1
|
Calvert SH, Pawlak T, Hessman G, McGouran JF. Rapid diazotransfer for selective lysine labelling. Org Biomol Chem 2024; 22:7976-7981. [PMID: 39283514 DOI: 10.1039/d4ob01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Azide functionalization of protein and peptide lysine residues allows selective bioorthogonal labeling to introduce new, site selective functionaltiy into proteins. Optimised diazotransfer reactions under mild conditions allow aqueous diazotransfer to occur in just 20 min at pH 8.5 on amino acid, peptide and protein targets. In addition, conditons can be modified to selectively label a single lysine residue in both protein targets investigated. Finally, we demonstrate selective modification of proteins containing a single azidolysine using copper(I)-catalyzed triazole formation.
Collapse
Affiliation(s)
- Susannah H Calvert
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Tomasz Pawlak
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Gary Hessman
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
2
|
Toubia I, Puteaux C, Weronika Swiderska K, Hubert-Roux M, Renard PY, Sabot C. A Photoredox Thiol-yne Reaction for the Synthesis of Vinyl Sulfide-Based Coumarins and its Effect on Fluorescence Properties. Chemistry 2024; 30:e202401396. [PMID: 38837499 DOI: 10.1002/chem.202401396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Coumarins still remain one of the most widely explored fluorescent dyes, with a broad spectrum of applications spanning various fields, such as molecular imaging, bioorganic chemistry, materials chemistry, or medical sciences. Their fluorescence is strongly based on a push-pull mechanism involving an electron-donating group (EDG), mainly located at the C7 or C8 positions of the dye core. Unfortunately, up to now, these positions have been very limited to hydroxyl or amino groups. In this study, we present in detail the synthesis of the first series of coumarins bearing a vinyl sulfide as the EDG at the C7 position. These derivatives were prepared by thiol-yne reaction, promoted by ruthenium- or porphyrin-based photoredox catalysis, enabling rapid late-stage diversification. We also functionalized coumarins with short peptides, and BSA protein as a proof-of-concept study, in a single-step process. This strategy, capable of proceeding under aqueous conditions, overcomes the protection/deprotection steps usually required by traditional methods, which also use strong bases and organic solvents. Moreover, the photophysical properties such as absorption and emission of obtained coumarins (for 3-CF3, 3-benzothiazole, 6-8-difluoro derivatives), predominantly exhibited large Stokes shifts (up to 204 nm) and maintained intramolecular charge transfer (ICT) characteristics.
Collapse
Affiliation(s)
- Isabelle Toubia
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Chloé Puteaux
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Karolina Weronika Swiderska
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Marie Hubert-Roux
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Pierre-Yves Renard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Cyrille Sabot
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
3
|
Rabadán González I, McLean JT, Ostrovitsa N, Fitzgerald S, Mezzetta A, Guazzelli L, O'Shea DF, Scanlan EM. A thiol-ene mediated approach for peptide bioconjugation using 'green' solvents under continuous flow. Org Biomol Chem 2024; 22:2203-2210. [PMID: 38414440 DOI: 10.1039/d4ob00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Flow chemistry has emerged as an integral process within the chemical sector permitting energy efficient synthetic scale-up while improving safety and minimising solvent usage. Herein, we report the first applications of the photoactivated, radical-mediated thiol-ene reaction for peptide bioconjugation under continuous flow. Bioconjugation reactions employing deep eutectic solvents, bio-based solvents and fully aqueous systems are reported here for a range of biologically relevant peptide substrates. The use of a water soluble photoinitiator, Irgacure 2959, permitted synthesis of glycosylated peptides in fully aqueous conditions, obviating the need for addition of organic solvents and enhancing the green credentials of these rapid, photoactivated, bioconjugation reactions.
