1
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415728. [PMID: 39981755 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| | - Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Immerwahrstraße 2a, 91054, Erlangen, Germany
| | | | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Kim S, Kwag J, Lee M, Kang S, Kim D, Oh JG, Heo YJ, Ryu J, Park J. Unraveling Serial Degradation Pathways of Supported Catalysts through Reliable Electrochemical Liquid-Cell TEM Analysis. J Am Chem Soc 2025; 147:181-191. [PMID: 39719056 DOI: 10.1021/jacs.4c08825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Electrochemical liquid-cell transmission electron microscopy (e-LCTEM) offers great potential for investigating the structural dynamics of nanomaterials during electrochemical reactions. However, challenges arise from the difficulty in achieving the optimal electrolyte thickness, leading to inconsistent electrochemical responses and limited spatial resolution. In this study, we present advanced e-LCTEM techniques tailored for tracking Pt/C degradation under electrochemical polarization at short intervals with high spatial resolution. Our innovative approach combines microfabrication-based sample preparation with in situ control of electrolyte thickness, ensuring reliable electrochemical signal acquisition and direct observation of sequential catalyst degradation. Quantitative imaging analyses conducted at both global areas and single-particle levels unveil a distinctive degradation mechanism primarily driven by nanoparticle migrations. Smaller nanoparticles exhibit a higher susceptibility to migration, leading to coalescence and final detachment in series. This migration-gated degradation mechanism provides a new perspective on the size-dependent durability of supported nanoparticles, complementing the prevailing explanation centered on the size-dependent dissolution kinetics of nanoparticles.
Collapse
Affiliation(s)
- Sungin Kim
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jimin Kwag
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Minyoung Lee
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Sungsu Kang
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dongjun Kim
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jong-Gil Oh
- Advanced Fuel Cell Technology Development Team 1, R&D division, Hyundai Motor Company, Yongin 16891, Republic of Korea
| | - Young-Jung Heo
- Advanced Fuel Cell Technology Development Team 1, R&D division, Hyundai Motor Company, Yongin 16891, Republic of Korea
| | - Jaeyune Ryu
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jungwon Park
- Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanocrystal Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
3
|
Lee S, Watanabe T, Ross FM, Park JH. Temperature Dependent Growth Kinetics of Pd Nanocrystals: Insights from Liquid Cell Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403969. [PMID: 39109568 DOI: 10.1002/smll.202403969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Indexed: 12/20/2024]
Abstract
Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeung Hun Park
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Information Sciences Institute, University of Southern California, Marina Del Rey, CA, 90292, USA
| |
Collapse
|
4
|
Dash SR, Das C, Das B, Jena AB, Paul S, Sinha S, Tripathy J, Kundu CN. Near infrared-responsive quinacrine-gold hybrid nanoparticles deregulate HSP-70/P300-mediated H3K14 acetylation in ER/PR+ breast cancer stem cells. Nanomedicine (Lond) 2024; 19:581-596. [PMID: 38293827 DOI: 10.2217/nnm-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Aim: This study aimed to determine if quinacrine-gold hybrid nanoparticles (QAuNPs) + near-infrared (NIR) deregulate HSP-70/P300 complex-mediated H3K14 acetylation in estrogen receptor/progesterone receptor (ER/PR+) breast cancer stem cells (CSCs). Materials & methods: Various cells and mouse-based systems were used as models. Results: QAuNP + NIR treatment reduced the nuclear translocation of HSP-70, affected the histone acetyltransferase activity of P300 and specifically decreased H3K14 acetylation in ER/PR+ breast CSCs. Finally, HSP-70 knockdown showed a reduction in P300 histone acetyltransferase activity, decreased H3K14 acetylation and inhibited activation of the TGF-β gene. Conclusion: This study revealed that QAuNP + NIR irradiation inhibits oncogenic activation of the TGF-β gene by decreasing H3K14 acetylation mediated through the HSP-70/P300 nuclear complex in ER/PR+ breast CSCs.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Atala Bihari Jena
- National Centre for Cell Science (NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Jasaswini Tripathy
- School of Applied Sciences (Chemistry), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
5
|
Bijelić L, Ruiz-Zepeda F, Hodnik N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg Chem Front 2024; 11:323-341. [PMID: 38235274 PMCID: PMC10790562 DOI: 10.1039/d3qi01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.
