1
|
Dougan CE, Fu H, Crosby AJ, Peyton SR. Needle-induced cavitation: A method to probe the local mechanics of brain tissue. J Mech Behav Biomed Mater 2024; 160:106698. [PMID: 39270446 PMCID: PMC11560596 DOI: 10.1016/j.jmbbm.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Traditional mechanical characterization of extremely soft tissues is challenging given difficulty extracting tissue, satisfying geometric requirements, keeping tissues hydrated, and securing the tissue in an apparatus without slippage. The heterogeneous nature and structural complexity of brain tissues on small length scales makes it especially difficult to characterize. Needle-induced cavitation (NIC) is a technique that overcomes these issues and can mechanically characterize brain tissues at precise, micrometer-scale locations. This small-scale capability is crucial in order to spatially characterize diseased tissue states like fibrosis or cancer. NIC consists of inserting a needle into a tissue and pressurizing a fluid until a deformation occurs at the tip of the needle at a critical pressure. NIC is a convenient, affordable technique to measure mechanical properties, such as modulus and fracture energy, and to assess the performance of soft materials. Experimental parameters such as needle size and fluid flowrate are tunable, so that the end-user can control the length and time scales, making it uniquely capable of measuring local mechanical properties across a wide range of strain rates. The portable nature of NIC and capability to conduct in vivo experiments makes it a particularly appealing characterization technique compared to traditional methods. Despite significant developments in the technique over the last decade, wide implementation in the biological field is still limited. Here, we address the limitations of the NIC technique specifically when working with soft tissues and provide readers with expected results for brain tissue. Our goal is to assist others in conducting reliable and reproducible mechanical characterization of soft biomaterials and tissues.
Collapse
Affiliation(s)
- Carey E Dougan
- Chemical Engineering Department, University of Massachusetts, Amherst, USA
| | - Hongbo Fu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, USA
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, USA.
| | - Shelly R Peyton
- Chemical Engineering Department, University of Massachusetts, Amherst, USA; Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA.
| |
Collapse
|
2
|
Varner H, Sugerman GP, Rausch MK, Cohen T. Elasticity of whole blood clots measured via Volume Controlled Cavity Expansion. J Mech Behav Biomed Mater 2023; 143:105901. [PMID: 37207527 DOI: 10.1016/j.jmbbm.2023.105901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Measuring and understanding the mechanical properties of blood clots can provide insights into disease progression and the effectiveness of potential treatments. However, several limitations hinder the use of standard mechanical testing methods to measure the response of soft biological tissues, like blood clots. These tissues can be difficult to mount, and are inhomogeneous, irregular in shape, scarce, and valuable. To remedy this, we employ in this work Volume Controlled Cavity Expansion (VCCE), a technique that was recently developed, to measure local mechanical properties of soft materials in their natural environment. Through highly controlled volume expansion of a water bubble at the tip of an injection needle, paired with simultaneous measurement of the resisting pressure, we obtain a local signature of whole blood clot mechanical response. Comparing this data with predictive theoretical models, we find that a 1-term Ogden model is sufficient to capture the nonlinear elastic response observed in our experiments and produces shear modulus values that are comparable to values reported in the literature. Moreover, we find that bovine whole blood stored at 4 °C for greater than 2 days exhibits a statistically significant shift in the shear modulus from 2.53 ± 0.44 kPa on day 2 (N = 13) to 1.23 ± 0.18 kPa on day 3 (N = 14). In contrast to previously reported results, our samples did not exhibit viscoelastic rate sensitivity within strain rates ranging from 0.22 - 21.1 s-1. By surveying existing data on whole blood clots for comparison, we show that this technique provides highly repeatable and reliable results, hence we propose the more widespread adoption of VCCE as a path forward to building a better understanding of the mechanics of soft biological materials.
