substrates were viable at room temperature.
Collapse
Affiliation(s)
- Jairus L Lamola
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa
| | - Paseka T Moshapo
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa
| | - Cedric W Holzapfel
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa
| | - Munaka Christopher Maumela
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences University of Johannesburg, Kingsway Campus Auckland Park 2006 South Africa .,Sasol (Pty) Ltd, Research and Technology (R & T) 1 Klasie Havenga Rd Sasolburg 1947 South Africa
| |
Collapse
|
42
|
Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angew Chem Int Ed Engl 2021; 60:16003-16008. [PMID: 33991023 DOI: 10.1002/anie.202105381] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a novel strategy for introducing a luminophore into generic polymers facilitated by mechanical stimulation. In this study, polymeric mechanoradicals were formed in situ under ball-milling conditions to undergo radical-radical coupling with a prefluorescent nitroxide-based reagent in order to incorporate a luminophore into the polymer main chains via a covalent bond. This method allowed the direct and conceptually simple preparation of luminescent polymeric materials from a wide range of generic polymers such as polystyrene, polymethyl methacrylate, and polyethylene. These results indicate that the present mechanoradical coupling strategy may help to transform existing commodity polymers into more valuable functional materials.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Daiyo Miura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Julong Jiang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Mingoo Jin
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
43
|
Kubota K, Toyoshima N, Miura D, Jiang J, Maeda S, Jin M, Ito H. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Daiyo Miura
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Julong Jiang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Mingoo Jin
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
44
|
Kubota K, Ito H. Development of Selective Reactions Using Ball Milling. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| |
Collapse
|
45
|
Rzhevskiy SA, Topchiy MA, Bogachev VN, Minaeva LI, Cherkashchenko IR, Lavrov KV, Sterligov GK, Nechaev MS, Asachenko AF. Solvent-free palladium-catalyzed C–O cross-coupling of aryl bromides with phenols. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Rzhevskiy SA, Topchiy MA, Bogachev VN, Minaeva LI, Cherkashchenko IR, Lavrov KV, Sterligov GK, Nechaev MS, Asachenko AF. Solvent-free palladium-catalyzed C–O cross-coupling of aryl bromides with phenols. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Seo T, Toyoshima N, Kubota K, Ito H. Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides. J Am Chem Soc 2021; 143:6165-6175. [PMID: 33784464 DOI: 10.1021/jacs.1c00906] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conventional organic synthesis generally relies on the use of liquid organic solvents to dissolve the reactants. Therefore, reactions of sparingly soluble or insoluble substrates are challenging and often ineffective. The development of a solvent-independent solid-state approach that overcomes this longstanding solubility issue would provide innovative synthetic solutions and access to new areas of chemical space. Here, we report extremely fast and highly efficient solid-state palladium-catalyzed Suzuki-Miyaura cross-coupling reactions via a high-temperature ball-milling technique. This solid-state protocol enables the highly efficient cross-couplings of insoluble aryl halides with large polyaromatic structures that are barely reactive under conventional solution-based conditions. Notably, we discovered a new luminescent organic material with a strong red emission. This material was prepared via the solid-state coupling of Pigment violet 23, a compound that has so far not been involved in molecular transformations due to its extremely low solubility. This study thus provides a practical method for accessing unexplored areas of chemical space through molecular transformations of insoluble organic compounds that cannot be carried out by any other approach.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Naoki Toyoshima
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
48
|
Bagherzadeh N, Sardarian AR, Eslahi H. Sustainable and recyclable magnetic nanocatalyst of 1,10-phenanthroline Pd(0) complex in green synthesis of biaryls and tetrazoles using arylboronic acids as versatile substrates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Ying P, Yu J, Su W. Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001245] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ping Ying
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
50
|
Ito M, Yamabayashi Y, Oikawa M, Kano E, Higuchi K, Sugiyama S. Silica gel-induced aryne generation from o-triazenylarylboronic acids as stable solid precursors. Org Chem Front 2021. [DOI: 10.1039/d1qo00385b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We developed o-triazenylarylboronic acids as stable solid aryne precursors, which generate arynes under mild conditions using silica gel as the sole reagent and undergo reactions with a range of arynophiles both in solution and in the solid-state.
Collapse
Affiliation(s)
- Motoki Ito
- Meiji Pharmaceutical University
- Tokyo 204-8588
- Japan
| | | | - Mio Oikawa
- Meiji Pharmaceutical University
- Tokyo 204-8588
- Japan
| | - Emi Kano
- Meiji Pharmaceutical University
- Tokyo 204-8588
- Japan
| | | | | |
Collapse
|