Collapse
Affiliation(s)
- Lazar Bijelić
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| | - Francisco Ruiz-Zepeda
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute for Metals and Technology IMT Lepi pot 11 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| |
Collapse
|
6
|
Yamazaki T, Yashima Y, Katsuno H, Miyazaki H, Gondo T, Kimura Y. In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the Surface of Ice Crystals by Using a Liquid Cell With a Peltier Cooling Holder. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1940-1949. [PMID: 37851094 DOI: 10.1093/micmic/ozad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Liquid cell transmission electron microscopy (LC-TEM) is a unique technique that permits in situ observations of various phenomena in liquids with high spatial and temporal resolutions. One difficulty with this technique is the control of the environmental conditions in the observation area. Control of the temperature ranging from room temperature to minus several tens of degrees Celsius, is desirable for controlling the supersaturation in various materials and for observing crystallization more easily. We have developed a cooling transmission electron microscopy specimen holder that uses Peltier devices, and we have combined it with a liquid cell to realize accurate temperature control in LC-TEM. We evaluated this system by using water as a specimen. Motionless bubbles, shown to be voids containing pressurized gas, formed in the specimen sometime after the temperature had reached -12°C. An electron diffraction pattern showed that the specimen turned into ice Ih after the formation of these bubbles, confirming that our system works properly and can induce crystallization. In addition, we analyzed the behavior of bubbles formed in the ice Ih, and we discussed the formation of these bubbles and their internal pressure.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Yuga Yashima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Hiroyasu Katsuno
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Hiroya Miyazaki
- Mel-Build Corporation, 2-11-36, Ishimaru, Nishi-ku, Fukuoka 819-0025, Japan
| | - Takashi Gondo
- Mel-Build Corporation, 2-11-36, Ishimaru, Nishi-ku, Fukuoka 819-0025, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
7
|
Zschiesche H, Soroka IL, Jonsson M, Tarakina NV. Non-classical crystallization of CeO 2 by means of in situ electron microscopy. NANOSCALE 2023; 15:14595-14605. [PMID: 37610726 PMCID: PMC10500627 DOI: 10.1039/d3nr02400h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
During in situ liquid-phase electron microscopy (LP-EM) observations, the application of different irradiation dose rates may considerably alter the chemistry of the studied solution and influence processes, in particular growth pathways. While many processes have been studied using LP-EM in the last decade, the extent of the influence of the electron beam is not always understood and comparisons with corresponding bulk experiments are lacking. Here, we employ the radiolytic oxidation of Ce3+ in aqueous solution as a model reaction for the in situ LP-EM study of the formation of CeO2 particles. We compare our findings to the results from our previous study where a larger volume of Ce3+ precursor solution was subjected to γ-irradiation. We systematically analyze the effects of the applied irradiation dose rates and the induced diffusion of Ce ions on the growth mechanisms and the morphology of ceria particles. Our results show that an eight orders of magnitude higher dose rate applied during homogeneous electron-radiation in LP-EM compared to the dose rate using gamma-radiation does not affect the CeO2 particle growth pathway despite the significant higher Ce3+ to Ce4+ oxidation rate. Moreover, in both cases highly ordered structures (mesocrystals) are formed. This finding is explained by the stepwise formation of ceria particles via an intermediate phase, a signature of non-classical crystallization. Furthermore, when irradiation is applied locally using LP scanning transmission electron microscopy (LP-STEM), the higher conversion rate induces Ce-ion concentration gradients affecting the CeO2 growth. The appearance of branched morphologies is associated with the change to diffusion limited growth.