Collapse
Affiliation(s)
- Hannah Varner
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, University of Texas at Austin, Austin, 78712, TX, USA
| | - Manuel K Rausch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, 78712, TX, USA; Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, 78712, TX, USA; Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 78712, TX, USA
| | - Tal Cohen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA.
| |
Collapse
|
3
|
Henzel T, Nijjer J, Chockalingam S, Wahdat H, Crosby AJ, Yan J, Cohen T. Interfacial cavitation. PNAS NEXUS 2022; 1:pgac217. [PMID: 36714841 PMCID: PMC9802248 DOI: 10.1093/pnasnexus/pgac217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Cavitation has long been recognized as a crucial predictor, or precursor, to the ultimate failure of various materials, ranging from ductile metals to soft and biological materials. Traditionally, cavitation in solids is defined as an unstable expansion of a void or a defect within a material. The critical applied load needed to trigger this instability -- the critical pressure -- is a lengthscale independent material property and has been predicted by numerous theoretical studies for a breadth of constitutive models. While these studies usually assume that cavitation initiates from defects in the bulk of an otherwise homogeneous medium, an alternative and potentially more ubiquitous scenario can occur if the defects are found at interfaces between two distinct media within the body. Such interfaces are becoming increasingly common in modern materials with the use of multimaterial composites and layer-by-layer additive manufacturing methods. However, a criterion to determine the threshold for interfacial failure, in analogy to the bulk cavitation limit, has yet to be reported. In this work, we fill this gap. Our theoretical model captures a lengthscale independent limit for interfacial cavitation, and is shown to agree with our observations at two distinct lengthscales, via two different experimental systems. To further understand the competition between the two cavitation modes (bulk versus interface), we expand our investigation beyond the elastic response to understand the ensuing unstable propagation of delamination at the interface. A phase diagram summarizes these results, showing regimes in which interfacial failure becomes the dominant mechanism.
Collapse
Affiliation(s)
| | | | | | - Hares Wahdat
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jing Yan
- To whom correspondence should be addressed:
| | - Tal Cohen
- To whom correspondence should be addressed:
| |
Collapse
|
4
|
Dougan CE, Song Z, Fu H, Crosby AJ, Cai S, Peyton SR. Cavitation induced fracture of intact brain tissue. Biophys J 2022; 121:2721-2729. [PMID: 35711142 PMCID: PMC9382329 DOI: 10.1016/j.bpj.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022] Open
Abstract
Nonpenetrating traumatic brain injuries (TBIs) are linked to cavitation. The structural organization of the brain makes it particularly susceptible to tears and fractures from these cavitation events, but limitations in existing characterization methods make it difficult to understand the relationship between fracture and cavitation in this tissue. More broadly, fracture energy is an important, yet often overlooked, mechanical property of all soft tissues. We combined needle-induced cavitation with hydraulic fracture models to induce and quantify fracture in intact brains at precise locations. We report here the first measurements of the fracture energy of intact brain tissue that range from 1.5 to 8.9 J/m2, depending on the location in the brain and the model applied. We observed that fracture consistently occurs along interfaces between regions of brain tissue. These fractures along interfaces allow cavitation-related damage to propagate several millimeters away from the initial injury site. Quantifying the forces necessary to fracture brain and other soft tissues is critical for understanding how impact and blast waves damage tissue in vivo and has implications for the design of protective gear and tissue engineering.
Collapse
Affiliation(s)
- Carey E Dougan
- Chemical Engineering Department, University of Massachusetts, Amherst, Massachusetts
| | - Zhaoqiang Song
- Mechanical and Aerospace Engineering Department, University of California, San Diego, California
| | - Hongbo Fu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts
| | - Shengqiang Cai
- Mechanical and Aerospace Engineering Department, University of California, San Diego, California
| | - Shelly R Peyton
- Chemical Engineering Department, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
5
|
Barney CW, Sacligil I, Tew GN, Crosby AJ. Linking cavitation and fracture to molecular scale structural damage of model networks. SOFT MATTER 2022; 18:4220-4226. [PMID: 35607851 DOI: 10.1039/d2sm00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid expansion of soft solids subjected to a negative hydrostatic stress can occur through cavitation or fracture. Understanding how these two mechanisms relate to a material's molecular structure is important to applications in materials characterization, adhesive design, and tissue damage. Here, a recently improved needle-induced cavitation (NIC) protocol is applied to a set of model end-linked PEG gels with quantitatively linked elastic and fracture properties. This quantitative link between molecular scale structure and macroscopic properties is exploited to experimentally probe the relationship between cavitation, fracture, and molecular scale damage. This work indicates that rational tuning of the elastofracture length relative to the crack geometry can be used to alter the expansion mechanism from cavitation to fracture during NIC.
