1
|
Escaff D. Self-organization of anti-aligning active particles: Waving pattern formation and chaos. Phys Rev E 2024; 110:024603. [PMID: 39294969 DOI: 10.1103/physreve.110.024603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
Recently, it has been shown that purely anti-aligning interaction between active particles may induce a finite wavelength instability. The formed patterns display intricate spatiotemporal dynamics, suggesting the presence of chaos. Here, we propose a quasi-one-dimensional simplification of the particle interaction model. This simplified model allows us to deduce amplitude equations that describe the collective motion of the active entities. We show that these equations exhibit chaotic orbits. Furthermore, via direct numerical simulations of the particle's system, we discuss the pertinence of these amplitude equations approach for describing the particle's self-coordinated motions.
Collapse
|
2
|
Soto R, Pinto M, Brito R. Kinetic Theory of Motility Induced Phase Separation for Active Brownian Particles. PHYSICAL REVIEW LETTERS 2024; 132:208301. [PMID: 38829083 DOI: 10.1103/physrevlett.132.208301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
When two active Brownian particles collide, they slide along each other until they can continue their free motion. For persistence lengths much larger than the particle diameter, the directors do not change, but the collision can be modeled as producing a net displacement on the particles compared to their free motion in the absence of the encounter. With these elements, a Boltzmann-Enskog-like kinetic theory is built. A linear stability analysis of the homogeneous state predicts a density instability resulting from the effective velocity reduction of tagged particles predicted by the theory.
Collapse
Affiliation(s)
- Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| | - Martín Pinto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| | - Ricardo Brito
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid, Spain
| |
Collapse
|
3
|
Hecht L, Dong I, Liebchen B. Motility-induced coexistence of a hot liquid and a cold gas. Nat Commun 2024; 15:3206. [PMID: 38615122 PMCID: PMC11016108 DOI: 10.1038/s41467-024-47533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
If two phases exist at the same time, such as a gas and a liquid, they have the same temperature. This fundamental law of equilibrium physics is known to apply even to many non-equilibrium systems. However, recently, there has been much attention in the finding that inertial self-propelled particles like Janus colloids in a plasma or microflyers could self-organize into a hot gas-like phase that coexists with a colder liquid-like phase. Here, we show that a kinetic temperature difference across coexisting phases can occur even in equilibrium systems when adding generic (overdamped) self-propelled particles. In particular, we consider mixtures of overdamped active and inertial passive Brownian particles and show that when they phase separate into a dense and a dilute phase, both phases have different kinetic temperatures. Surprisingly, we find that the dense phase (liquid) cannot only be colder but also hotter than the dilute phase (gas). This effect hinges on correlated motions where active particles collectively push and heat up passive ones primarily within the dense phase. Our results answer the fundamental question if a non-equilibrium gas can be colder than a coexisting liquid and create a route to equip matter with self-organized domains of different kinetic temperatures.
Collapse
Affiliation(s)
- Lukas Hecht
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Iris Dong
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
4
|
Lee SY, Schönhöfer PWA, Glotzer SC. Complex motion of steerable vesicular robots filled with active colloidal rods. Sci Rep 2023; 13:22773. [PMID: 38123626 PMCID: PMC10733302 DOI: 10.1038/s41598-023-49314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the collective motion of active particles has been studied extensively, effective strategies to navigate particle swarms without external guidance remain elusive. We introduce a method to control the trajectories of two-dimensional swarms of active rod-like particles by confining the particles to rigid bounding membranes (vesicles) with non-uniform curvature. We show that the propelling agents spontaneously form clusters at the membrane wall and collectively propel the vesicle, turning it into an active superstructure. To further guide the motion of the superstructure, we add discontinuous features to the rigid membrane boundary in the form of a kinked tip, which acts as a steering component to direct the motion of the vesicle. We report that the system's geometrical and material properties, such as the aspect ratio and Péclet number of the active rods as well as the kink angle and flexibility of the membrane, determine the stacking of active particles close to the kinked confinement and induce a diverse set of dynamical behaviors of the superstructure, including linear and circular motion both in the direction of, and opposite to, the kink. From a systematic study of these various behaviors, we design vesicles with switchable and reversible locomotions by tuning the confinement parameters. The observed phenomena suggest a promising mechanism for particle transportation and could be used as a basic element to navigate active matter through complex and tortuous environments.
