1
|
Ye K, Han Y, Hu M, Hu P, Ahlquist MSG, Zhang G. Secondary Coordination Effects of Adjacent Metal Center in Metal-Nitrogen-Carbon Improve Scaling Relation of Oxygen Electrocatalysis. J Phys Chem Lett 2025:909-916. [PMID: 39832180 DOI: 10.1021/acs.jpclett.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs). This inspired us to explore potential SCEs in metal-nitrogen-carbon (M-N-C), a promising type of oxygen evolution electrocatalyst. We introduced SCEs with a neighboring metal site that can modulate the adsorption strengths of oxygen-containing intermediates. First-principles calculations show that the second site in the heteronuclear duo four-nitrogen-coordinated metal center can induce SCEs that selectively stabilize the OOH intermediate but with minor effects on the OH intermediate and, thereby, disrupt the scaling relation between oxygen species and eventually increase the catalytic activity in oxygen evolution reactions. Additionally, the activity of oxygen reduction reaction of selected M-N-C is also enhanced by such SCE. Our computational work underscored the critical role SCEs can have in shaping activities of SACs, particularly in favorably altering scaling relationships, and demonstrated its potential to address catalytic challenges in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ke Ye
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Yulan Han
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Min Hu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - P Hu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Future Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Liu Y, Qing Y, Jiang W, Zhou L, Chen C, Shen L, Li B, Zhou M, Lin H. Strategies for Achieving Carbon Neutrality: Dual-Atom Catalysts in Focus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407313. [PMID: 39558720 DOI: 10.1002/smll.202407313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Carbon neutrality is a fundamental strategy for achieving the sustainable development of human society. Catalyzing CO2 reduction into various high-value-added fuels serves as an effective pathway to achieve this strategic objective. Atom-dispersed catalysts have received extensive attention due to their maximum atomic utilization, high catalytic selectivity, and exceptional catalytic performance. Dual-atom catalysts (DACs), as an extension of single-atom catalysts (SACs), not only retain the advantages of SACs, but also produce many new properties. This review initiates its exploration by elucidating the mechanism of CO2 reduction reaction (CO2RR) from CO2 adsorption and CO2 activation. Then, a comprehensive summary of recently developed preparation methods of DACs is presented. Importantly, the mechanisms underlying the promoted catalytic performance of DACs in comparison to SACs are subjected to a comprehensive analysis from adjustable adsorption capacity, tunable electronic structure, strong synergistic effect, and enhanced spacing effect, elucidating their respective superiorities in CO2RR. Subsequently, the application of DACs in CO2RR is discussed in detail. Conclusively, the prospective trajectories and inherent challenges of CO2RR are expounded upon concerning the continued advancement of DACs. This thorough review not only enhances the comprehension of DACs within CO2RR but also accentuates the prospective developments in the design of sophisticated catalytic materials.
Collapse
Affiliation(s)
- Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenhai Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
3
|
Woldu AR, Yohannes AG, Huang Z, Kennepohl P, Astruc D, Hu L, Huang XC. Experimental and Theoretical Insights into Single Atoms, Dual Atoms, and Sub-Nanocluster Catalysts for Electrochemical CO 2 Reduction (CO 2RR) to High-Value Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414169. [PMID: 39593251 DOI: 10.1002/adma.202414169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) conversion into valuable chemicals paves the way for the realization of carbon recycling. Downsizing catalysts to single-atom catalysts (SACs), dual-atom catalysts (DACs), and sub-nanocluster catalysts (SNCCs) has generated highly active and selective CO2 transformation into highly reduced products. This is due to the introduction of numerous active sites, highly unsaturated coordination environments, efficient atom utilization, and confinement effect compared to their nanoparticle counterparts. Herein, recent Cu-based SACs are first reviewed and the newly emerged DACs and SNCCs expanding the catalysis of SACs to electrocatalytic CO2 reduction (CO2RR) to high-value products are discussed. Tandem Cu-based SAC-nanocatalysts (NCs) (SAC-NCs) are also discussed for the CO2RR to high-value products. Then, the non-Cu-based SACs, DACs, SAC-NCs, and SNCCs and theoretical calculations of various transition-metal catalysts for CO2RR to high-value products are summarized. Compared to previous achievements of less-reduced products, this review focuses on the double objective of achieving full CO2 reduction and increasing the selectivity and formation rate toward C-C coupled products with additional emphasis on the stability of the catalysts. Finally, through combined theoretical and experimental research, future outlooks are offered to further develop the CO2RR into high-value products over isolated atoms and sub-nanometal clusters.
Collapse
Affiliation(s)
- Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, Talence, Cedex, 33405, France
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| |
Collapse
|
4
|
Zhao J, Lin S. Towards superior CO 2RR catalysts: Deciphering the selectivity puzzle over dual-atom catalyst. J Colloid Interface Sci 2024; 680:257-264. [PMID: 39566413 DOI: 10.1016/j.jcis.2024.11.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is one of the most important electrocatalytic reactions. Starting from a well-defined *CO intermediate, the CO2RR can bifurcate into two pathways, either forming a hydrogenation product by *CO bond hydrogenation or leading to CO desorption by *C bond cleavage. However, it is perplexing why many dual-atom catalysts (DACs) exhibit high CO selectivity in experiments, despite previous theoretical studies arguing that the *CO bond hydrogenation is thermodynamically more favorable than the *C bond breaking. Furthermore, the selectivity is contingent upon the potential and is perturbed by the hydrogen evolution reaction (HER), which is far from clear. Using ab initio molecular dynamics and a "slow-growth" sampling method to evaluate the potential-dependent kinetics, we uncover the selectivity origin of CO2RR to CO on a typical NC-based DAC (CuFe-N6-C). Importantly, the results show that at higher CO* coverage, CO* desorption kinetics are accelerated, while the competing *CO bond hydrogenation reaction is inhibited at varying potentials. Furthermore, the selectivity of the HER is observed to increase as the potential decreases. However, at higher CO* coverage, the energy barrier for the *C bond cleavage is lower than that for HER, suggesting that HER is suppressed on CuFe-N6-C. Our work unlocks a long-standing puzzle about the selectivity of important DAC catalysts for CO2RR and provides insights for more effective catalyst design.
Collapse
Affiliation(s)
- Jia Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Luo W, Liu J, Hu Y, Yan Q. Single and dual-atom catalysts towards electrosynthesis of ammonia and urea: a review. NANOSCALE 2024; 16:20463-20483. [PMID: 39435616 DOI: 10.1039/d4nr02387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ammonia and urea represent two important chemicals that have contributed to the rapid development of humanity. However, their industrial production requires harsh conditions, consuming excessive energy and resulting in significant greenhouse gas emission. Therefore, there is growing interest in the electrocatalytic synthesis of ammonia and urea as it can be carried out under ambient conditions. Recently, atomic catalysts (ACs) have gained increased attention for their superior catalytic properties, being able to outperform their micro and nano counterparts. This review examines the advantages and disadvantages of ACs and summarises the advancement of ACs in the electrocatalytic synthesis of ammonia and urea. The focus is on two types of AC - single-atom catalysts (SACs) and diatom catalysts (DACs). SACs offer various advantages, including the 100% atom utilization that allows for low material mass loading, suppression of competitive reactions such as hydrogen evolution reaction (HER), and alternative reaction pathways allowing for efficient synthesis of ammonia and urea. DACs inherit these advantages, possessing further benefits of synergistic effects between the two catalytic centers at close proximity, particularly matching the NN bond for N2 reduction and boosting C-N coupling for urea synthesis. DACs also possess the ability to break the linear scaling relation of adsorption energy of reactants and intermediates, allowing for tuning of intermediate adsorption energies. Finally, possible future research directions using ACs are proposed.