Collapse
Affiliation(s)
- Inés Rabadán González
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sheila Fitzgerald
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Donal F O'Shea
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
4
|
Chen J, Wang Y, Wang R, Yuan R, Chu GC, Li YM. Chemical synthesis of on demand-activated SUMO-based probe by a photocaged glycine-assisted strategy. Bioorg Med Chem Lett 2023; 94:129460. [PMID: 37640164 DOI: 10.1016/j.bmcl.2023.129460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The transiently-activated SUMO probes are conducive to understand the dynamic control of SENPs activity. Here, we developed a photocaged glycine-assisted strategy for the construction of on demand-activated SUMO-ABPs. The light-sensitive groups installed at G92 and G64 backbone of SUMO-2 can temporarily block probes activity and hamper aspartimide formation, respectively, which enabled the efficient synthesis of inert SUMO-2 propargylamide (PA). The probe could be activated to capture SENPs upon photo-irradiation not only in vitro but also in intact cells, providing opportunities to further perform intracellular time-resolved proteome-wide profiling of SUMO-related enzymes.
Collapse
Affiliation(s)
- Jingnan Chen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China
| | - Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China.
| | - Rongtian Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China
| | - Rujing Yuan
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, China.
| |
Collapse
|
5
|
Tang JH, Shu QY, Guo YY, Zhu H, Li YM. Cell-Permeable Ubiquitin and Histone Tools for Studying Post-translational Modifications. Chembiochem 2023; 24:e202300169. [PMID: 37060212 DOI: 10.1002/cbic.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/16/2023]
Abstract
Protein post-translational modifications (PTMs) regulate nearly all biological processes in eukaryotic cells, and synthetic PTM protein tools are widely used to detect the activity of the related enzymes and identify the interacting proteins in cell lysates. Recently, the study of these enzymes and the interacting proteome has been accomplished in live cells using cell-permeable PTM protein tools. In this concept, we will introduce cell penetrating techniques, the syntheses of cell-permeable PTM protein tools, and offer some future perspective.
Collapse
Affiliation(s)
- Jia-Hui Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Qing-Yao Shu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Yan Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Huixia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
6
|
Proteins through the eyes of an organic chemist. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Wang Y, Chen J, Hua X, Meng X, Cai H, Wang R, Shi J, Deng H, Liu L, Li Y. Photocaging of Activity‐Based Ubiquitin Probes via a C‐Terminal Backbone Modification Strategy. Angew Chem Int Ed Engl 2022; 61:e202203792. [DOI: 10.1002/anie.202203792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xiao Hua
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Hongyi Cai
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rongtian Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Jing Shi
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| |
Collapse
|
8
|
Wang Y, Chen J, Hua X, Meng X, Cai H, Wang R, Shi J, Deng H, Liu L, Li Y. Photocaging of Activity‐Based Ubiquitin Probes via a C‐Terminal Backbone Modification Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xiao Hua
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Hongyi Cai
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rongtian Wang
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Jing Shi
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| |
Collapse
|
9
|
McKenna SM, Fay EM, McGouran JF. Flipping the Switch: Innovations in Inducible Probes for Protein Profiling. ACS Chem Biol 2021; 16:2719-2730. [PMID: 34779621 PMCID: PMC8689647 DOI: 10.1021/acschembio.1c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Over the past two
decades, activity-based probes have enabled a
range of discoveries, including the characterization of new enzymes
and drug targets. However, their suitability in some labeling experiments
can be limited by nonspecific reactivity, poor membrane permeability,
or high toxicity. One method for overcoming these issues is through
the development of “inducible” activity-based probes.
These probes are added to samples in an unreactive state and require in situ transformation to their active form before labeling
can occur. In this Review, we discuss a variety of approaches to inducible
activity-based probe design, different means of probe activation,
and the advancements that have resulted from these applications. Additionally,
we highlight recent developments which may provide opportunities for
future inducible activity-based probe innovations.