Collapse
Affiliation(s)
- Sophie Y Lee
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Philipp W A Schönhöfer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sharon C Glotzer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
5
|
Tiribocchi A, Durve M, Lauricella M, Montessori A, Succi S. Spontaneous motion of a passive fluid droplet in an active microchannel. SOFT MATTER 2023; 19:6556-6568. [PMID: 37599649 PMCID: PMC10467333 DOI: 10.1039/d3sm00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We numerically study the dynamics of a passive fluid droplet confined within a microchannel whose walls are covered with a thin layer of active gel. The latter represents a fluid of extensile material modelling, for example, a suspension of cytoskeletal filaments and molecular motors. Our results show that the layer is capable of producing a spontaneous flow triggering a rectilinear motion of the passive droplet. For a hybrid design (a single wall covered by the active layer), at the steady state the droplet attains an elliptical shape, resulting from an asymmetric saw-toothed structure of the velocity field. In contrast, if the active gel covers both walls, the velocity field exhibits a fully symmetric pattern considerably mitigating morphological deformations. We further show that the structure of the spontaneous flow in the microchannel can be controlled by the anchoring conditions of the active gel at the wall. These findings are also confirmed by selected 3D simulations. Our results may stimulate further research addressed to design novel microfludic devices whose functioning relies on the collective properties of active gels.
Collapse
Affiliation(s)
- Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Mihir Durve
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Andrea Montessori
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche (DICITA), Università degli studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
| | - Sauro Succi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Lan Y, Xu M, Xie J, Yang Y, Jiang H. Spontaneous symmetry-breaking of the active cluster drives the directed movement and self-sustained oscillation of symmetric rod-like passive particles. SOFT MATTER 2023; 19:3222-3227. [PMID: 37083022 DOI: 10.1039/d2sm01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Active particles without detailed balance can rectify their random motions to drive the directed movement or rotation of asymmetric passive obstacles. However, whether they can drive the directed movement of symmetric passive obstacles is still unclear. Here, we show that a rod-like passive particle which is fixed to move along the x-axis in an active bath can keep long-lived directed movement at nearly constant speed due to the spontaneous symmetry breaking of the neighboring active particle cluster. If the passive particle is further confined by a harmonic potential, it may undergo self-sustained periodic oscillation for an appropriate length of the passive particle and self-propelled velocity of active particles. The restoring force from the harmonic potential will trigger the velocity jump-off and thus lead to self-sustained periodic oscillation. Remarkably, the relationship between the velocity of the passive particle and the external force shows that the effective viscosity of the active bath may become negative in some regime. Finally, we develop a minimum 1D theoretical model to further probe the mechanism underlying the directed movement and self-sustained oscillation of the passive particle. Our findings reveal the effect of the moving boundary on the active bath and demonstrate a novel method to extract practical mechanical work from the active bath to propel microdevices.
Collapse
Affiliation(s)
- Ying Lan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Man Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinjiang Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
7
|
Recupido F, Petala M, Caserta S, Marra D, Kostoglou M, Karapantsios TD. Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37079897 DOI: 10.1021/acs.langmuir.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge's equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.
Collapse
Affiliation(s)
- Federica Recupido
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, University Box 10, 54 124 Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Piazzale V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnology, Gaetano Salvatore 486, 80145 Naples, Italy
| | - Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54 124 Thessaloniki, Greece
| |
Collapse
|
8
|
Kree R, Zippelius A. Mobilities of a drop and an encapsulated squirmer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:15. [PMID: 35190887 PMCID: PMC8860840 DOI: 10.1140/epje/s10189-022-00169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
We have analyzed the dynamics of a spherical, uniaxial squirmer which is located inside a spherical liquid drop at general position [Formula: see text]. The squirmer is subject to an external force and torque in addition to the slip velocity on its surface. We have derived exact analytical expressions for the linear and rotational velocity of the squirmer as well as the linear velocity of the drop for general, non-axisymmetric configurations. The mobilities of both, squirmer and drop, are in general anisotropic, depending on the orientation of [Formula: see text], relative to squirmer axis, external force or torque. We discuss their dependence on the size of the squirmer, its distance from the center of the drop and the viscosities. Our results provide a framework for the discussion of the trajectories of the composite system of drop and enclosed squirmer.
Collapse
Affiliation(s)
- R Kree
- Georg-August-Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| | - A Zippelius
- Georg-August-Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| |
Collapse
|
9
|
Abstract
Active matter comprises self-driven units, such as bacteria and synthetic microswimmers, that can spontaneously form complex patterns and assemble into functional microdevices. These processes are possible thanks to the out-of-equilibrium nature of active-matter systems, fueled by a one-way free-energy flow from the environment into the system. Here, we take the next step in the evolution of active matter by realizing a two-way coupling between active particles and their environment, where active particles act back on the environment giving rise to the formation of superstructures. In experiments and simulations we observe that, under light-illumination, colloidal particles and their near-critical environment create mutually-coupled co-evolving structures. These structures unify in the form of active superstructures featuring a droplet shape and a colloidal engine inducing self-propulsion. We call them active droploids-a portmanteau of droplet and colloids. Our results provide a pathway to create active superstructures through environmental feedback.