Collapse
Affiliation(s)
- Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yue Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
6
|
Wei G, Mao Z, Liu L, Hao T, Zhu L, Xu S, Wang X, Tang S. Rigidly Axial O Coordination-Induced Spin Polarization on Single Ni-N 4-C Site by MXene Coupling for Boosting Electrochemical CO 2 Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52233-52243. [PMID: 39287955 DOI: 10.1021/acsami.4c09592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Regulating the spin states in transition-metal (TM)-based single-atom catalysts (SACs), such as the TM-Nx-C configurations, is crucial for improving the catalytic activity. However, the role of spin in single Ni atoms facilitating the electrochemical CO2 reduction reaction (CO2RR) has been largely overlooked. Using first-principles simulations, we investigated the electrocatalytic performance of Ni-N4-C SACs vertically stacked on the O-terminated MXene nanosheets for the CO2RR. The terminated O atoms on MXene axially interact with the Ni atom due to significant charge transfer between them. Unlike the pure Ni-N4 site, which lacks spin polarization, the newly formed Ni-N4O configuration breaks the spin degeneracy of Ni d orbitals, dramatically lifting the energy level of spin-down d orbitals relative to that of spin-up d orbitals. As a result, the d electrons of Ni in the two spin channels are rearranged, leading to large net spin moments of 1.4 μB. Compared to the Ni-N4 site, the partially filled minority-spin dz2 orbitals of Ni on Ni-N4O weaken the occupied d-π* orbitals between Ni and *COOH, significantly stabilizing the key intermediate. The detailed reaction mechanisms and energetics show that four MXenes, namely, Hf3C2, Zr3C2, Hf2C, and Zr2C, can induce a large spin on the Ni site, thereby improving catalytic activity for CO2 reduction to CO, with a lower onset potential of about -0.75 V vs SHE compared to pure Ni SACs (-1.17 V) according to the potential-constant model with an explicit solvent environment.
Collapse
Affiliation(s)
- Guanping Wei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lingli Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Tiantian Hao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Simin Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xijun Wang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shaobin Tang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
- Engineering Research Center of Bamboo Advanced Materials and Conversion of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
7
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
8
|
Zhao Z, Lu G. Nonbonding Metal-Metal Interaction in Metal-Nitrogen-Carbon Single-Atom Catalysts Boosts CO Electroreduction. J Phys Chem Lett 2024; 15:9738-9745. [PMID: 39288255 DOI: 10.1021/acs.jpclett.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Metal-nitrogen-carbon single-atom catalysts (SACs) have recently emerged as selective electrocatalysts for the reduction of CO2 to CO, but their ability to further electroreduce CO is poor. Here, based on constant-potential density functional theory simulations, we predict that Co-N-M (M = Fe, Co) SACs with nonbonding metallic centers bridged by a common nitrogen atom can catalyze four-electron reduction of CO to methanol at an ultralow overpotential of 220-310 mV. We show that the metal atoms in the SACs are terminated by H species which prevent the formation of σ bonding between CO and the metal atoms. Thanks to the nonbonding electrostatic repulsion between Co and its adjacent M atom, the Co dxz band is broadened and shifted toward the Fermi level, leading to enhanced dxz - 2π* interaction that gives rise to stable CO adsorption and promotes its active and selective reduction. This work offers an alternative strategy to tackle the challenge of CO electroreduction on SACs and highlights the role of nonbonding metal-metal interactions in modulating adsorption properties of SACs.
Collapse
Affiliation(s)
- Zhonglong Zhao
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, California 91330, United States
| |
Collapse
|
9
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
10
|
Li K, Li Q, Zhao F, Chen Q, Fu J, Min X, Li Y, Xiang K, Wang Q, Shi M, Yan X, Chai L. Novel Strategy for Efficient Recovery of CuO-Based Multiple-Metals from Copper Smelter Dust toward CO 2 Electrocatalytic Reduction. ACS OMEGA 2024; 9:38316-38326. [PMID: 39310128 PMCID: PMC11411680 DOI: 10.1021/acsomega.4c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
Copper smelter dust, a typical hazardous waste that is abundant in valuable heavy metals, holds the potential to be regarded as a promising resource. This study introduces a new approach that integrates chlorination roasting and cascade condensation to efficiently recover heavy metals from copper smelter dust. The findings demonstrate the successful separation of heavy metals (Cu, Pb, and Zn) as chlorides at nearly 100% efficiency while also effectively converting trivalent arsenic (As(III)) into pentavalent arsenic (As(V)) and immobilizing it in the roasting residues, thereby reducing environmental risk. Through the utilization of thermogravimetric mass spectrum analysis and thermodynamic equilibrium calculations, the chlorination process for heavy metals was investigated, revealing both direct and indirect chlorination processes. Additionally, the study resulted in the development of a CuO-based multiple-metals electrocatalyst from the oxidized roasting-recovered heavy metal chlorides, exhibiting significantly enhanced catalytic activity and faradaic efficiency for the electroreduction of CO2 into CO and CH4 compared to pure CuO electrocatalyst under similar electrocatalytic conditions. Overall, this work presents a sustainable and scalable method and new insights for addressing environmental risks while repurposing copper smelter dust.
Collapse
Affiliation(s)
- Ken Li
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Qingzhu Li
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Feiping Zhao
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Qin Chen
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
School of Physics, Central South University, Changsha 410083, China
| | - Junwei Fu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
School of Physics, Central South University, Changsha 410083, China
| | - Xiaobo Min
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Yun Li
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Kaisong Xiang
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Qingwei Wang
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Meiqing Shi
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Xu Yan
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| | - Liyuan Chai
- School
of Metallurgy and Environment, Central South
University, Changsha 410083, China
- State
Key Laboratory of Advanced Metallurgy for Nonferrous Metals, Changsha 410083, China
- Chinese
National Engineering Research Center for Control & Treatment of
Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
11
|
Wang B, Yang X, Xie C, Liu H, Ma C, Zhang Z, Zhuang Z, Han A, Zhuang Z, Li L, Wang D, Liu J. A General Metal Ion Recognition Strategy to Mediate Dual-Atomic-Site Catalysts. J Am Chem Soc 2024; 146:24945-24955. [PMID: 39214615 DOI: 10.1021/jacs.4c06173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Heterogeneous dual-atomic-site catalysts (DACs) hold great potential for diverse applications. However, to date, the synthesis of DACs primarily relies on different atoms freely colliding on the support during synthesis, principally leading to low yields. Herein, we report a general metal ion recognition (MIR) strategy for constructing a series of DACs, including but not limited to Fe1Sn1, Fe1Co1, Fe1Ni1, Fe1Cu1, Fe1Mn1, Co1Ni1, Co1Cu1, Co2, and Cu2. This strategy is achieved by coupling target inorganometallic cations and anions as ion pairs, which are sequentially adsorbed onto a nitrogen-doped carbon substrate as the precursor. Taking the oxygen reduction reaction as an example, we demonstrated that the Fe1Sn1-DAC synthesized through this strategy delivers a record peak power density of 1.218 W cm-2 under 2.0 bar H2-O2 conditions and enhanced stability compared to the single-atom-site FeN4. Further study revealed that the superior performance arises from the synergistic effect of Fe1Sn1 dual vicinal sites, which effectively optimizes the adsorption of *OH and alleviates the troublesome Fenton-like reaction.
Collapse
Affiliation(s)
- Bingqing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chongbao Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zedong Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Prod Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
12
|
Zhao J, Wang J, Xue L, Wang Y, Wen N, Huang H, Zhang Z, Ding Z, Yuan R, Roeffaers MBJ, Fu X, Lu X, Long J. Surface Oxygen Defect Engineering of A 2B 2O 7 Pyrochlore Semiconductors Boosts the Electrocatalytic Reduction of CO 2-to-HCOOH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402459. [PMID: 38751061 DOI: 10.1002/smll.202402459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Indexed: 10/04/2024]
Abstract
The electrocatalytic conversion of inert CO2 to value-added chemical fuels powered by renewable energy is one of the benchmark approaches to address excessive carbon emissions and achieve carbon-neutral energy restructuring. However, the adsorption/activation of supersymmetric CO2 is facing insurmountable challenges that constrain its industrial-scale applications. Here, this theory-guided study confronts these challenges by leveraging the synergies of bimetallic sites and defect engineering, where pyrochlore-type semiconductor A2B2O7 is employed as research platform and the conversion of CO2-to-HCOOH as the model reaction. Specifically, defect engineering intensified greatly the chemisorption-induced CO2 polarization via the bimetallic coordination, thermodynamically beneficial to the HCOOH production via the *HCO2 intermediate. The optimal V-BSO-430 electrocatalyst with abundant surface oxygen vacancies achieved a superior HCOOH yield of 116.7 mmol h-1 cm-2 at -1.2 VRHE, rivalling the incumbent similar reaction systems. Furthermore, the unique catalytic unit featured with a Bi1-Sn-Bi2 triangular structure, which is reconstructed by defect engineering, and altered the pathway of CO2 adsorption and activation to allow the preferential affinity of the suspended O atom in *HCO2 to H. As a result, V-BSO-430 gave an impressive FEHCOOH of 93% at -1.0 VRHE. This study held promises for inspiring the exploration of bimetallic materials from the massive semiconductor database.