Collapse
Affiliation(s)
- Hannes Zschiesche
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Potsdam, Germany.
| | - Inna L Soroka
- Applied Physical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Jonsson
- Applied Physical Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Nadezda V Tarakina
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Potsdam, Germany.
| |
Collapse
|
8
|
Couasnon T, Fritsch B, Jank MPM, Blukis R, Hutzler A, Benning LG. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301904. [PMID: 37439408 PMCID: PMC10477898 DOI: 10.1002/advs.202301904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.
Collapse
Affiliation(s)
- Thaïs Couasnon
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
| | - Birk Fritsch
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Department of Materials Science and EngineeringInstitute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Michael P. M. Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystr. 1091058ErlangenGermany
| | - Roberts Blukis
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Leibniz‐Institut für KristallzüchtungMax‐Born Str. 212489BerlinGermany
| | - Andreas Hutzler
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Liane G. Benning
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Department of Earth SciencesFreie Universität Berlin12249BerlinGermany
| |
Collapse
|
9
|
Fritsch B, Körner A, Couasnon T, Blukis R, Taherkhani M, Benning LG, Jank MPM, Spiecker E, Hutzler A. Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid-Base Correlation beyond pH. J Phys Chem Lett 2023; 14:4644-4651. [PMID: 37167107 DOI: 10.1021/acs.jpclett.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| | - Thaïs Couasnon
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Roberts Blukis
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Mehran Taherkhani
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Liane G Benning
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Michael P M Jank
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Yuan K, Starchenko V, Rampal N, Yang F, Xiao X, Stack AG. Assessing an aqueous flow cell designed for in situ crystal growth under X-ray nanotomography and effects of radiolysis products. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:634-642. [PMID: 37067259 PMCID: PMC10161885 DOI: 10.1107/s1600577523002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.
Collapse
Affiliation(s)
- Ke Yuan
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vitalii Starchenko
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nikhil Rampal
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, Columbia University, NY 10027, USA
| | - Fengchang Yang
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew G. Stack
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
11
|
Lee S, Schneider NM, Tan SF, Ross FM. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS NANO 2023; 17:5609-5619. [PMID: 36881385 DOI: 10.1021/acsnano.2c11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid cell transmission electron microscopy has become a powerful and increasingly accessible technique for in situ studies of nanoscale processes in liquid and solution phase. Exploring reaction mechanisms in electrochemical or crystal growth processes requires precise control over experimental conditions, with temperature being one of the most critical factors. Here we carry out a series of crystal growth experiments and simulations at different temperatures in the well-studied system of Ag nanocrystal growth driven by the changes in redox environment caused by the electron beam. Liquid cell experiments show strong changes in both morphology and growth rate with temperature. We develop a kinetic model to predict the temperature-dependent solution composition, and we discuss how the combined effect of temperature-dependent chemistry, diffusion, and the balance between nucleation and growth rates affect the morphology. We discuss how this work may provide guidance in interpreting liquid cell TEM and potentially larger-scale synthesis experiments for systems controlled by temperature.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202803. [PMID: 35780494 PMCID: PMC9443456 DOI: 10.1002/advs.202202803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Indexed: 05/20/2023]
Abstract
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Tobias S. Zech
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Mark P. Bruns
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| | - Saba Khadivianazar
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Mingjian Wu
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Neda Zargar Talebi
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Sannakaisa Virtanen
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Michael P. M. Jank
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystraße 1091058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Andreas Hutzler
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| |
Collapse
|
13
|
Yamazaki T, Niinomi H, Kimura Y. Feasibility of Control of Particle Assembly by Dielectrophoresis in Liquid-Cell Transmission Electron Microscopy. Microscopy (Oxf) 2022; 71:231-237. [PMID: 35459948 PMCID: PMC9340798 DOI: 10.1093/jmicro/dfac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022] Open
Abstract
Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita 19 Nishi 8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hiromasa Niinomi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita 19 Nishi 8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
14
|
Liu L, Chun J, Zhang X, Sassi M, Stack AG, Pearce CI, Clark SB, Rosso KM, De Yoreo JJ, Kimmel GA. Radiolysis and Radiation-Driven Dynamics of Boehmite Dissolution Observed by In Situ Liquid-Phase TEM. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5029-5036. [PMID: 35390256 DOI: 10.1021/acs.est.1c08415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate. For nanoplatelets that have undergone oriented aggregation, we show that the dissolution occurs preferentially at the particles at the ends of the stacks that are more accessible to bulk solution than at the others inside the aggregate. In addition, at higher dose rates, electrostatic repulsion and knock-on damage from the electron beam causes delamination of the stacks and dissolution at the interfaces between particles in the aggregate, indicating that there is a threshold dose rate for electron-beam enhancement of dissolution of boehmite aggregates.
