1
|
Leung HM, Liu LS, Cai Y, Li X, Huang Y, Chu HC, Chin YR, Lo PK. Light-Activated Nanodiamond-Based Drug Delivery Systems for Spatiotemporal Release of Antisense Oligonucleotides. Bioconjug Chem 2024; 35:623-632. [PMID: 38659333 DOI: 10.1021/acs.bioconjchem.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.
Collapse
Affiliation(s)
- Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ling Sum Liu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Yuzhen Cai
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Xinru Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yizhi Huang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Y Rebecca Chin
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057 Shenzhen, China
| |
Collapse
|
2
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
3
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
4
|
Semenov KN, Ageev SV, Kukaliia ON, Murin IV, Petrov AV, Iurev GO, Andoskin PA, Panova GG, Molchanov OE, Maistrenko DN, Sharoyko VV. Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. Nanotoxicology 2024; 18:181-213. [PMID: 38487921 DOI: 10.1080/17435390.2024.2327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/02/2024] [Indexed: 05/02/2024]
Abstract
The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Sergei V Ageev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olegi N Kukaliia
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Igor V Murin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Andrey V Petrov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Gleb O Iurev
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Pavel A Andoskin
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Gaiane G Panova
- Light Physiology of Plants, Agrophysical Research Institute, Saint Petersburg, Russia
| | - Oleg E Molchanov
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Dmitrii N Maistrenko
- Department of Basic Research, A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
5
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
6
|
Cui J, Hu B, Fu Y, Xu Z, Li Y. pH-Sensitive nanodiamond co-delivery of retinal and doxorubicin boosts breast cancer chemotherapy. RSC Adv 2023; 13:27403-27414. [PMID: 37711368 PMCID: PMC10498152 DOI: 10.1039/d3ra03907b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Herein for the first time we take the advantage of nanodiamonds (NDs) to covalently immobilize all-trans retinal (NPA) by an imine bond, allowing pH-mediated drug release. DOX is then physically adsorbed onto NPA to form an NPA@D co-loaded double drug in the sodium citrate medium, which is also susceptible to pH-triggered DOX dissociation. The cytotoxicity results showed that NPA@D could markedly inhibit the growth of DOX-sensitive MCF-7 cells in a synergetic way compared to the NP@D system of single-loaded DOX, while NPA basically showed no cytotoxicity and weak inhibition of migration. In addition, NPA@D can overcome the drug resistance of MCF-7/ADR cells, indicating that this nanodrug could evade the pumping of DOX by drug-resistant cells, but free DOX is nearly ineffective against these cells. More importantly, the fluorescence imaging of tumor-bearing mice in vivo and ex vivo demonstrated that the NPA@D was mainly accumulated in the tumor site rather than any other organ by intraperitoneal injection after 24 h, in which the fluorescence intensity of NPA@D was 19 times that of the free DOX, suggesting that a far reduced off-target effect and side effects would be expected. Therefore, this work presents a new paradigm for improving chemotherapy and reversing drug resistance using the ND platform for co-delivery of DOX and ATR.