Collapse
Affiliation(s)
- Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- CCRC, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiashun Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lan Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ying Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Na Wen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Leuven, 3001, Belgium
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Leuven, 3001, Belgium
| | - Xianzhi Fu
- CCRC, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xu Lu
- CCRC, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
13
|
Liu Z, Ma A, Wang Z, Li C, Ding Z, Pang Y, Fan G, Xu H. Single-cluster anchored on PC 6 monolayer as high-performance electrocatalyst for carbon dioxide reduction reaction: First principles study. J Colloid Interface Sci 2024; 669:600-611. [PMID: 38729008 DOI: 10.1016/j.jcis.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Tremendous challenges remain to develop high-efficient catalysts for carbon dioxide reduction reaction (CO2RR) owing to the poor activity and low selectivity. However, the activity of catalyst with single active site is limited by the linear scaling relationship between the adsorption energy of intermediates. Motivated by the idea of multiple activity centers, triple metal clusters (M = Cr, Mn, Fe, Co, Ni, Cu, Pd, and Rh) doped PC6 monolayer (M3@PC6) were constructed in this study to investigate the CO2RR catalytic performance via density functional theory calculations. Results shows Mn3@PC6, Fe3@PC6, and Co3@PC6 exhibit high activity and selectivity for the reduction of CO2 to CH4 with limiting potentials of -0.32, -0.28, and -0.31 V, respectively. Analysis on the high-performance origin shows the more binding sites in M3@PC6 render the triple-atom anchored catalysts (TACs) high ability in regulating the binding strength with intermediates by self-adjusting the charges and conformation, leading to the improved performance of M3@PC6 than dual-atom doped PC6. This work manifests the huge application of PC6 based TACs in CO2RR, which hope to prove valuable guidance for the application of TACs in a broader range of electrochemical reactions.
Collapse
Affiliation(s)
- Zhiyi Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Aling Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Zhenzhen Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Chenyin Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Zongpeng Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - YuShan Pang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Guohong Fan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Hong Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
14
|
Zhang Y, Yao Z, Yang Y, Zhai X, Zhang F, Guo Z, Liu X, Yang B, Liang Y, Ge G, Jia X. Breaking the scaling relations of effective CO 2 electrochemical reduction in diatomic catalysts by adjusting the flow direction of intermediate structures. Chem Sci 2024:d4sc03085k. [PMID: 39129777 PMCID: PMC11310890 DOI: 10.1039/d4sc03085k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (CO2RR) is a promising approach to achieving a sustainable carbon cycle. Recently, diatomic catalysts (DACs) have demonstrated advantages in the CO2RR due to their complex and flexible active sites. However, our understanding of how DACs break the scaling relationship remains insufficient. Here, we investigate the CO2RR of 465 kinds of graphene-based DACs (M1M2-N6@Gra) formed from 30 metal atoms through high-throughput density functional theory (DFT) calculations. We find that the intermediates *COOH, *CO, and *CHO have multiple adsorption states, with 11 structural flow directions from *CO to *CHO. Four of these structural flow directions have catalysts that can break the linear scale relationship. Based on the adsorption energy relationship between *COOH, *CHO and *CO, we propose the concepts of linear scaling, moderate breaking, and severe deviation regions, leading to the establishment of new descriptors that identify 14 catalysts with potential superior performance. Among them, ZnRu-N6@Gra and CrNi-N6@Gra can reduce CO2 to CH4 at a low limiting potential. We also discovered that DACs have independent bidirectional electron transfer channels during the adsorption and activation of CO2, which can significantly improve the flexibility and efficiency of regulating the electronic structure. Furthermore, through machine learning (ML) analysis, we identify electronegativity, atomic number, and d electron count as key determinants of catalyst stability. This work provides new insights into the understanding of the DAC catalytic mechanism, as well as the design and screening of catalysts.
Collapse
Affiliation(s)
- Yanwen Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi 832003 China
- Department of Physics, College of Science, Shihezi University Shihezi 832003 China
| | - Zhaoqun Yao
- College of Agriculture, Shihezi University Shihezi 832003 China
| | - YiMing Yang
- Department of Physics, College of Science, Shihezi University Shihezi 832003 China
| | - Xingwu Zhai
- Key Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Feng Zhang
- Department of Mathematics, College of Science, Shihezi University Shihezi 832003 China
| | - Zhirong Guo
- Department of Physics, College of Science, Shihezi University Shihezi 832003 China
| | - Xinghuan Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Bin Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi 832003 China
| | - Yunxia Liang
- Department of Physics, College of Science, Shihezi University Shihezi 832003 China
| | - Guixian Ge
- Department of Physics, College of Science, Shihezi University Shihezi 832003 China
| | - Xin Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University Shihezi 832003 China
| |
Collapse
|
15
|
Li R, Wang C, Liu Y, Suo C, Zhang D, Zhang J, Guo W. Computational screening of defective BC 3-supported single-atom catalysts for electrochemical CO 2 reduction. Phys Chem Chem Phys 2024; 26:18285-18301. [PMID: 38910560 DOI: 10.1039/d4cp01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) driven by renewable electricity offers a green and sustainable technology for synthesizing chemicals and managing global carbon balance. However, developing electrocatalysts with high activity and selectivity for producing C1 products (CO, HCOOH, CH3OH, and CH4) remains a daunting task. In this study, we conducted comprehensive first-principles calculations to investigate the eCO2RR mechanism using B-defective BC3-supported transition metal single-atom catalysts (TM@BC3 SACs). Initially, we evaluated the thermodynamic and electrochemical stability of the designed 26 TM@BC3 SACs by calculating the binding energy and dissolution potential of the anchored TM atoms. Subsequently, the selectivity of the eCO2RR and hydrogen evolution reaction (HER) on stable SACs was determined by comparing the free energy change (ΔG) for the first protonation of CO2 with the ΔG of *H formation. The stability and selectivity screening processes enabled us to narrow down the pool of SACs to the 14 promising ones. Finally, volcano plots for the eCO2RR towards different C1 products were established by using the adsorption energy descriptors of key intermediates, and three SACs were predicted to exhibit high activity and selectivity. The limiting potentials (UL) for HCOOH production on Pd@BC3 and Ag@BC3 are -0.11 V and -0.14 V. CH4 is a preferred product on Re@BC3 with UL of -0.22 V. Elaborate electronic structure calculations elucidate that the activity and selectivity originate from the sufficient activation of the C-O bond and the strong orbital hybridization between crucial intermediates and metal atoms. The proposed catalyst screening criteria, constructed volcano plots and predicted SACs may provide a theoretical foundation for the development of computationally guided catalyst designs for electrochemical CO2 conversion to C1 products.
Collapse
Affiliation(s)
- Renyi Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Caimu Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaozhong Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Chengxiang Suo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Danyang Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiao Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
- Frontiers Science Center for High Energy Material (MOE), Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Wang M, Kong L, Lu X, Wu CML. Coordination Environment Engineering to Regulate the Adsorption Strength of Intermediates in Single Atom Catalysts for High-performance CO 2 Reaction Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310339. [PMID: 38295011 DOI: 10.1002/smll.202310339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/08/2024] [Indexed: 02/02/2024]
Abstract
The modulation of the coordination environment of single atom catalysts (SACs) plays a vital role in promoting CO2 reduction reaction (CO2RR). Herein, N or B doped Fe-embedded graphyne (Fe-GY), Fe-nXGYm (n = 1, 2, 3; X = N, B; m = 1, 2, 3), are employed as probes to reveal the effect of the coordination environment engineering on CO2RR performance via heteroatom doping in SACs. The results show that the doping position and number of N or B in Fe-GY significantly affects catalyst activity and CO2RR product selectivity. In comparison, Fe-1NGY exhibits high-performance CO2RR to CH4 with a low limiting potential of -0.17 V, and Fe-2NGY3 is demonstrated as an excellent CO2RR electrocatalyst for producing HCOOH with a low limiting potential of -0.16 V. With applied potential, Fe-GY, Fe-1NGY, and Fe-2NGY3 exhibit significant advantages in CO2RR to CH4 while hydrogen evolution reaction is inhibited. The intrinsic essence analysis illustrates that heteroatom doping modulates the electronic structure of active sites and regulates the adsorption strength of the intermediates, thereby rendering a favorable coordination environment for CO2RR. This work highlights Fe-nXGYm as outstanding SACs for CO2RR, and provides an in-depth insight into the intrinsic essence of the promotion effect from heteroatom doping.