Collapse
Affiliation(s)
- Lili Liu
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Michel Sassi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Carolyn I Pearce
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Sue B Clark
- Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kevin M Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Greg A Kimmel
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
15
|
Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing. Nat Commun 2022; 13:1402. [PMID: 35301326 PMCID: PMC8931024 DOI: 10.1038/s41467-022-29123-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
The fascinating phenomenon that plasmon excitation can convert isotropic silver nanospheres to anisotropic nanoprisms has already been developed into a general synthetic technique since the discovery in 2001. However, the mechanism governing the morphology conversion is described with different reaction processes. So far, the mechanism based on redox reactions dominated anisotropic growth by plasmon-produced hot carriers is widely accepted and developed. Here, we successfully achieved plasmon-driven high yield conversion of gold nanospheres into nanoplates with iodine as the inducer. To investigate the mechanism, nanopore sensing technology is established to statistically study the intermediate species at the single-nanoparticle level. Surprisingly, the morphology conversion is proved as a hot hole-controlled coalescence-dominated growth process. This work conclusively elucidates that a controllable plasmon-driven nanoparticle-coalescence mechanism could enable the production of well-defined anisotropic metal nanostructures and suggests that the nanopore sensing could be of general use for studying the growth process of nanomaterials.
Collapse
|
16
|
Cha HW, An BS, Yang CW. In Situ Observation of the Early Stages of Rapid Solid-Liquid Reaction in Closed Liquid Cell TEM Using Graphene Encapsulation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:53-60. [PMID: 35177141 DOI: 10.1017/s1431927621013647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid–liquid reactions. However, there are challenges to observe the early stages of spontaneous solid–liquid reactions using a closed-type liquid cell system, the most popular and simple liquid cell system. We propose a graphene encapsulation method to overcome this limitation of closed-type liquid cell TEM. The solid and liquid are separated using graphene to suspend the reaction until the graphene layer is destroyed. Graphene can be decomposed by the high-energy electron beam used in TEM, allowing the reaction to proceed. Fast dissolution of graphene-capped copper nanoparticles in an FeCl3 solution was demonstrated via in situ liquid cell TEM at 300 kV using a cell with closed-type SiNx windows.
Collapse
Affiliation(s)
- Hyun Woo Cha
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do16419, Korea
| | - Byeong-Seon An
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do16419, Korea
| | - Cheol-Woong Yang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do16419, Korea
| |
Collapse
|
17
|
Kimura Y, Katsuno H, Yamazaki T. Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEM. Faraday Discuss 2022; 235:81-94. [DOI: 10.1039/d1fd00125f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several different building blocks or precursors play an important role in the early stages of crystallization of calcium carbonate (CaCO3). Substantial number of studies have been conducted to understand the...
Collapse
|
18
|
Grosse P, Yoon A, Rettenmaier C, Herzog A, Chee SW, Roldan Cuenya B. Dynamic transformation of cubic copper catalysts during CO 2 electroreduction and its impact on catalytic selectivity. Nat Commun 2021; 12:6736. [PMID: 34795221 PMCID: PMC8602378 DOI: 10.1038/s41467-021-26743-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the electroreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C2+ selectivity and stability.