Collapse
Affiliation(s)
- Sean M. McKenna
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| | - Ellen M. Fay
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Joanna F. McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, Limerick V94 T9PX, Ireland
| |
Collapse
|
10
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
11
|
Lasso JD, Castillo-Pazos DJ, Li CJ. Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chem Soc Rev 2021; 50:10955-10982. [PMID: 34382989 DOI: 10.1039/d1cs00380a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The progress of drug discovery and development is paced by milestones reached in organic synthesis. In the last decade, the advent of late-stage functionalization (LSF) reactions has represented a valuable breakthrough. Recent literature has defined these reactions as the chemoselective modification of complex molecules by means of C-H functionalization or the manipulation of endogenous functional groups. Traditionally, these diversifications have been accomplished by organometallic means. However, the presence of metals carries disadvantages related to their cost, environmental hazard and health risks. Fundamentally, green chemistry directives can help minimize such hazards through the development of metal-free LSF methodologies. In this review, we expand the current discussion on metal-free LSF reactions by providing an overview of C(sp2)-H, and C(sp3)-H functionalizations, as well as the utilization of heteroatom-containing functional groups as chemical handles. Selected topics such as metal-free cross-dehydrogenative coupling (CDC) reactions, organocatalysis, electrochemistry and photochemistry are also discussed. By writing the first review on metal-free LSF methodologies, we aim to highlight current advances in the field with examples that reveal specific challenges and solutions, as well as future research opportunities.
Collapse
Affiliation(s)
- Juan D Lasso
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Durbis J Castillo-Pazos
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Rodrigues LL, Micallef AS, Pfrunder MC, Truong VX, McMurtrie JC, Dargaville TR, Goldmann AS, Feist F, Barner-Kowollik C. A Self-Catalyzed Visible Light Driven Thiol Ligation. J Am Chem Soc 2021; 143:7292-7297. [PMID: 33955743 DOI: 10.1021/jacs.1c03213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.
Collapse
Affiliation(s)
- Leona L Rodrigues
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Aaron S Micallef
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Michael C Pfrunder
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Vinh X Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - John C McMurtrie
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Anja S Goldmann
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Florian Feist
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
Taylor NC, McGouran JF. Investigating eosin Y as a photocatalyst for the radical-dependent activity-based probing of deubiquitinating enzymes. Org Biomol Chem 2021; 19:2177-2181. [PMID: 33630007 DOI: 10.1039/d1ob00253h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eosin Y was assessed for its ability to induce a thiol-ene dependent protein-protein reaction in a metal-free, oxygen-tolerant, visible light mediated system. Protein-protein coupling efficiency under these mild conditions was comparable to previously reported UV-dependent conditions. The desired thiol-ene reaction was however limited within more complex biological systems.
Collapse
Affiliation(s)
- Neil C Taylor
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland.
| | - Joanna F McGouran
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland.
| |
Collapse
|
14
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
15
|
Gui W, Shen S, Zhuang Z. Photocaged Cell-Permeable Ubiquitin Probe for Temporal Profiling of Deubiquitinating Enzymes. J Am Chem Soc 2020; 142:19493-19501. [PMID: 33141564 DOI: 10.1021/jacs.9b12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photocaged cell-permeable ubiquitin probe holds promise in profiling the activity of cellular deubiquitinating enzymes (DUBs) with the much needed temporal control. Here we report a new photocaged cell-permeable ubiquitin probe that undergoes photoactivation upon 365 nm UV treatment and enables intracellular deubiquitinating enzyme profiling. We used a semisynthetic approach to generate modular ubiquitin-based probe containing a tetrazole-derived warhead at the C-terminus of ubiquitin and employed a cyclic polyarginine cell-penetrating peptide (cR10) conjugated to the N-terminus of ubiquitin via a disulfide linkage to deliver the probe into live cells. Upon 365 nm UV irradiation, the tetrazole group is converted to a nitrilimine intermediate in situ, which reacts with nearby nucleophilic cysteine residue from the DUB active site. The new photocaged cell-permeable probe showed good reactivity toward purified DUBs, including USP2, UCHL1, and UCHL3, upon photoirradiation. The Ub-tetrazole probe was also assessed in HeLa cell lysate and showed robust labeling only upon photoactivation. We further carried out protein profiling in intact HeLa cells using the new photocaged cell-permeable ubiquitin probe and identified DUBs captured by the probe using label-free quantitative (LFQ) mass spectrometry. Importantly, the photocaged cell-permeable ubiquitin probe captured DUBs specifically in respective G1/S and G2/M phases in synchronized HeLa cells. Moreover, using this probe DUBs were profiled at different time points following the release of HeLa cells from G1/S phase. Our results showed that photocaged cell-permeable probe represents a valuable new tool for achieving a better understanding of the cellular functions of DUBs.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Siqi Shen
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, Delaware 19716, United States
| |
Collapse
|