Collapse
Affiliation(s)
- Maohuai Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Lingyan Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
17
|
Sun T, Wu J, Lu X, Tang X. Selectivities of Stepped Cu-M (M = Pt, Ni, Pd, Zn, Ag, Au) Bimetallic Surface Environment for C1 and C2 Pathways. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9289-9298. [PMID: 38646870 DOI: 10.1021/acs.langmuir.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Copper (Cu) emerges as a highly efficient and cheap catalytic agent for the electrochemical reduction of carbon dioxide (CO2RR), promising a sustainable route toward carbon neutrality. Despite its utility, the Cu catalyst exhibits limitations in terms of product selectivity, highlighting the need for the development of a superior catalyst design. Herein, we present a density functional theory (DFT) investigation into the selectivities of Cu-M (M = Pt, Ni, Pd, Zn, Ag, Au) bimetallic catalysts (BMCs) for the carbon dioxide reduction reaction (CO2RR). The interaction between the metals of Cu-M makes the surface electrons reconstruct so that the d-band center shifts to the Fermi level. In terms of CO2 activation, the Cu-Ni catalyst exhibits superior performance. Additionally, the Cu-Pd catalyst favors the formation of *COH along the reaction pathway, favoring the generation of CH4. Conversely, the Cu-Ni catalyst preferentially produces *CHO, thereby favoring the production of CH3OH. For the Cu-Ag catalyst, the reaction intermediates along the C2 pathway are *CO-*CHO and *COH-*CHO. The Cu-Ni catalyst follows a reaction path that proceeds via *CO-*CO → *CO-*COH → *COH-CHO. On the other hand, the Cu-Pt catalyst exhibits a reaction sequence of *CO-*CO → *CO-*CHO → *OCH-*OCH. This study provides guiding significance for the design of Cu-based bimetallic catalysts aimed at improving the selectivities and efficiency of the CO2RR process.
Collapse
Affiliation(s)
- Taozhi Sun
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jingjing Wu
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xianglong Lu
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xin Tang
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
18
|
Li BH, Zhang KH, Wang XJ, Li YP, Liu X, Han BH, Li FT. Construction synergetic adsorption and activation surface via confined Cu/Cu 2O and Ag nanoparticles on TiO 2 for effective conversion of CO 2 to CH 4. J Colloid Interface Sci 2024; 660:961-973. [PMID: 38281477 DOI: 10.1016/j.jcis.2024.01.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
High-performance photocatalysts for catalytic reduction of CO2 are largely impeded by inefficient charge separation and surface activity. Reasonable design and efficient collaboration of multiple active sites are important for attaining high reactivity and product selectivity. Herein, Cu-Cu2O and Ag nanoparticles are confined as dual sites for assisting CO2 photoreduction to CH4 on TiO2. The introduction of Cu-Cu2O leads to an all-solid-state Z-scheme heterostructure on the TiO2 surface, which achieves efficient electron transfer to Cu2O and adsorption and activation of CO2. The confined nanometallic Ag further enhances the carrier's separation efficiency, promoting the conversion of activated CO2 molecules to •COOH and further conversion to CH4. Particularly, this strategy is highlighted on the TiO2 system for a photocatalytic reduction reaction of CO2 and H2O with a CH4 generation rate of 62.5 μmol∙g-1∙h-1 and an impressive selectivity of 97.49 %. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Bo-Hui Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kai-Hua Zhang
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao-Jing Wang
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Yu-Pei Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xinying Liu
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa (UNISA), Florida 1710, South Africa
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fa-Tang Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
19
|
Chang S, Wang H, Ji Y, Li Y. Influence factors of CO adsorption on C 2N-supported dual-atom catalysts unveiled by machine learning and twofold feature engineering. Phys Chem Chem Phys 2024; 26:9350-9355. [PMID: 38444345 DOI: 10.1039/d4cp00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Dual-atom catalysts (DACs) have emerged as a compelling frontier in the realm of the electrochemical carbon dioxide reduction reaction (CO2RR). However, elucidating the intrinsic properties of dual-atom pairs and their direct correlation with catalytic activity poses significant challenges. Herein, we investigate CO adsorption on 248 kinds of C2N-supported DACs and analyze the underlying structure-activity relationships of dual transition metal (TM) atoms based on density functional theory (DFT) calculations and machine learning (ML) models. Compared to the direct input of atomic features in the decision tree model of ML, we confirm that extra feature engineering with the introduction of the arithmetic combination of atomic features can better reflect the correlation of dual TM atoms on C2N-based DACs. Further feature importance analysis reveals a strong relationship between the last one occupied orbital radius (rv), group number (G) for dual TM atoms and the CO binding strength, as well as a potential connection with the d band centre (εd). Our work provides deeper insights into the design of DACs and highlights the significance of twofold feature engineering for the synergistic effects between dual TM atoms.
Collapse
Affiliation(s)
- Shikai Chang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongshuai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- DP Technology, Beijing, 100080, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
20
|
Seong H, Chang K, Sun F, Lee S, Han SM, Kim Y, Choi CH, Tang Q, Lee D. ClAg 14 (C≡C t Bu) 12 Nanoclusters as Efficient and Selective Electrocatalysts Toward Industrially Relevant CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306089. [PMID: 38145332 PMCID: PMC10933691 DOI: 10.1002/advs.202306089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Indexed: 12/26/2023]
Abstract
Atomically precise metal nanoclusters (NCs) have emerged as a promising frontier in the field of electrochemical CO2 reduction reactions (CO2 RR) because of their distinctive catalytic properties. Although numerous metal NCs are developed for CO2 RR, their use in practical applications has suffered from their low-yield synthesis and insufficient catalytic activity. In this study, the large-scale synthesis and electrocatalytic performance of ClAg14 (C≡Ct Bu)12 + NCs, which exhibit remarkable efficiency in catalyzing CO2 -to-CO electroreduction with a CO selectivity of over 99% are reported. The underlying mechanisms behind this extraordinary CO2 RR activity of ClAg14 (C≡Ct Bu)12 + NCs are investigated by a combination of electrokinetic and theoretical studies. These analyses reveal that different active sites, generated through electrochemical activation, have unique adsorption properties for the reaction intermediates, leading to enhanced CO2 RR and suppressed hydrogen production. Furthermore, industrially relevant CO2 -to-CO electroreduction using ClAg14 (C≡Ct Bu)12 + NCs in a zero-gap CO2 electrolyzer, achieving high energy efficiency of 51% and catalyst activity of over 1400 A g-1 at a current density of 400 mA cm-2 is demonstrated.
Collapse
Affiliation(s)
- Hoeun Seong
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Kiyoung Chang
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing401331China
| | - Sojung Lee
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Sang Myeong Han
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Yujin Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I–CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing401331China
| | - Dongil Lee
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
21
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
22
|
Jiang X, Chen C, Chen J, Yu S, Yu W, Shen L, Li B, Zhou M, Lin H. Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169142. [PMID: 38070550 DOI: 10.1016/j.scitotenv.2023.169142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Single-atom catalysts, characterized by individual metal atoms as active centers, have emerged as promising candidates owing to their remarkable catalytic efficiency, maximum atomic utilization efficiency, and robust stability. However, the limitation of single-atom catalysts lies in their inability to cater to multistep reactions using a solitary active site. Introducing an additional metal atom can amplify the number of active sites, modulate the electronic structure, bolster adsorption ability, and enable a gamut of core reactions, thus augmenting their catalytic prowess. As such, dual-atom catalysts have risen to prominence. However, a comprehensive review elucidating the realm of dual-atom catalysts in environmental remediation is currently lacking. This review endeavors to bridge this gap, starting with a discourse on immobilization techniques for dual-atom catalysts, which includes configurations such as adjacent atoms, bridged atoms, and co-facially separated atoms. The review then delves into the intrinsic activity mechanisms of these catalysts, elucidating aspects like adsorption dynamics, electronic regulation, and synergistic effects. Following this, a comprehensive summarization of dual-atom catalysts for environmental applications is provided, spanning electrocatalysis, photocatalysis, and Fenton-like reactions. Finally, the existing challenges and opportunities in the field of dual-atom catalysts are extensively discussed. This work aims to be a beacon, illuminating the path towards the evolution and adoption of dual-atom catalysts in environmental remediation.