Collapse
Affiliation(s)
- Christopher W Barney
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Ipek Sacligil
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Gregory N Tew
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alfred J Crosby
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Kim C, Choi WJ, Kang W. Cavitation nucleation and its ductile-to-brittle shape transition in soft gels under translational mechanical impact. Acta Biomater 2022; 142:160-173. [PMID: 35189381 DOI: 10.1016/j.actbio.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Cavitation bubbles in the human body, when subjected to impact, are being increasingly considered as a possible brain injury mechanism. However, the onset of cavitation and its complex dynamics in biological materials remain unclear. Our experimental results using soft gels as a tissue simulant show that the critical acceleration (acr) at cavitation nucleation monotonically increases with increasing stiffness of gelatin A/B, while acr for agarose and agar initially increases but is followed by a plateau or even decrease after stiffness reach to ∼100 kPa. Our image analyses of cavitation bubbles and theoretical work reveal that the observed trends in acr are directly linked to how bubbles grow in each gel. Gelatin A/B, regardless of their stiffness, form a localized damaged zone (tens of nanometers) at the gel-bubble interface during bubble growth. In contrary, the damaged zone in agar/agarose becomes significantly larger (> 100 times) with increasing shear modulus, which triggers the transition from formation of a small, damaged zone to activation of crack propagation. STATEMENT OF SIGNIFICANCE: We have studied cavitation nucleation and bubble growth in four different types of soft gels (i.e., tissue simulants) under translational impact. The critical linear acceleration for cavitation nucleation has been measured in the simulants by utilizing a recently developed method that mimics acceleration profiles of typical head blunt events. Each gel type exhibits significantly different trends in the critical acceleration and bubble shape (e.g., A gel-specific sphere-to-saucer transition) with increasing gel stiffness. Our theoretical framework, based on the concepts of a damaged zone and crack propagation in each gel, explains underlying mechanisms of the experimental observations. Our in-depth studies shed light on potential links between traumatic brain injuries and cavitation bubbles induced by translational acceleration, the overlooked mechanism in the literature.
Collapse
Affiliation(s)
- Chunghwan Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Won June Choi
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States
| | - Wonmo Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, United States.
| |
Collapse
|
7
|
Yang J, Tzoumaka A, Murakami K, Johnsen E, Henann DL, Franck C. Predicting complex nonspherical instability shapes of inertial cavitation bubbles in viscoelastic soft matter. Phys Rev E 2021; 104:045108. [PMID: 34781461 DOI: 10.1103/physreve.104.045108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022]
Abstract
Inertial cavitation in soft matter is an important phenomenon featured in a wide array of biological and engineering processes. Recent advances in experimental, theoretical, and numerical techniques have provided access to a world full of nonlinear physics, yet most of our quantitative understanding to date has been centered on a spherically symmetric description of the cavitation process in water. However, cavitation bubble growth and collapse rarely occur in a perfectly symmetrical fashion, particularly in soft materials. Predicting the onset of dynamically arising, nonspherical instabilities in soft matter has remained a significant, unresolved challenge, in part due to the additional constitutive complexities introduced by the surrounding nonlinear viscoelastic solid. Here, we provide a new theoretical framework capable of accurately predicting the onset of nonspherical instability shapes of a bubble in a soft material by explicitly accounting for all pertinent nonlinear interactions between the cavitation bubble and the solid surroundings. Comparison with high-resolution experimental images from laser-induced cavitation events in a polyacrylamide hydrogel show excellent agreement. Interestingly, and consistent with experimental findings, our model predicts the emergence of various dynamic instability shapes for circumferential bubble stretch ratios greater than 1, in contrast to most quasistatic investigations. Our new theoretical framework not only provides unprecedented insight into the cavitation dynamics in a soft, nonlinear solid, but also provides a quantitative means of interpreting bubble dynamics relevant to a wide array of engineering and medical applications as well as natural phenomena.