Collapse
Affiliation(s)
- Philipp Grosse
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| |
Collapse
|
19
|
Khelfa A, Nelayah J, Amara H, Wang G, Ricolleau C, Alloyeau D. Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102514. [PMID: 34338365 DOI: 10.1002/adma.202102514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Understanding temperature effects in nanochemistry requires real-time in situ measurements because this key parameter of wet-chemical synthesis simultaneously influences the kinetics of chemical reactions and the thermodynamic equilibrium of nanomaterials in solution. Here, temperature-controlled liquid cell transmission electron microscopy is exploited to directly image the radiolysis-driven formation of gold nanoparticles between 25 °C and 85 °C and provide a deeper understanding of the atomic-scale processes determining the size and shape of gold colloids. By quantitatively comparing the nucleation and growth rates of colloidal assemblies with classical models for nanocrystal formation, it is shown that the increase of the molecular diffusion and the solubility of gold governs the drastic changes in the formation dynamics of nanostructures in solution with temperature. In contraction with the common view of coarsening processes in solution, it is also demonstrated that the dissolution of nanoparticles and thus the Ostwald ripening is not only driven by size effects. Furthermore, visualizing thermal effects on faceting processes at the single nanoparticle level reveals how the competition between the growth speed and the surface diffusion dictates the final shape of nanocrystals.
Collapse
Affiliation(s)
- Abdelali Khelfa
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Jaysen Nelayah
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Hakim Amara
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
- Laboratoire d'Études des Microstructures, ONERA - CNRS - Université Paris Saclay, Chatillon, 92320, France
| | - Guillaume Wang
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Christian Ricolleau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris - CNRS, Paris, 75013, France
| |
Collapse
|
20
|
Moreno-Hernandez IA, Crook MF, Ondry JC, Alivisatos AP. Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. J Am Chem Soc 2021; 143:12082-12089. [PMID: 34319106 DOI: 10.1021/jacs.1c03906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liquid cell electron microscopy enables the study of nanoscale transformations in solvents with high spatial and temporal resolution, but for the technique to achieve its potential requires a new level of control over the reactivity caused by radical generation under electron beam irradiation. An understanding of how to control electron-solvent interactions is needed to further advance the study of structural dynamics for complex materials at the nanoscale. We developed an approach that scavenges radicals with redox species that form well-defined redox couples and control the electrochemical potential in situ. This approach enables the observation of electrochemical structural dynamics at near-atomic resolution with precise control of the liquid environment. Analysis of nanocrystal etching trajectories indicates that this approach can be generalized to several chemical systems. The ability to simultaneously observe heterogeneous reactions at near-atomic resolution and precisely control the electrochemical potential enables the fundamental study of complex nanoscale dynamics with unprecedented detail.
Collapse
Affiliation(s)
- Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Popovic S, Bele M, Hodnik N. Reconstruction of Copper Nanoparticles at Electrochemical CO
2
Reduction Reaction Conditions Occurs
via
Two‐step Dissolution/Redeposition Mechanism. ChemElectroChem 2021. [DOI: 10.1002/celc.202100387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan Popovic
- Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| | - Marjan Bele
- Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 5000 Nova Gorica Slovenia
| |
Collapse
|
22
|
Balaghi SE, Mehrabani S, Mousazade Y, Bagheri R, Sologubenko AS, Song Z, Patzke GR, Najafpour MM. Mechanistic Understanding of Water Oxidation in the Presence of a Copper Complex by In Situ Electrochemical Liquid Transmission Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19927-19937. [PMID: 33886278 DOI: 10.1021/acsami.1c00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of molecular oxygen-evolution reaction (OER) catalysts requires fundamental mechanistic studies on their widely unknown mechanisms of action. To this end, copper complexes keep attracting interest as good catalysts for the OER, and metal complexes with TMC (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) stand out as active OER catalysts. A mononuclear copper complex, [Cu(TMC)(H2O)](NO3)2 (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), combined both key features and was previously reported to be one of the most active copper-complex-based catalysts for electrocatalytic OER in neutral aqueous solutions. However, the functionalities and mechanisms of the catalyst are still not fully understood and need to be clarified with advanced analytical studies to enable further informed molecular catalyst design on a larger scale. Herein, the role of nanosized Cu oxide particles, ions, or clusters in the electrochemical OER with a mononuclear copper(II) complex with TMC was investigated by operando methods, including in situ vis-spectroelectrochemistry, in situ electrochemical liquid transmission electron microscopy (EC-LTEM), and extended X-ray absorption fine structure (EXAFS) analysis. These combined experiments showed that Cu oxide-based nanoparticles, rather than a molecular structure, are formed at a significantly lower potential than required for OER and are candidates for being the true OER catalysts. Our results indicate that for the OER in the presence of a homogeneous metal complex-based (pre)catalyst, careful analyses and new in situ protocols for ruling out the participation of metal oxides or clusters are critical for catalyst development. This approach could be a roadmap for progress in the field of sustainable catalysis via informed molecular catalyst design. Our combined approach of in situ TEM monitoring and a wide range of complementary spectroscopic techniques will open up new perspectives to track the transformation pathways and true active species for a wide range of molecular catalysts.