Collapse
Affiliation(s)
- Xialiang Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shuning Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
23
|
Zhao X, Li WP, Cao Y, Portniagin A, Tang B, Wang S, Liu Q, Yu DYW, Zhong X, Zheng X, Rogach AL. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti 3C 2T x MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS NANO 2024; 18:4256-4268. [PMID: 38265044 DOI: 10.1021/acsnano.3c09639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of Ti3C2Tx by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-Ti3C2Tx electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm-2, respectively. Importantly, the CoNi-Ti3C2Tx electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm-2. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Wan-Peng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Yanhui Cao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Arsenii Portniagin
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Bing Tang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Qi Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Denis Y W Yu
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaoyan Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Xuerong Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Pico Electron Microscopy of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
24
|
Zhong W, Chen D, Wu Y, Yue J, Shen Z, Huang H, Wang Y, Li X, Lang JP, Xia Q, Cao Y. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis. J Colloid Interface Sci 2024; 655:80-89. [PMID: 37925971 DOI: 10.1016/j.jcis.2023.10.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Electrocatalytic CN coupling using nitrogen (N2) and carbon dioxide (CO2) as precursors offers a promising alternative for urea production under mild conditions, compared to traditional synthesis approaches. However, the design and screening of extremely efficient electrocatalysts remains a significant challenge in this field. Hence, we propose a systematic approach to screen efficient double-atom catalysts (DACs) with both metal and boron active sites, employing density functional theory (DFT). A comprehensive evaluation of 27 potential catalysts were performed, taking into account their stability, co-adsorption of N2 and CO2, as well as the potential-determining step (PDS) involved urea formation. The calculated results show that co-doped graphdiyne with CrB and MnB double atoms (CrB@GDY and MnB@GDY) emerge as potential electrocatalysts for urea production, displaying thermodynamic energy barriers of 0.41 eV and 0.66 eV, respectively. More importantly, these two DACs can significantly suppress the ammonia (NH3) and C1 products formation. Furthermore, a catalytic activity relationship between the d-band centers of the DACs and urea production performance were established. This study not only forecasts two promising DACs for subsequent experimental work but also establishes a theoretical framework for the evaluation of DACs in electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Weichan Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Dixing Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Yongyong Cao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| |
Collapse
|
25
|
Liu X, Wang Z, Feng G, Sun Y, Zhang X, Chen X, Sa R, Li Q, Sun C, Ma Z. Coordination Engineering of Heteronuclear Fe-Mo Dual-Atom Catalyst for Promoted Electrocatalytic Nitrogen Fixation: A DFT Study. Chemistry 2024; 30:e202303148. [PMID: 37943116 DOI: 10.1002/chem.202303148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Developing efficient nanostructured electrocatalysts for N2 reduction to NH3 under mild conditions remains a major challenge. The Fe-Mo cofactor serves as the archetypal active site in nitrogenase. Inspired by nitrogenase, we designed a series of heteronuclear dual-atom catalysts (DACs) labeled as FeMoN6-a Xa (a=1, 2, 3; X=B, C, O, S) anchored on the pore of g-C3 N4 to probe the impact of coordination on FeMo-catalyzed nitrogen fixation. The stability, reaction paths, activity, and selectivity of 12 different FeMoN6-a Xa DACs have been systematically studied using density functional theory. Of these, four DACs (FeMoN5 B1 , FeMoN5 O1 , FeMoN4 O2 , and FeMoN3 C3 ) displayed promising nitrogen reduction reaction (NRR) performance. Notably, FeMoN5 O1 stands out with an ultralow limiting potential of -0.11 V and high selectivity. Analysis of the density of states and charge/spin changes shows FeMoN5 O1 's high activity arises from optimal N2 binding on Fe initially and synergy of the FeMo dimer enabling protonation in NRR. This work contributes to the advancement of rational design for efficient NRR catalysts by regulating atomic coordination environments.
Collapse
Affiliation(s)
- Xiaojing Liu
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Zhiwei Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Guoning Feng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Yujie Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Xintao Zhang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Xin Chen
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Rongjian Sa
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Zuju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
26
|
Iqbal A, Tripathi A, Thapa R. C 2 Product Formation over the C 1 Product and HER on the 111 Plane of Specific Cu Alloy Nanoparticles Identified through Multiparameter Optimization. Inorg Chem 2024; 63:1462-1470. [PMID: 38175274 DOI: 10.1021/acs.inorgchem.3c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
C2 products are more desirable than C1 products during CO2 electroreduction (CO2ER) because the former possess higher energy density and greater industrial value. For CO2ER, Cu is a well-known catalyst, but the selectivity toward C2 products is still a big challenge for researchers due to complex intermediates, different final products, and large space of the catalyst due to its morphology, plane, size, host surface etc. Using density functional theory (DFT) calculations, we find that alloying of Cu nanoparticles can help to enhance the selectivity toward C2 products during CO2ER with a low overpotential. By a systematic investigation of 111 planes (which prefer the C1 product in the case of bulk Cu), the alloys show the generation of C2 products via *CO-*CO dimerization (* indicates adsorbed state). It also suppresses the counter-pathway of hydrogenation of *CO to *CHO, which leads to C1 products. Further, we find that *CH2CHO is the bifurcating intermediate to distinguish between ethanol and ethylene as the final product. We have used simple graphical construction to identify the catalyst for CO2ER over HER, and vice versa. We have also defined the case of hydrogen poisoning and projected a parity plot to recognize the catalyst for C2 product evolution over the C1 product. Our study reveals that Cu-Ag and Cu-Zn catalysts selectively promote ethanol production on 111 planes. Moreover, an edge-doped 2SO2 graphene nanoribbon as the host layer further lowers the barrier and selectively promotes ethanol on Cu38- and Cu79-based alloys. This work provides new theoretical insights into designing Cu-based nanoalloy catalysts for C2 product formation on the 111 plane.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Anjana Tripathi
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
- Centre for Computational and Integrative Sciences, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| |
Collapse
|
27
|
Ren C, Li Q, Ling C, Wang J. Mechanism-Guided Design of Photocatalysts for CO 2 Reduction toward Multicarbon Products. J Am Chem Soc 2023; 145:28276-28283. [PMID: 38095164 DOI: 10.1021/jacs.3c11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photocatalytic reduction of CO2 to high value-added multicarbon (C2+) products is an important way to achieve sustainable production of green energy but limited by the low efficiency of catalysts. One fundamental issue lies in the high complexity of catalyst structure and reaction process, making the rational catalyst design and targeted performance optimization a grand challenge. Herein, we performed a mechanism-guided design of photocatalysts for CO2 reduction by using the experimentally reported Cu doped TiO2 (Cu-TiO2) with high C3H8 selectivity and well-defined structure as the prototype. Our mechanistic study highlights three key factors for C3H8 formation, i.e., formation of double O vacancies (Vdi-O) for selectivity, C-C coupling for activity, and Vdi-O recovery for durability. More importantly, Vdi-O formation/recovery and C-C coupling are negatively correlated, indicating that ideal candidates should achieve a balance between oxygen vacancy (VO) formation and C-C coupling. On this basis, TiO2 with the doping of two adjacent Cu atoms (Cu-Cu-TiO2) was designed with enhanced performance for CO2 photoreduction toward C3H8. Furthermore, a simple descriptor (Nμ, "effective d electron number") based on inherent atomic properties was constructed to uncover the underlying causes of the performance variation of different systems. These results provide new insights into the "structure-performance" relation of metal oxide-based photocatalysts, thus offering useful strategies for the rational design of excellent catalysts for CO2 photoreduction.
Collapse
Affiliation(s)
- Chunjin Ren
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 21189, China
| |
Collapse
|
28
|
Ali E, Sayah MA, Dawood AAAS, Hamoody AHM, Hamoodah ZJ, Ramadan MF, Abbas HA, Alawadi A, Alsalamy A, Abbass R. CO 2 reduction reaction on Sc-doped nanocages as catalysts. J Mol Model 2023; 29:381. [PMID: 37985487 DOI: 10.1007/s00894-023-05776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
CONTEXT The catalytic ability of Sc-doped C46 and Sc-doped Al23P23 as catalysts of CO2-RR to create the CH4 and CH3OH is investigated. The mechanisms of CO2-RR are examined by theoretical methods and ΔGreaction of reaction steps of CO2-RR mechanisms are calculated. The overpotential of CH4 and CH3OH production on Sc-doped C46 and Sc-doped Al23P23 is calculated. The Sc atoms of Sc-doped C46 and Sc-doped Al23P23 can adsorb the CO2 molecule as the first step of CO2-RR. The CH4 is produced from hydrogenation of *CH3O and the *CO → *CHO reaction step is the rate limiting step for CH4 production. The CH3OH can be formed on Sc-doped C46 and Sc-doped Al23P23 by *CO → *CHO → *CH2O → *CH3O → CH3OH mechanism and HCOOH → *CHO → *CH2O → *CH3O → CH3OH mechanism. The Sc-C46 and Sc-Al23P23 can catalyze the CO2-RR to produce the CH4 and CH3OH by acceptable mechanisms. METHODS Here, the structures are optimized by PW91PW91/6-311+G (2d, 2p) and M06-2X/cc-pVQZ methods in GAMESS software. The frequencies of nanocages and their complexes with species of CO2-RR are investigated by mentioned methods. The transition state of each reaction step of CO2-RR is searched by Berny method to find the CO2-RR intermediates. The ∆Eadsorption of intermediates of CO2-RR on surfaces of nanocages is calculated and the ∆Greaction of reaction steps of CO2-RR is calculated.