Collapse
Affiliation(s)
- Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Anastasia Tzoumaka
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Kazuya Murakami
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David L Henann
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Hasan F, Al Mahmud KAH, Khan MI, Kang W, Adnan A. Effect of random fiber networks on bubble growth in gelatin hydrogels. SOFT MATTER 2021; 17:9293-9314. [PMID: 34647568 DOI: 10.1039/d1sm00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In hydrodynamics, the event of dynamic bubble growth in a pure liquid under tensile pressure is known as cavitation. The same event can also be observed in soft materials (e.g., elastomers and hydrogels). However, for soft materials, bubble/cavity growth is either defined as cavitation if the bubble growth is elastic and reversible or as fracture if the cavity growth is by material failure and irreversible. In any way, bubble growth can cause damage to soft materials (e.g., tissue) by inducing high strain and strain-rate deformation. Additionally, a high-strength pressure wave is generated upon the collapse of the bubble. Therefore, it is crucial to identify the critical condition of spontaneous bubble growth in soft materials. Experimental and theoretical observations have agreed that the onset of bubble growth in soft materials requires higher tensile pressure than pure water. The extra tensile pressure is required since the cavitating bubble needs to overcome the elastic and surface energy in soft materials. In this manuscript, we developed two models to study and quantify the extra tensile pressure for different gelatin concentrations. Both the models are then compared with the existing cavitation onset criteria of rubber-like materials. Validation is done with the experimental results of threshold tensile pressure for different gelatin concentrations. Both models can moderately predict the extra tensile pressure within the intermediate range of gelatin concentrations (3-7% [w/v]). For low concentration (∼1%), the network's non-affinity plays a significant role and must be incorporated. On the other hand, for higher concentrations (∼10%), the entropic deformation dominates, and the strain energy formulation is not adequate.
Collapse
Affiliation(s)
- Fuad Hasan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - K A H Al Mahmud
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - Md Ishak Khan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| | - Wonmo Kang
- School for Engineering of Matter, Transport and Energy, Arizona State University, USA
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, USA.
- Woolf Hall, Room 315C, Arlington, TX 76019, USA
| |
Collapse
|
9
|
Cavitation controls droplet sizes in elastic media. Proc Natl Acad Sci U S A 2021; 118:2102014118. [PMID: 34588303 DOI: 10.1073/pnas.2102014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Biological cells use droplets to separate components and spatially control their interior. Experiments demonstrate that the complex, crowded cellular environment affects the droplet arrangement and their sizes. To understand this behavior, we here construct a theoretical description of droplets growing in an elastic matrix, which is motivated by experiments in synthetic systems where monodisperse emulsions form during a temperature decrease. We show that large droplets only form when they break the surrounding matrix in a cavitation event. The energy barrier associated with cavitation stabilizes small droplets on the order of the mesh size and diminishes the stochastic effects of nucleation. Consequently, the cavitated droplets have similar sizes and highly correlated positions. In particular, we predict the density of cavitated droplets, which increases with faster cooling, as in the experiments. Our model also suggests how adjusting the cooling protocol and the density of nucleation sites affects the droplet size distribution. In summary, our theory explains how elastic matrices affect droplets in the synthetic system, and it provides a framework for understanding the biological case.
Collapse
|
10
|
Spratt JS, Rodriguez M, Schmidmayer K, Bryngelson SH, Yang J, Franck C, Colonius T. Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2021; 152:104455. [PMID: 34092810 PMCID: PMC8177475 DOI: 10.1016/j.jmps.2021.104455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model, providing a more efficient and scalable numerical framework for bubble-collapse rheometry. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D-Var method (En4D-Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin-Voigt material. Results show that En4D-Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D-Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the apparent viscosity is reduced in some cases due to inelastic behavior, possibly in the form of material damage occurring at bubble collapse.