Collapse
Affiliation(s)
- S Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Somayeh Mehrabani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| | - Younes Mousazade
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| | - Robabeh Bagheri
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| | - Alla S Sologubenko
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Zhenlun Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201 Ningbo, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731 Zanjan, Iran
| |
Collapse
|
23
|
Fritsch B, Hutzler A, Wu M, Khadivianazar S, Vogl L, Jank MPM, März M, Spiecker E. Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopy. NANOSCALE ADVANCES 2021; 3:2466-2474. [PMID: 36134158 PMCID: PMC9419575 DOI: 10.1039/d0na01027h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 05/26/2023]
Abstract
A significant electron-beam induced heating effect is demonstrated for liquid-phase transmission electron microscopy at low electron flux densities using Au nanoparticles as local nanothermometers. The obtained results are in agreement with theoretical considerations. Furthermore, the impact of beam-induced heating on radiolysis chemistry is estimated and the consequences of the effect are discussed.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Andreas Hutzler
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Saba Khadivianazar
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Lilian Vogl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Michael P M Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Martin März
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| |
Collapse
|
24
|
Sun M, Tian J, Chen Q. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 2021; 231:113271. [PMID: 33879369 DOI: 10.1016/j.ultramic.2021.113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Yamazaki T, Kimura Y. Radiolysis-Induced Crystallization of Sodium Chloride in Acetone by Electron Beam Irradiation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-7. [PMID: 33745494 DOI: 10.1017/s1431927621000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ liquid cell transmission electron microscopy (LC-TEM) is an innovative method for studying the processes involved in the formation of crystals in liquids. However, it is difficult to capture early stages of crystallization because of the small field of view and the unfavorable changes in sample composition resulting from electron-beam radiolysis. Nevertheless, if the radiolysis required to induce the crystallization of a sample could be controlled in LC-TEM, this would be advantageous for observing the crystallization process. Here, we examined this possibility by using a mixture of sodium chlorate (NaClO3) and acetone in the LC-TEM. The electron beam induced the formation of dendritic crystals in a saturated acetone solution of NaClO3; moreover, these crystals consisted of sodium chloride (NaCl), rather than NaClO3, suggesting that chloride ions (Cl−), which were not present in the initial solution, were generated by radiolysis of chlorate ions ${\rm \lpar ClO}_3^- \rpar$. As a result, the solution then supersaturated with NaCl because its solubility in acetone is much lower than that of NaClO3. The combination of radiolysis and a solvent in which a solute is much less soluble is potentially useful for establishing crystallization conditions for materials that are difficult to crystallize directly in LC-TEM experiments.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo060-0819, Japan
| |
Collapse
|
26
|
Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Lett 2021; 10:14-38. [PMID: 35548998 DOI: 10.1021/acsmacrolett.0c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.