Collapse
Affiliation(s)
- Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | | | | | | | | | | | - Hussein Abdullah Abbas
- College of Technical Engineering, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Medical Technique, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Baghdad, Al-Muthanna, 66002, Iraq.
| | - Rathab Abbass
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
29
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
30
|
Zhang Q, Tsai HJ, Li F, Wei Z, He Q, Ding J, Liu Y, Lin ZY, Yang X, Chen Z, Hu F, Yang X, Tang Q, Yang HB, Hung SF, Zhai Y. Boosting the Proton-coupled Electron Transfer via Fe-P Atomic Pair for Enhanced Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202311550. [PMID: 37666796 DOI: 10.1002/anie.202311550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Single-atom catalysts exhibit superior CO2 -to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe-P atom paired catalyst onto nitrogen doped graphitic layer (Fe1 /PNG) to accelerate PCET step. Fe1 /PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane-electrode assembly, overperforming the CO current of Fe1 /NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe-P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2 , and enhancing the activity of CO2 reduction. This atom-pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single-atom catalysts.
Collapse
Affiliation(s)
- Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hsin Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Fuhua Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Qinye He
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Xiaoju Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaoyang Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Fangxin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xuan Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
31
|
Chen Y, Lin J, Pan Q, Liu X, Ma T, Wang X. Inter-Metal Interaction of Dual-Atom Catalysts in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202306469. [PMID: 37312248 DOI: 10.1002/anie.202306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Dual-atom catalysts (DACs) have been a new frontier in heterogeneous catalysis due to their unique intrinsic properties. The synergy between dual atoms provides flexible active sites, promising to enhance performance and even catalyze more complex reactions. However, precisely regulating active site structure and uncovering dual-atom metal interaction remain grand challenges. In this review, we clarify the significance of the inter-metal interaction of DACs based on the understanding of active center structures. Three diatomic configurations are elaborated, including isolated dual single-atom, N/O-bridged dual-atom, and direct dual-metal bonding interaction. Subsequently, the up-to-date progress in heterogeneous oxidation reactions, hydrogenation/dehydrogenation reactions, electrocatalytic reactions, and photocatalytic reactions are summarized. The structure-activity relationship between DACs and catalytic performance is then discussed at an atomic level. Finally, the challenges and future directions to engineer the structure of DACs are discussed. This review will offer new prospects for the rational design of efficient DACs toward heterogeneous catalysis.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qin Pan
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xu Liu
- Institute of Clean Energy Chemistry, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3122, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
32
|
Wang J, Deng D, Wu Q, Liu M, Wang Y, Jiang J, Zheng X, Zheng H, Bai Y, Chen Y, Xiong X, Lei Y. Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO 2 Reduction. ACS NANO 2023; 17:18688-18705. [PMID: 37725796 DOI: 10.1021/acsnano.3c07307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 reduction (ECO2R) with renewable electricity is an advanced carbon conversion technology. At present, copper is the only metal to selectively convert CO2 into multicarbon (C2+) products. Among them, atomically dispersed (AD) Cu catalysts have received great attention due to the relatively single chemical environment, which are able to minimize the negative impact of morphology, valence state, and crystallographic properties, etc. on product selectivity. Furthermore, the completely exposed atomic Cu sites not only provide space and bonding electrons for the adsorption of reactants in favor of better catalytic activity but also provide an ideal platform for studying its reaction mechanism. This review summarizes the recent progress of AD Cu catalysts as a chemically tunable platform for ECO2R, including the atomic Cu sites dynamic evolution, the catalytic performance, and mechanism. Furthermore, the prospects and challenges of AD Cu catalysts for ECO2R are carefully discussed. We sincerely hope that this review can contribute to the rational design of AD Cu catalysts with enhanced performance for ECO2R.
Collapse
Affiliation(s)
- Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Qiumei Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
33
|
Peng J, Shi Z, Jiang J, Zhang P, Hsu JP, Li N. Charge-orbital synergistic engineering of TM@Ti 3C 2O 1-xB x for highly selective CO 2 electrochemical reduction. MATERIALS HORIZONS 2023; 10:4278-4292. [PMID: 37439186 DOI: 10.1039/d3mh00503h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inspired by MXene nanosheets and their regulation of surface functional groups, a series of Ti3C2-MXene-based single TM atom electrocatalysts with a doped boron (B) atom (TM@Ti3C2O2-xBx, TM is V, Cr, Mn, Fe, Co or Ni, x = 0.11) are proposed for achieving a high performance catalytic CO2 reduction reaction (CO2RR). The results reveal that the doped B atom involves in the adsorption reaction of CO2 molecules and CO intermediates in the CO2RR. The TM-to-C and B-to-C π-back bonding contribute to the activation of the CO2 molecules and CO intermediates in the CO2RR. Enough electrons from the single TM atom and B atom occupied orbitals can be injected into the CO2 molecules and *CO intermediates through direct bonding interactions, which effectively alleviates the difficulty of the first hydrogenation reaction step and further helps CO reduction towards CH4. The calculated values of ΔG for the first hydrogenation reaction and the formation of *CHO on Ti3C2O2-xBx are significantly smaller than those of other single-atom catalysts (SACs). Fe@Ti3C2O2-xBx is found to have the highest electrocatalytic activity with a limiting potential of ∼0.40 V and exhibits a high selectivity for obtaining CH4 through the CO2RR compared with the hydrogen evolution reaction. This work is expected to open a research path for engineering the charge-orbital state of the innate atoms of a substrate based on mechanistic insights, which guides the rational design of highly selective MXene-based CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Jiahe Peng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
| | - Zuhao Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
| | - Jizhou Jiang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
34
|
Bai Z, Jiang XZ, Luo KH. Theoretical exploration on the performance of single and dual-atom Cu catalysts on the CO 2 electroreduction process: a DFT study. Phys Chem Chem Phys 2023; 25:23717-23727. [PMID: 37614182 DOI: 10.1039/d3cp02403b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Carbon dioxide (CO2) electroreduction by metal-nitrogen-doped carbon (MNC) catalysts is a promising and efficient method to mitigate global warming by converting CO2 molecules to value-added chemicals. In this research, we systematically studied the behaviours of single and dual-atom Cu catalysts during the CO2 electroreduction process using density functional theory (DFT) calculations. Two structures, i.e., CuNC-4-pyridine and CuCuNC-4a, were found to be beneficial for C2 chemical generation with relatively high stabilities. Subsequently, we explored the detailed pathways of key products (CO, HCOOH, CH3OH, CH4, C2H6O, C2H4 and C2H6) during CO2 electroreduction on CuNC-4-pyridine and CuCuNC-4a. This research reveals the mechanisms of key product formation during CO2 electroreduction on CuNC-4-pyridine and CuCuNC-4a, which would provide important insights to guide the design of MNC catalysts with low limiting potentials and high product selectivity.
Collapse
Affiliation(s)
- Zhongze Bai
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Xi Zhuo Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, 110819, PR China.
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
35
|
Liu L, Wu X, Wang F, Zhang L, Wang X, Song S, Zhang H. Dual-Site Metal Catalysts for Electrocatalytic CO 2 Reduction Reaction. Chemistry 2023; 29:e202300583. [PMID: 37367498 DOI: 10.1002/chem.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 06/28/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5265, Renmin Street, Chaoyang District, Changchun, Jilin, 130022, P.R. China
- University of Science and Technology of China, 96, Jinzhai Road, Baohe District, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, 30, Shuangqing Road, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Fang C, Zhou J, Zhang L, Wan W, Ding Y, Sun X. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat Commun 2023; 14:4449. [PMID: 37488102 PMCID: PMC10366111 DOI: 10.1038/s41467-023-40177-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
Dual-atom catalysts, particularly those with heteronuclear active sites, have the potential to outperform the well-established single-atom catalysts for oxygen evolution reaction, but the underlying mechanistic understanding is still lacking. Herein, a large-scale density functional theory is employed to explore the feasibility of *O-*O coupling mechanism, which can circumvent the scaling relationship with improving the catalytic performance of N-doped graphene supported Fe-, Co-, Ni-, and Cu-containing heteronuclear dual-atom catalysts, namely, M'M@NC. Based on the constructed activity maps, a rationally designed descriptor can be obtained to predict homonuclear catalysts. Seven heteronuclear and four homonuclear dual-atom catalysts possess high activities that outperform the minimum theoretical overpotential. The chemical and structural origin in favor of *O-*O coupling mechanism thus leading to enhanced reaction activity have been revealed. This work not only provides additional insights into the fundamental understanding of reaction mechanisms, but also offers a guideline for the accelerated discovery of efficient catalysts.