Collapse
Affiliation(s)
- Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mauro Rodriguez
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kevin Schmidmayer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spencer H. Bryngelson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Morelle XP, Sanoja GE, Castagnet S, Creton C. 3D fluorescent mapping of invisible molecular damage after cavitation in hydrogen exposed elastomers. SOFT MATTER 2021; 17:4266-4274. [PMID: 33908597 DOI: 10.1039/d1sm00325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elastomers saturated with gas at high pressure suffer from cavity nucleation, inflation, and deflation upon rapid or explosive decompression. Although this process often results in undetectable changes in appearance, it causes internal damage, hampers functionality (e.g., permeability), and shortens lifetime. Here, we tag a model poly(ethyl acrylate) elastomer with π-extended anthracene-maleimide adducts that fluoresce upon network chain scission, and map in 3D the internal damage present after a cycle of gas saturation and rapid decompression. Interestingly, we observe that each cavity observable during decompression results in a damaged region, the shape of which reveals a fracture locus of randomly oriented penny-shape cracks (i.e., with a flower-like morphology) that contain crack arrest lines. Thus, cavity growth likely proceeds discontinuously (i.e., non-steadily) through the stable and unstable fracture of numerous 2D crack planes. This non-destructive methodology to visualize in 3D molecular damage in polymer networks is novel and serves to understand how fracture occurs under complex 3D loads, predict mechanical aging of pristine looking elastomers, and holds potential to optimize cavitation-resistance in soft materials.
Collapse
Affiliation(s)
- Xavier P Morelle
- SIMM, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France.
| | - Gabriel E Sanoja
- SIMM, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France.
| | - Sylvie Castagnet
- Institut Pprime (UPR 3346 CNRS - ENSMA - Université de Poitiers), Department of Physics and Mechanics of Materials, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Cedex, France
| | - Costantino Creton
- SIMM, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France. and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Mancia L, Yang J, Spratt JS, Sukovich JR, Xu Z, Colonius T, Franck C, Johnsen E. Acoustic cavitation rheometry. SOFT MATTER 2021; 17:2931-2941. [PMID: 33587083 DOI: 10.1039/d0sm02086a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Characterization of soft materials is challenging due to their high compliance and the strain-rate dependence of their mechanical properties. The inertial microcavitation-based high strain-rate rheometry (IMR) method [Estrada et al., J. Mech. Phys. Solids, 2018, 112, 291-317] combines laser-induced cavitation measurements with a model for the bubble dynamics to measure local properties of polyacrylamide hydrogel under high strain-rates from 103 to 108 s-1. While promising, laser-induced cavitation involves plasma formation and optical breakdown during nucleation, a process that could alter local material properties before measurements are obtained. In the present study, we extend the IMR method to another means to generate cavitation, namely high-amplitude focused ultrasound, and apply the resulting acoustic-cavitation-based IMR to characterize the mechanical properties of agarose hydrogels. Material properties including viscosity, elastic constants, and a stress-free bubble radius are inferred from bubble radius histories in 0.3% and 1% agarose gels. An ensemble-based data assimilation is used to further help interpret the obtained estimates. The resulting parameter distributions are consistent with available measurements of agarose gel properties and with expected trends related to gel concentration and high strain-rate loading. Our findings demonstrate the utility of applying IMR and data assimilation methods with single-bubble acoustic cavitation data for measurement of viscoelastic properties.