Collapse
|
10
|
Sharan P, Nsamela A, Lesher-Pérez SC, Simmchen J. Microfluidics for Microswimmers: Engineering Novel Swimmers and Constructing Swimming Lanes on the Microscale, a Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007403. [PMID: 33949106 DOI: 10.1002/smll.202007403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Indexed: 05/16/2023]
Abstract
This paper provides an updated review of recent advances in microfluidics applied to artificial and biohybrid microswimmers. Sharing the common regime of low Reynolds number, the two fields have been brought together to take advantage of the fluid characteristics at the microscale, benefitting microswimmer research multifold. First, microfluidics offer simple and relatively low-cost devices for high-fidelity production of microswimmers made of organic and inorganic materials in a variety of shapes and sizes. Microscale confinement and the corresponding fluid properties have demonstrated differential microswimmer behaviors in microchannels or in the presence of various types of physical or chemical stimuli. Custom environments to study these behaviors have been designed in large part with the help of microfluidics. Evaluating microswimmers in increasingly complex lab environments such as microfluidic systems can ensure more effective implementation for in-field applications. The benefits of microfluidics for the fabrication and evaluation of microswimmers are balanced by the potential use of microswimmers for sample manipulation and processing in microfluidic systems, a large obstacle in diagnostic and other testing platforms. In this review various ways in which these two complementary technology fields will enhance microswimmer development and implementation in various fields are introduced.
Collapse
Affiliation(s)
- Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
11
|
Zabiegaj D, Hajirasouliha F, Duilio A, Guido S, Caserta S, Kostoglou M, Petala M, Karapantsios T, Trybala A. Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
13
|
Du H, Xu W, Zhang Z, Han X. Bacterial Behavior in Confined Spaces. Front Cell Dev Biol 2021; 9:629820. [PMID: 33816474 PMCID: PMC8012557 DOI: 10.3389/fcell.2021.629820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
In confined spaces, bacteria exhibit unexpected cellular behaviors that are related to the biogeochemical cycle and human health. Types of confined spaces include lipid vesicles, polymer vesicles, emulsion droplets, microfluidic chips, and various laboratory-made chambers. This mini-review summarizes the behaviors of living bacteria in these confined spaces, including (a) growth and proliferation, (b) cell communication, and (c) motion. Future trends and challenges are also discussed in this paper.
Collapse
Affiliation(s)
- Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.,Center for Marine Antifouling Engineering Technology of Shandong Province, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhizhou Zhang
- Center for Marine Antifouling Engineering Technology of Shandong Province, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
14
|
Dewangan NK, Conrad JC. Bacterial motility enhances adhesion to oil droplets. SOFT MATTER 2020; 16:8237-8244. [PMID: 32935718 DOI: 10.1039/d0sm00944j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion of bacteria to liquid-liquid interfaces can play a role in the biodegradation of dispersed hydrocarbons and in biochemical and bioprocess engineering. Whereas thermodynamic factors underpinning adhesion are well studied, the role of bacterial activity on adhesion is less explored. Here, we show that bacterial motility enhances adhesion to surfactant-decorated oil droplets dispersed in artificial sea water. Motile Halomonas titanicae adhered to hexadecane droplets stabilized with dioctyl sodium sulfosuccinate (DOSS) more rapidly and at greater surface densities compared to nonmotile H. titanicae, whose flagellar motion was arrested through addition of a proton uncoupler. Increasing the concentration of DOSS reduced the surface density of both motile and nonmotile bacteria as a result of the reduced interfacial tension.
Collapse
Affiliation(s)
- Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
15
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
16
|
Biophysical methods to quantify bacterial behaviors at oil-water interfaces. J Ind Microbiol Biotechnol 2020; 47:725-738. [PMID: 32743734 DOI: 10.1007/s10295-020-02293-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Motivated by the need for improved understanding of physical processes involved in bacterial biodegradation of catastrophic oil spills, we review biophysical methods to probe bacterial motility and adhesion at oil-water interfaces. This review summarizes methods that probe bulk, average behaviors as well as local, microscopic behaviors, and highlights opportunities for future work to bridge the gap between biodegradation and biophysics.
Collapse
|