Collapse
Affiliation(s)
- Jicheng Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Bo Hu
- China Institute for Radiation Protection Taiyuan 030006 P. R. China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University Taiyuan 030006 China
| | - Zhengkun Xu
- Faculty of Science, McMaster University Hamilton L8S 4K1 ON Canada
| | - Yingqi Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
- School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
7
|
Liu S, Xu Y, Wang J, Wang X, Guan S, Zhang T. Long-circulating gambogic acid-loaded nanodiamond composite nanosystem with inhibition of cell migration for tumor therapy. J Colloid Interface Sci 2023; 646:732-744. [PMID: 37229991 DOI: 10.1016/j.jcis.2023.05.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Herein, ultra dispersed and stably suspended nanodiamonds (NDs) were demonstrated to have a high load capacity, sustained release, and ability to serve as a biocompatible vehicle for delivery anticancer drugs. NDs with size of 50-100 nm exhibited good biocompatibility in normal human liver (L-02) cells. In particular, 50 nm ND not only promoted the noticeable proliferation of the L-02 cells but also can effectively inhibited the migration of human liver carcinoma (HepG2) cells. The gambogic acid-loaded nanodiamond (ND/GA) complex assembled by π-π stacking exhibits ultrasensitive and apparent suppression efficiency on the proliferation of HepG2 cells through high internalization and less efflux compared to free GA. More importantly, the ND/GA system can significantly increase the intracellular reactive oxygen species (ROS) levels in HepG2 cells and thus induce the cell apoptosis. The increase in intracellular ROS levels causes damage to the mitochondrial membrane potential (MMP) and activates cysteinyl aspartate specific proteinase 3 (Caspase-3) and cysteinyl aspartate specific proteinase 9 (Caspase-9), which leads to the occurrence of apoptosis. In vivo experiments also confirmed that the ND/GA complex has a much higher anti-tumor capability than free GA. Thus, the current ND/GA system is promising for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
| | - Yujia Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuemin Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
8
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
9
|
A nanodiamond chemotherapeutic folate receptor-targeting prodrug with triggerable drug release. Int J Pharm 2022; 630:122432. [PMID: 36435503 DOI: 10.1016/j.ijpharm.2022.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Cancer chemotherapy is often accompanied by severe off-target effects that both damage quality of life and can decrease therapeutic compliance. This could be minimized through selective delivery of cytotoxic agents directly to the cancer cells. This would decrease the drug dose, consequently minimizing side effects and cost. With this goal in mind, a dual-gated folate-functionalized nanodiamond drug delivery system (NPFSSD) for doxorubicin with activatable fluorescence and cytotoxicity has been prepared. Both the cytotoxic activity and the fluorescence of doxorubicin (DOX) are quenched when it is covalently immobilized on the nanodiamond. The NPFSSD is preferentially uptaken by cancer cells overexpressing the folate receptor. Then, once inside a cell, the drug is preferentially released within tumor cells due to their high levels of endogenous of glutathione, required for releasing DOX through cleavage of a disulfide linker. Interestingly, once free DOX is loaded onto the nanodiamond, it can also evade resistance mechanisms that use protein pumps to remove drugs from the cytoplasm. This nanodrug, used in an in vivo model with local injection of drugs, effectively inhibits tumor growth with fewer side effects than direct injection of free DOX, providing a potentially powerful platform to improve therapeutic outcomes.
Collapse
|
10
|
Primula Dewi FR, Shoukat N, Insani Alifiyah N, Astuti Wahyuningsih SP, Rosyidah A, Prenggono MD, Hartono H. Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer. Heliyon 2022; 8:e11418. [PMID: 36387488 PMCID: PMC9650002 DOI: 10.1016/j.heliyon.2022.e11418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
Abstract
Background Annonaceous acetogenins have been reported to have anti-cancer properties but low viability. In this study, we aimed to investigate the potency of nanodiamonds to be employed as a carrier of annonacin to help increase its viability and inhibit the growth of breast cancer cells. Methods The annonacin was coupled with nanodiamond and characterized using UV-Vis spectrophotometer, FTIR, SEM, and PSA, and determined their stability and drug release. A cell growth inhibition assay and cell migration assay was performed using the breast cancer MCF7 and T747D cell lines, and in vivo analysis was performed in rats (Rattus norvegicus). MCF7 and T747D cells were treated with 12.5 μg/mL annonacin coupled with nanodiamonds for 24 and 48 h and further analyzed by MTT, cell migration, and reactive oxygen species (ROS) assays. Twenty-five female rats were divided into five groups. Breast cancer was induced using two intraperitoneal doses of N-nitroso-N-methylurea (NMU) (50 and 30 mg/kg body weight). Annonacin coupled with nanodiamonds was administered by intraperitoneal injection (17.5 mg/kg body weight) for 5 weeks, one injection per 3 days. Results Administration of annonacin coupled with nanodiamonds significantly reduced MCF7 cell growth and reactive oxygen species (ROS) levels. The in vivo study showed that administration of annonacin coupled with nanodiamonds significantly reduced PI3KCA levels and increased p53 expression, reduced cancer antigen-15-3 (CA-15-3) levels in serum, increased caspase-3 expression, reduced Ki-67 levels, and reduced the thickness of the mammary ductal epithelium. Conclusions Collectively, this study demonstrated the effectiveness of nanodiamonds as a carrier of annonacin to inhibit breast cancer cell growth through inhibition of the PI3K/Akt signaling pathway.