Collapse
Affiliation(s)
- Lauren Mancia
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Jin Yang
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Jean-Sebastien Spratt
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Mijailovic AS, Galarza S, Raayai-Ardakani S, Birch NP, Schiffman JD, Crosby AJ, Cohen T, Peyton SR, Van Vliet KJ. Localized characterization of brain tissue mechanical properties by needle induced cavitation rheology and volume controlled cavity expansion. J Mech Behav Biomed Mater 2020; 114:104168. [PMID: 33218928 DOI: 10.1016/j.jmbbm.2020.104168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/10/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Changes in the elastic properties of brain tissue have been correlated with injury, cancers, and neurodegenerative diseases. However, discrepancies in the reported elastic moduli of brain tissue are persistent, and spatial inhomogeneities complicate the interpretation of macroscale measurements such as rheology. Here we introduce needle induced cavitation rheology (NICR) and volume-controlled cavity expansion (VCCE) as facile methods to measure the apparent Young's modulus E of minimally manipulated brain tissue, at specific tissue locations and with sub-millimeter spatial resolution. For different porcine brain regions and sections analyzed by NICR, we found E to be 3.7 ± 0.7 kPa and 4.8 ± 1.0 kPa for gray matter, and white matter, respectively. For different porcine brain regions and sections analyzed by VCCE, we found E was 0.76 ± 0.02 kPa for gray matter and 0.92 ± 0.01 kPa for white matter. Measurements from VCCE were more similar to those obtained from macroscale shear rheology (0.75 ± 0.06 kPa) and from instrumented microindentation of white matter (0.97 ± 0.40 kPa) and gray matter (0.86 ± 0.20 kPa). We attributed the higher stiffness reported from NICR to that method's assumption of a cavitation instability due to a neo-Hookean constitutive response, which does not capture the strain-stiffening behavior of brain tissue under large strains, and therefore did not provide appropriate measurements. We demonstrate via both analytical modeling of a spherical cavity and finite element modeling of a needle geometry, that this strain stiffening may prevent a cavitation instability. VCCE measurements take this stiffening behavior into account by employing an incompressible one-term Ogden model to find the nonlinear elastic properties of the tissue. Overall, VCCE afforded rapid and facile measurement of nonlinear mechanical properties of intact, healthy mammalian brain tissue, enabling quantitative comparison among brain tissue regions and also between species. Finally, accurate estimation of elastic properties for this strain stiffening tissue requires methods that include appropriate constitutive models of the brain tissue response, which here are represented by inclusion of the Ogden model in VCCE.
Collapse
Affiliation(s)
- Aleksandar S Mijailovic
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sualyneth Galarza
- Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Shabnam Raayai-Ardakani
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nathan P Birch
- Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Tal Cohen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts-Amherst, Amherst, MA, 01003, USA.
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Rosowski KA, Vidal-Henriquez E, Zwicker D, Style RW, Dufresne ER. Elastic stresses reverse Ostwald ripening. SOFT MATTER 2020; 16:5892-5897. [PMID: 32519711 DOI: 10.1039/d0sm00628a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
When liquid droplets nucleate and grow in a polymer network, compressive stresses can significantly increase their internal pressure, reaching values that far exceed the Laplace pressure. When droplets have grown in a polymer network with a stiffness gradient, droplets in relatively stiff regions of the network tend to dissolve, favoring growth of droplets in softer regions. Here, we show that this elastic ripening can be strong enough to reverse the direction of Ostwald ripening: large droplets can shrink to feed the growth of smaller ones. To numerically model these experiments, we generalize the theory of elastic ripening to account for gradients in solubility alongside gradients in mechanical stiffness.
Collapse
Affiliation(s)
| | | | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
| | - Robert W Style
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
Barney CW, Dougan CE, McLeod KR, Kazemi-Moridani A, Zheng Y, Ye Z, Tiwari S, Sacligil I, Riggleman RA, Cai S, Lee JH, Peyton SR, Tew GN, Crosby AJ. Cavitation in soft matter. Proc Natl Acad Sci U S A 2020; 117:9157-9165. [PMID: 32291337 PMCID: PMC7196784 DOI: 10.1073/pnas.1920168117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cavitation is the sudden, unstable expansion of a void or bubble within a liquid or solid subjected to a negative hydrostatic stress. Cavitation rheology is a field emerging from the development of a suite of materials characterization, damage quantification, and therapeutic techniques that exploit the physical principles of cavitation. Cavitation rheology is inherently complex and broad in scope with wide-ranging applications in the biology, chemistry, materials, and mechanics communities. This perspective aims to drive collaboration among these communities and guide discussion by defining a common core of high-priority goals while highlighting emerging opportunities in the field of cavitation rheology. A brief overview of the mechanics and dynamics of cavitation in soft matter is presented. This overview is followed by a discussion of the overarching goals of cavitation rheology and an overview of common experimental techniques. The larger unmet needs and challenges of cavitation in soft matter are then presented alongside specific opportunities for researchers from different disciplines to contribute to the field.