Collapse
Affiliation(s)
- Cong Fang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
| | - Jian Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lili Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
- Shandong Energy Institute, 266101, Qingdao, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenchao Wan
- Max-Plank Institute for Chemical Energy Conversion, Mülheim an der Ruhr, 45470, Germany
| | - Yuxiao Ding
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Xiaoyan Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.
- Shandong Energy Institute, 266101, Qingdao, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
37
|
Cao Y, Meng Y, An R, Zou X, Huang H, Zhong W, Shen Z, Xia Q, Li X, Wang Y. Revealing electrocatalytic C N coupling for urea synthesis with metal–free electrocatalyst. J Colloid Interface Sci 2023; 641:990-999. [PMID: 36989825 DOI: 10.1016/j.jcis.2023.03.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Urea is ubiquitous in agriculture and industry, but its production consumes a lot of energy. The conversion of nitrogen (N2) and carbon dioxide (CO2) into urea via an electrocatalytic CN coupling reaction under ambient conditions would be a major boon to sustainable development. However, designing a metal - free catalyst with high activity and selectivity for urea remains a major challenge. Herein, by means of density functional theory (DFT) and ab - initio molecular dynamics (AIMD) computations, the B12 cluster doped on nitrogenated graphene (C2N) substrate catalyst (B12@C2N) with superior stability was designed for electrocatalytic urea synthesis starting from the CO2 and N2 through four reaction mechanisms. The nature of the co-adsorption activation of CO2 and N2 on the B12@C2N catalyst was investigated, the electrochemical proton - electron transfer steps and the CN thermochemical coupling led to the synthesis of urea. The study showed that the B12@C2N catalyst exhibited high catalytic activity for urea synthesis with the lowest limiting potential of - 1.01 V following the *HNNH mechanism compared with other mechanisms. The potential - determining step (PDS) is the formation of the *CO+*NH2NH2 species. However, the two - step CN coupling barriers of *NCON species are 0.13 eV and 0.60 eV using AIMD and a "slow - growth" sampling approach in an explicit water molecules model. Calculations also showed that the byproducts of carbon monoxide (CO), methane (CH4), methanol (CH3OH), ammonia (NH3), and hydrogen (H2) can be inhibited on the B12@C2N catalyst. Therefore, the metal - free catalyst not only has a good performance for the hydrogenation of CO2 and N2 promoting the electrochemical reaction, but also facilitates CN thermochemical coupling for urea synthesis. This work provides new insights into the synthesis of urea via the CN coupling reaction on a metal - free electrocatalyst, a process that could contribute to greenhouse gas mitigation to help meet carbon neutrality targets.
Collapse
|
38
|
Yang Y, Liu S, Fu G. Electrochemical Reduction of CO 2 via Single-Atom Catalysts Supported on α-In 2Se 3. J Phys Chem Lett 2023:6110-6118. [PMID: 37364177 DOI: 10.1021/acs.jpclett.3c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In this work, the electrochemical CO2 reduction reaction (CO2RR) over transition metal and α-In2Se3 monolayer catalysts was investigated by density functional theory (DFT) and an effective screening medium method-reference interaction site model (ESM-RISM). On the basis of the scaling relationship between the adsorption free energies of intermediates, we constructed the relationships between oxygen-bound intermediates with *O and carbon-bound intermediates with *CHO. The calculation results indicate that *OCHO intermediates are more favorable for the first hydrogenation of CO2 on M@In2Se3 catalysts; thus, the adsorption energy of oxygen-bound species determines the catalytic performance of M@In2Se3. The Co@In2Se3↓-C was predicted to be the most promising catalyst with a low limiting potential of -0.385 V as determined by the computational hydrogen electrode method. Constant potential calculations also demonstrate that the M@In2Se3 catalysts hold great potential for highly efficient CO2RR. This work provides a fundamental understanding for the rational design of ferroelectric single-atom catalysts for the purpose of highly efficient electrocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yun Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Gang Fu
- College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
39
|
Liu C, Zheng H, Wang T, Zhang X, Guo Z, Li H. Efficient asymmetrical silicon-metal dimer electrocatalysts for the nitrogen reduction reaction. Phys Chem Chem Phys 2023; 25:13126-13135. [PMID: 37129074 DOI: 10.1039/d2cp05959b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (ENRR) has been regarded as an eco-friendly and feasible substitute for the Haber-Bosch method. Identifying the effective catalysts for the ENRR is an extremely important prerequisite but challenging. Herein, asymmetrical silicon-metal dimer catalysts doped into g-C3N4 nanosheets with nitrogen vacancies (SiM@C3N4) were designed to address nitrogen activation and reduction. The concept catalysts of SiM@C3N4 can combine the advantages of silicon-based and metal-based catalysts during the ENRR. Among the catalysts investigated, SiMo@C3N4 and SiRu@C3N4 exhibited the highest activities towards the ENRR with ultra-low onset potentials of -0.20 and -0.39 V; meanwhile, they suppressed the competing hydrogen evolution reaction (HER) due to the relative difficulty in releasing hydrogen. Additionally, SiRu@C3N4 is demonstrated to possess strong hydrophobicity, which is greatly beneficial to the production of ammonia. This research provides insights into asymmetrical silicon-metal dimer catalysts and reveals a new method for developing dual-atom electrocatalysts. This asymmetrical dimer strategy can be applied in other electrocatalytic reactions for energy conversion.
Collapse
Affiliation(s)
- Chuangwei Liu
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Haoren Zheng
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Tianyi Wang
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| | - Xiaoli Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhongyuan Guo
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
40
|
Song Z, Zhou Q, Lu S, Dieb S, Ling C, Wang J. Adaptive Design of Alloys for CO 2 Activation and Methanation via Reinforcement Learning Monte Carlo Tree Search Algorithm. J Phys Chem Lett 2023; 14:3594-3601. [PMID: 37021965 DOI: 10.1021/acs.jpclett.3c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calculations as possible. This framework integrates automatic density functional theory (DFT) calculations with an improved Monte Carlo tree search via reinforcement learning algorithm (MCTS-PG). As a successful example, we apply it to rapidly identify the desired alloy catalysts for CO2 activation and methanation within 200 MCTS-PG steps. To this end, seven alloy surfaces with high theoretical activity and selectivity for CO2 methanation are screened out and further validated by comprehensive free energy calculations. Our adaptive design framework enables the fast computational exploration of materials with desired properties via minimal DFT calculations.
Collapse
Affiliation(s)
- Zhilong Song
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qionghua Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Shuaihua Lu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Sae Dieb
- National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
41
|
Luo Y, Ma Z, Xia X, Zhong J, Wu P, Huang Y. TM 2 -B 2 Quadruple Active Sites Supported on a Defective C 3 N Monolayer as Catalyst for the Electrochemical CO 2 Reduction: A Theoretical Perspective. CHEMSUSCHEM 2023; 16:e202202209. [PMID: 36571161 DOI: 10.1002/cssc.202202209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance electrocatalysts for the CO2 reduction reaction (CO2 RR) holds great potential to mitigate the depletion of fossil feedstocks and abate the emission of CO2 . In this contribution, using density functional theory calculations, we systematically investigated the CO2 RR performance catalyzed by TM2 -B2 (TM=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) supported on a defective C3 N monolayer (V-C3 N). Through the screening in terms of stability of catalyst, activity towards CO2 adsorption, and selectivity against hydrogen evolution reaction, Mn2 -, Fe2 -, Co2 -, and Ni2 -B2 @V-C3 N were demonstrated to be a highly promising CO2 RR electrocatalyst. Due to quadruple active sites, these candidates can adsorb two or three CO2 molecules. Strikingly, different products, distributing from C1 to C2+ , can be generated. The high activity originates from the synergistic effect of TM and B atoms, in which they serve as adsorption sites for the C- and O-species, respectively. The high selectivity towards C2+ products at the Fe2 -, and Ni2 -B2 sites stems from moderate C adsorption strength but relatively weak O adsorption strength, in which a universal descriptor, that is, 0.6 ΔEC -0.4 ΔEO =-1.77 eV (ΔEC /ΔEO is the adsorption energy of C/O), was proposed. This work would offer a novel perspective for the design of high active electrocatalysts towards CO2 RR and for the synthesis of C2+ compounds.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Zengying Ma
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Junwen Zhong
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Peng Wu
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| |
Collapse
|
42
|
Meng Y, Huang H, Zhang Y, Cao Y, Lu H, Li X. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front Chem 2023; 11:1172146. [PMID: 37056353 PMCID: PMC10086683 DOI: 10.3389/fchem.2023.1172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Excess of carbon dioxide (CO2) in the atmosphere poses a significant threat to the global climate. Therefore, the electrocatalytic carbon dioxide reduction reaction (CO2RR) is important to reduce the burden on the environment and provide possibilities for developing new energy sources. However, highly active and selective catalysts are needed to effectively catalyze product synthesis with high adhesion value. Single-atom catalysts (SACs) and double-atom catalysts (DACs) have attracted much attention in the field of electrocatalysis due to their high activity, strong selectivity, and high atomic utilization. This review summarized the research progress of electrocatalytic CO2RR related to different types of SACs and DACs. The emphasis was laid on the catalytic reaction mechanism of SACs and DACs using the theoretical calculation method. Furthermore, the influences of solvation and electrode potential were studied to simulate the real electrochemical environment to bridge the gap between experiments and computations. Finally, the current challenges and future development prospects were summarized and prospected for CO2RR to lay the foundation for the theoretical research of SACs and DACs in other aspects.