Collapse
|
11
|
Patil S, Mishra VS, Yadav N, Reddy PC, Lochab B. Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3438-3451. [PMID: 35754387 DOI: 10.1021/acsabm.2c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanodiamonds (NDs) are increasingly being assessed as potential candidates for drug delivery in cancer cells and they hold great promise in overcoming the side effects of traditional chemotherapeutics. In the current work, carboxylic acid functionalized nanodiamonds (ND-COOH) were covalently modified with poly(amidoamine) dendrimer (PAMAM) to form amine-terminated nanodiamonds (NP). Unlike ND-COOH, the chemically modified nanodiamond platform NP revealed a pH-independent aqueous dispersion stability, enhancing its potential as an effective carrier. Physical encapsulation of poorly water soluble cabazitaxel (CTX) drug on NP formed ND-PAMAM-CTX (NPC) nanoconjugates and substantially reduced the size of CTX from micrometer to nanometer. CTX was localized within the pores of nanoparticle aggregates and the cavities of the PAMAM dendrimer, thus facilitating the loaded drug's controlled and sustained release. NPC's cumulative CTX release efficiency was determined to be ∼95% at pH 4 after 96 h. A high cellular uptake of NPC both within the cytoplasm and nucleus of U87 cells is confirmed, accounting for a reduced IC50 value (1 nM). Both the cell cycle and Western blot analyses confirmed enhanced cell death and suppressed tubulin protein expression in NPC-treated cells. A significantly high inhibition to cell division with early apoptosis and reduced metastasis demonstrates the effective loading of CTX dosages on the nanocarrier. The present work highlights the potential of a newly designed nanocarrier NP as an efficient nanocargo for cellular delivery applications and may provide future insights to treat one of the most aggressive tumors in neuro-oncological research, glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Nisha Yadav
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| |
Collapse
|
12
|
Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021; 9:669169. [PMID: 34109155 PMCID: PMC8181141 DOI: 10.3389/fchem.2021.669169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.
Collapse
Affiliation(s)
- Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
13
|
Zhang T, Kalimuthu S, Rajasekar V, Xu F, Yiu YC, Hui TKC, Neelakantan P, Chu Z. Biofilm inhibition in oral pathogens by nanodiamonds. Biomater Sci 2021; 9:5127-5135. [PMID: 33997876 DOI: 10.1039/d1bm00608h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex microbial communities, e.g., biofilms residing in our oral cavity, have recognized clinical significance, as they are typically the main cause for infections. Particularly, they show high resistance to conventional antibiotics, and alternatives including nanotechnology are being intensively explored nowadays to provide more efficient therapeutics. Diamond nanoparticles, namely, nanodiamonds (NDs) with many promising physico-chemical properties, have been demonstrated to work as an effective antibacterial agent against planktonic cells (free-floating state). However, little is known about the behaviors of NDs against biofilms (sessile state). In this study, we uncovered their role in inhibiting biofilm formation and their disrupting effect on preformed biofilms in several selected orally and systemically important organisms. The current findings will advance the mechanistic understanding of NDs on oral pathogens and might accelerate corresponding clinical translation.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Du X, Li L, Wei S, Wang S, Li Y. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B 2021; 8:1660-1671. [PMID: 32011619 DOI: 10.1039/c9tb02259g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing tumor homing and improving the efficacy of drugs are urgent needs for cancer treatment. Herein a novel targeted, intracellularly activatable fluorescence and cytotoxicity nanodiamond (ND) drug system (ND-PEG-HYD-FA/DOX, NPHF/D) was successfully prepared based on doxorubicin (DOX) and folate (FA) covalently bound to PEGylated NDs, in which the DOX was covalently coupled via an intracellularly hydrolyzable hydrazone bond that was stable in the physiological environment to ensure minimal drug release in circulation. Cell uptake studies demonstrated the selective internalization of NPHF/D by folate receptor (FR) mediated endocytosis in the order MCF-7 > HeLa > HepG2 ≫ CHO, using confocal laser scanning microscopy (CLSM) and flow cytometry. Interestingly, the DOX fluorescence of NPHF/D was significantly quenched, while the fluorescence recovery and cytotoxicity took place by low pH regulation in intracellular lysosomes, which made NPHF/D act as a fluorescence OFF-ON messenger for activatable imaging and cancer therapy. Of note, NPHF/D significantly inhibited the growth of tumors. Simultaneously, it was demonstrated that the introduction of FA and the cleavability of the hydrazone greatly enhanced the therapeutic performance of NPHF/D. In addition, toxicity studies in mice verified that the composites were devoid of any detected hepatotoxicity, cardiotoxicity, and nephrotoxicity using histopathology and blood biochemistry studies. Our work provides a novel strategy for cancer therapy, using ND-conjugated cancer drugs, and the exploration of theranostic drug-delivery systems.
Collapse
Affiliation(s)
- Xiangbin Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China. and Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, P. R. China
| | - Shiguo Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Songbai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yingqi Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
15
|
Uthappa U, Arvind O, Sriram G, Losic D, Ho-Young-Jung, Kigga M, Kurkuri MD. Nanodiamonds and their surface modification strategies for drug delivery applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101993] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Chen L, Li L. Aminocaproylated nanodiamond prodrug for tumor intracellular enhanced delivery of doxorubicin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|
18
|
Yang G, Long W, Yan W, Huang H, Liu M, Ouyang H, Feng Y, Liu L, Zhang X, Wei Y. Surface PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Chang SLY, Reineck P, Williams D, Bryant G, Opletal G, El-Demrdash SA, Chiu PL, Ōsawa E, Barnard AS, Dwyer C. Dynamic self-assembly of detonation nanodiamond in water. NANOSCALE 2020; 12:5363-5367. [PMID: 32100774 DOI: 10.1039/c9nr08984e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanodiamonds are increasingly used in many areas of science and technology, yet, their colloidal properties remain poorly understood. Here we use direct imaging as well as light and X-ray scattering reveal that purified detonation nanodiamond (DND) particles in an aqueous environment exhibit a self-assembled lace-like network, even without additional surface modification. Such behaviour is previously unknown and contradicts the current consensus that DND exists as mono-dispersed single particles. With the aid of mesoscale simulations, we show that the lace network is likely the result of competition between a short-ranged electrostatic attraction between faceted particles and a longer-ranged repulsion arising from the interaction between the surface functional groups and the surrounding water molecules which prevents complete flocculation. Our findings have significant implications for applications of DND where control of the aggregation behaviour is critical to performance.
Collapse
Affiliation(s)
- Shery L Y Chang
- Eyring Materials Center, Arizona State University, Tempe, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rehman A, Houshyar S, Wang X. Nanodiamond in composite: Biomedical application. J Biomed Mater Res A 2020; 108:906-922. [DOI: 10.1002/jbm.a.36868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aisha Rehman
- School of Fashion and Textiles RMIT University Brunswick Victoria Australia
| | - Shadi Houshyar
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Xin Wang
- School of Fashion and Textiles RMIT University Brunswick Victoria Australia
| |
Collapse
|