Collapse
Affiliation(s)
- Christopher W Barney
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Carey E Dougan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Kelly R McLeod
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Amir Kazemi-Moridani
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Yue Zheng
- Department of Mechanical & Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Ziyu Ye
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sacchita Tiwari
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Ipek Sacligil
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003
| | - Robert A Riggleman
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Shengqiang Cai
- Department of Mechanical & Aerospace Engineering, University of California San Diego, La Jolla, CA 92093;
| | - Jae-Hwang Lee
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, MA 01003;
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003;
| | - Gregory N Tew
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003;
| | - Alfred J Crosby
- Polymer Science & Engineering Department, University of Massachusetts, Amherst, MA 01003;
| |
Collapse
|
16
|
Kim JY, Liu Z, Weon BM, Cohen T, Hui CY, Dufresne ER, Style RW. Extreme cavity expansion in soft solids: Damage without fracture. SCIENCE ADVANCES 2020; 6:eaaz0418. [PMID: 32258404 PMCID: PMC7101206 DOI: 10.1126/sciadv.aaz0418] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
Cavitation is a common damage mechanism in soft solids. Here, we study this using a phase separation technique in stretched, elastic solids to controllably nucleate and grow small cavities by several orders of magnitude. The ability to make stable cavities of different sizes, as well as the huge range of accessible strains, allows us to systematically study the early stages of cavity expansion. Cavities grow in a scale-free manner, accompanied by irreversible bond breakage that is distributed around the growing cavity rather than being localized to a crack tip. Furthermore, cavities appear to grow at constant driving pressure. This has strong analogies with the plasticity that occurs surrounding a growing void in ductile metals. In particular, we find that, although elastomers are normally considered as brittle materials, small-scale cavity expansion is more like a ductile process. Our results have broad implications for understanding and controlling failure in soft solids.
Collapse
Affiliation(s)
- Jin Young Kim
- School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
| | - Zezhou Liu
- Department of Mechanical and Aerospace Engineering, Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
| | - Byung Mook Weon
- School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea
| | - Tal Cohen
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chung-Yuen Hui
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Robert W. Style
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
17
|
Lavoie SR, Long R, Tang T. Modeling the Mechanics of Polymer Chains with Deformable and Active Bonds. J Phys Chem B 2019; 124:253-265. [DOI: 10.1021/acs.jpcb.9b09068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shawn R. Lavoie
- Department of Mechanical Engineering, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Rong Long
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Tian Tang
- Department of Mechanical Engineering, 10-203 Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
18
|
Barney CW, Zheng Y, Wu S, Cai S, Crosby AJ. Residual strain effects in needle-induced cavitation. SOFT MATTER 2019; 15:7390-7397. [PMID: 31469148 DOI: 10.1039/c9sm01173k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Needle-induced cavitation (NIC) locally probes the elastic and fracture properties of soft materials, such as gels and biological tissues. Current NIC protocols tend to overestimate properties when compared to traditional techniques. New NIC methods are needed in order to address this issue. NIC measurements consist of two distinct processes, namely (1) the needle insertion process and (2) the cavitation process. The cavitation process is hypothesized to be highly dependent on the initial needle insertion process due to the influence of residual strain below the needle. Retracting the needle before pressurization to a state in which a cylindrical, tube-like fracture is left below the needle tip is experimentally demonstrated to reduce the impact of residual strain on NIC. Verification of the critical cavitation pressure equation in this new geometry is necessary before implementing this retraction NIC protocol. Complementary modeling shows that the change in initial geometry has little effect on the critical cavitation pressure. Together, these measurements demonstrate that needle retraction is a viable experimental protocol for reducing the influence of residual strain, thus enabling the confident measurement of local elastic and fracture properties in soft gels and tissues.
Collapse
Affiliation(s)
- Christopher W Barney
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|