Collapse
Affiliation(s)
- Lucas R. Parent
- Innovation Partnership Building, The University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
27
|
Guntern YT, Okatenko V, Pankhurst J, Varandili SB, Iyengar P, Koolen C, Stoian D, Vavra J, Buonsanti R. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannick T. Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Cedric Koolen
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| |
Collapse
|
28
|
Velasco-Velez JJ, Mom RV, Sandoval-Diaz LE, Falling LJ, Chuang CH, Gao D, Jones TE, Zhu Q, Arrigo R, Roldan Cuenya B, Knop-Gericke A, Lunkenbein T, Schlögl R. Revealing the Active Phase of Copper during the Electroreduction of CO 2 in Aqueous Electrolyte by Correlating In Situ X-ray Spectroscopy and In Situ Electron Microscopy. ACS ENERGY LETTERS 2020; 5:2106-2111. [PMID: 32551364 PMCID: PMC7296532 DOI: 10.1021/acsenergylett.0c00802] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/27/2020] [Indexed: 05/28/2023]
Abstract
The variation in the morphology and electronic structure of copper during the electroreduction of CO2 into valuable hydrocarbons and alcohols was revealed by combining in situ surface- and bulk-sensitive X-ray spectroscopies with electrochemical scanning electron microscopy. These experiments proved that the electrified interface surface and near-surface are dominated by reduced copper. The selectivity to the formation of the key C-C bond is enhanced at higher cathodic potentials as a consequence of increased copper metallicity. In addition, the reduction of the copper oxide electrode and oxygen loss in the lattice reconstructs the electrode to yield a rougher surface with more uncoordinated sites, which controls the dissociation barrier of water and CO2. Thus, according to these results, copper oxide species can only be stabilized kinetically under CO2 reduction reaction conditions.
Collapse
Affiliation(s)
- Juan-Jesus Velasco-Velez
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Rik V. Mom
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Luis-Ernesto Sandoval-Diaz
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Lorenz J. Falling
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Cheng-Hao Chuang
- Department
of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Dunfeng Gao
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Travis E. Jones
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Qingjun Zhu
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Rosa Arrigo
- School of
Science, Engineering and Environment, University
of Salford, 314 Cockcroft
Building, M5 4 WT Manchester, U.K.
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber-Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Axel Knop-Gericke
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Thomas Lunkenbein
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Robert Schlögl
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Berlin 14195, Germany
| |
Collapse
|
29
|
Sun M, Yu B, Hong M, Li Z, Lyu F, Li X, Li Z, Wei X, Zhang Z, Zhang Y, Chen Q. Controlling the Facet of ZnO during Wet Chemical Etching Its (000 1 ¯ ) O-Terminated Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906435. [PMID: 32108429 DOI: 10.1002/smll.201906435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Special surface plays a crucial role in nature as well as in industry. Here, the surface morphology evolution of ZnO during wet etching is studied by in situ liquid cell transmission electron microscopy and ex situ wet chemical etching. Many hillocks are observed on the (000 1 ¯ ) O-terminated surface of ZnO nano/micro belts during in situ etching. Nanoparticles on the apex of the hillocks are observed to be essential for the formation of the hillocks, providing direct experimental evidence of the micromasking mechanism. The surfaces of the hillocks are identified to be {01 1 ¯ 3 ¯ } crystal facets, which is different from the known fact that {01 1 ¯ 1 ¯ } crystal facets appear on the (000 1 ¯ ) O-terminated surface of ZnO after wet chemical etching. O2 plasma treatment is found to be the key factor for the appearance of {01 1 ¯ 3 ¯ } instead of {01 1 ¯ 1 ¯ } crystal facets after etching for both ZnO nano/micro belts and bulk materials. The synergistic effect of acidic etching and O-rich surface caused by O2 plasma treatment is proposed to be the cause of the appearance of {01 1 ¯ 3 ¯ } crystal facets. This method can be extended to control the surface morphology of other materials during wet chemical etching.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Bocheng Yu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Mengyu Hong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhiwei Li
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Fengjiao Lyu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Xing Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Xianlong Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| | - Zheng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, China
| |
Collapse
|