Collapse
Affiliation(s)
- Yuxiao Meng
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongjie Huang
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - You Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Hanfeng Lu
- State Key Laboratory Breeding Base of Green−Chemical Synthesis Technology, College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
- *Correspondence: Yongyong Cao, ; Hanfeng Lu, ; Xi Li,
| |
Collapse
|
43
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
44
|
Ding H, Shi Y, Li Z, Wang S, Liang Y, Feng H, Deng Y, Song X, Pu P, Zhang X. Active Learning Accelerating to Screen Dual-Metal-Site Catalysts for Electrochemical Carbon Dioxide Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12986-12997. [PMID: 36853996 DOI: 10.1021/acsami.2c21332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dual-metal-site catalysts (DMSCs) are increasingly important catalysts in the field of electrochemical carbon dioxide reduction reaction (CO2RR) in recent years. However, rapid screening of suitable metal combinations of DMSCs remains a huge challenge. Herein, we constructed an active learning (AL) framework to study CO2RR to HCOOH. This AL framework turned out a success in the accurate prediction of 282 DMSCs for CO2RR through interactive learning between users and machine learning (ML) models. Among the 42 DMSCs calculated in three iteration loops of AL, 29 DMSCs were obtained, where the screening success rate was as high as 70%. Furthermore, we found five experimentally unexplored DMSCs that exhibited better CO2RR activity and selectivity than pure Bi. Low prediction errors on other DMSCs show that the AL model possessed outstanding universality. The results prove the excellent potential of the AL method and provide guidance on the design of high-performance electrocatalysts for CO2RR.
Collapse
Affiliation(s)
- Hu Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yawen Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Si Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yujie Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haisong Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuan Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pengxin Pu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
45
|
Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem Rev 2023; 123:2311-2348. [PMID: 36354420 PMCID: PMC9999430 DOI: 10.1021/acs.chemrev.2c00429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/12/2022]
Abstract
The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.
Collapse
Affiliation(s)
- Jesús Barrio
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Angus Pedersen
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Hui Luo
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Mengnan Wang
- Department
of Materials, Royal School of Mines, Imperial
College London, LondonSW7 2AZ, England, U.K.
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Saurav Ch. Sarma
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Linh Tran Thi Ngoc
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Simon Kellner
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Alain You Li
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
| | - Ana Belén Jorge Sobrido
- School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, England, U.K.
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, LondonSW7 2AZ, England, U.K.
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan
| |
Collapse
|
46
|
Kong Q, An X, Liu Q, Xie L, Zhang J, Li Q, Yao W, Yu A, Jiao Y, Sun C. Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. MATERIALS HORIZONS 2023; 10:698-721. [PMID: 36601800 DOI: 10.1039/d2mh01218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is an urgent need for the development of high performance electrocatalysts for the CO2 reduction reaction (CO2RR) to address environmental issues such as global warming and achieve carbon neutral energy systems. In recent years, Cu-based electrocatalysts have attracted significant attention in this regard. The present review introduces fundamental aspects of the electrocatalytic CO2RR process together with a systematic examination of recent developments in Cu-based electrocatalysts for the electroreduction of CO2 to various high-value multicarbon products. Current challenges and future trends in the development of advanced Cu-based CO2RR electrocatalysts providing high activity and selectivity are also discussed.
Collapse
Affiliation(s)
- Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Qian Liu
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Lisi Xie
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Jing Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Qinye Li
- Dongguan University of Technology, School Chemistry Engineering and Energy Technology, Dongguan 523808, P. R. China
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Aimin Yu
- School of Science, Computing and Engineering Technology, Swinburne University of Technology, VIC, 3122, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
47
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
48
|
Qin X, Cao P, Quan X, Zhao K, Chen S, Yu H, Su Y. Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro-Fenton Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2907-2917. [PMID: 36749299 DOI: 10.1021/acs.est.2c06981] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The heterogeneous electro-Fenton (hetero-e-Fenton)-coupled electrocatalytic oxygen reduction reaction (ORR) is regarded as a promising strategy for ·OH production by simultaneously driving two-electron ORR toward H2O2 and stepped activating the as-generated H2O2 to ·OH. However, the high-efficiency electrogeneration of ·OH remains challengeable, as it is difficult to synchronously obtain efficient catalysis of both reaction steps above on one catalytic site. In this work, we propose a dual-atomic-site catalyst (CoFe DAC) to cooperatively catalyze ·OH electrogeneration, where the atomically dispersed Co sites are assigned to enhance O2 reduction to H2O2 intermediates and Fe sites are responsible for activation of the as-generated H2O2 to ·OH. The CoFe DAC delivers a higher ·OH production rate of 2.4 mmol L-1 min-1 gcat-1 than the single-site catalyst Co-NC (0.8 mmol L-1 min-1 gcat-1) and Fe-NC (1.0 mmol L-1 min-1 gcat-1). Significantly, the CoFe DAC hetero-e-Fenton process is demonstrated to be more energy-efficient for actual coking wastewater treatment with an energy consumption of 19.0 kWh kg-1 COD-1 than other electrochemical technologies that reported values of 29.7∼68.0 kW h kg-1 COD-1. This study shows the attractive advantages of efficiency and sustainability for ·OH electrogeneration, which should have fresh inspiration for the development of new-generation wastewater treatment technology.
Collapse
Affiliation(s)
- Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
49
|
Theoretical Study on Electroreduction of CO2 to C3+ Catalyzed by Polymetallic Phthalocyanine Covalent Organic Frameworks (COFs) in Tandem. Catal Letters 2022. [DOI: 10.1007/s10562-022-04229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Zhang S, Sykes ECH, Montemore MM. Tuning reactivity in trimetallic dual-atom alloys: molecular-like electronic states and ensemble effects. Chem Sci 2022; 13:14070-14079. [PMID: 36540824 PMCID: PMC9728513 DOI: 10.1039/d2sc03650a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/12/2022] [Indexed: 10/11/2023] Open
Abstract
Single-atom alloys (SAAs) have drawn significant attention in recent years due to their excellent catalytic properties. Controlling the geometry and electronic structure of this type of localized catalytic active site is of fundamental and technological importance. Dual-atom alloys (DAAs) consisting of a heterometallic dimer embedded in the surface layer of a metal host would bring increased tunability and a larger active site, as compared to SAAs. Here, we use computational studies to show that DAAs allow tuning of the active site electronic structure and reactivity. Interestingly, combining two SAAs into a dual-atom site can result in molecular-like hybridization by virtue of the free-atom-like electronic d states exhibited by many SAAs. DAAs can inherit the weak d-d interaction between dopants and hosts from the constituent SAAs, but exhibit new electronic and reactive properties due to dopant-dopant interactions in the DAA. We identify many heterometallic DAAs that we predict to be more stable than either the constituent SAAs or homometallic dual-atom sites of each dopant. We also show how both electronic and ensemble effects can modify the strength of CO adsorption. Because of the molecular-like interactions that can occur, DAAs require a different approach for tuning chemical properties compared to what is used for previous classes of alloys. This work provides insights into the unique catalytic properties of DAAs, and opens up new possibilities for tailoring localized and well-defined catalytic active sites for optimal reaction pathways.
Collapse
Affiliation(s)
- Shengjie Zhang
- Department of Chemical and Biomolecular Engineering, Tulane University New Orleans LA 70118 USA
| | | | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University New Orleans LA 70118 USA
| |
Collapse
|