1
|
Tang Y, Li Y, He C, Wang Z, Huang W, Fan Q, Liu B. NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo. Nat Commun 2025; 16:278. [PMID: 39747854 PMCID: PMC11696168 DOI: 10.1038/s41467-024-55096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Strong background interference signals from normal tissues have significantly compromised the sensitive fluorescence imaging of early disease tissues with exogenous probes in vivo, particularly for sensitive fluorescence imaging of early liver disease due to the liver's significant uptake and accumulation of exogenous nanoprobes, coupled with high tissue autofluorescence and deep tissue depth. As a proof-of-concept study, we herein report a near-infrared-II (NIR-II, 1.0-1.7 μm) light-excited "off-on-off" NIR-II fluorescent probe (NDP). It has near-ideal zero initial probe fluorescence but can turn on its NIR-II fluorescence in liver cancer tissues and then turn off the fluorescence again upon migration from cancer to normal tissues to minimize background interference. Due to its low background, a blind study employing our probes could identify female mice with orthotopic liver tumors with 100% accuracy from mixed subjects of healthy and tumor mice, and implemented sensitive locating of early orthotopic liver tumors with sizes as small as 4 mm. Our NIR-II-excited "off-on-off" probe design concept not only provides a promising molecular design guideline for sensitive imaging of early liver cancer but also could be generalized for sensitive imaging of other early disease lesions.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore, 117585, Singapore
| | - Yuanyuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunxu He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhen Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore, 117585, Singapore.
| |
Collapse
|
2
|
Shang Z, Zhu T, Xu Y, Meng Q, Liu D, Zhang R, Zhang Z. Rapid and on-site detection of bisulfite via a NIR fluorescent probe: A case study on the emission wavelength of probes with different quinolinium as electron-withdrawing groups. Talanta 2024; 279:126542. [PMID: 39032461 DOI: 10.1016/j.talanta.2024.126542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The emission of venenous sulfur dioxide (SO2) and its derivatives from industrial applications such as coking, transportation and food processing has caused great concern about public health and environmental quality. Probes that enable sensitivity and specificity to detect SO2 derivatives play a crucial role in its regulations and finally mitigating its environmental and health impacts, but fluorescent probes that can accurately, rapidly and on-site detect SO2 derivatives in foodstuffs and environmental systems rarely reported. Herein, a near-infrared (NIR) fluorescent probe (ZTX) for the ratiometric response of bisulfite (HSO3-) was designed and synthesized by regulating the structure of high-performance HSO3- fluorescent probe SL previously reported by us based on structural analyses, theoretical calculations and related literature reports. The Michael addition reaction between the electronic-deficient C=C bond and HSO3- destroys ZTX's π-conjugation system and blocks its intramolecular charge transfer (ICT) process, resulting in a significant fading of the fuchsia solution and the bluish-purple fluorescence turned light blue fluorescence. Fluorescent imaging of HSO3- in live animals utilizing ZTX has been demonstrated. The quantitative analysis of HSO3- in food samples using ZTXvia a smartphone has been also successfully implemented. Simultaneously, the ZTX-based test strips were utilized to quantificationally determine HSO3- in environmental water samples by a smartphone. Consequently, probe ZTX could provide a new method to understand the physiopathological roles of HSO3-, evaluate food safety and monitor environment, and is promising for broad applications.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Tianxiang Zhu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Yi Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Dingkun Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Zhiqiang Zhang
- Key Laboratory of Functional Materials in Universities of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Teng Z, Shangguan H, Liu L, Zhang S, Li G, Cheng Z, Qi F, Liu X. Design, synthesis and application of dual-channel fluorescent probes for ratiometric detection of HClO and H 2S based on phenothiazine coumarins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124312. [PMID: 38688210 DOI: 10.1016/j.saa.2024.124312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The ubiquity of diverse material entities in environmental matrices renders the deployment of unifunctional fluorescent indicators inadequate. Consequently, this study introduces a ratiometric dual-emission fluorescent sensor (Probe CP), synthesized by conjugating phenothiazine coumarin to hydroxycoumarin through a piperazine linker for concurrent detection of HClO and H2S. Upon interaction with HClO, the phenothiazine unit's sulfur atom undergoes oxidation to sulfoxide, facilitating a shift from red to green fluorescence in a ratiometric manner. Concurrently, at the opposite terminus of Probe CP, 2,4-dinitroanisole serves as the reactive moiety for H2S recognition; it restores the blue emission characteristic of 7-hydroxycoumarin while maintaining the red fluorescence emanating from phenothiazine coumarin as an internal standard for ratio-based assessment. Exhibiting elevated specificity and sensitivity coupled with minimal detection thresholds (0.0506 μM for HClO and 1.7292 μM for H2S) alongside rapid equilibration periods (3 min for HClO and half an hour for H2S), this sensor was efficaciously employed in cellular environments and within zebrafish models as well as imaging applications pertaining to alcohol-induced hepatic injury in murine subjects.
Collapse
Affiliation(s)
- Zixuan Teng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Huimin Shangguan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Longfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shihu Zhang
- Shandong Yiborun New Material Technology Co., Ltd., Binzhou, Shandong Province, China
| | - Guanlin Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zishi Cheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Fengpei Qi
- College of Materials & Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
5
|
Liu Q, Li X, Xiao M, Ai Y, Liu G, Ding H, Pu S. A "Turn-on" Fluorescent Probe Based on Phenothiazine for Selectively Recognizing ClO - and its Practical Applications. J Fluoresc 2023; 33:2451-2459. [PMID: 37129794 DOI: 10.1007/s10895-023-03215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Hypochlorous acid (HClO), a highly reactive oxygen species, has important effects on human health. High selectivity and sensitivity remain challenges of fluorescent probes for detection of ClO- with a large Stokes shift. This work designed and synthesized a novel phenothiazine-based fluorescent probe TF which can detect ClO- by colorimetric and fluorescent dual signals. TF displayed turn-on fluorescence effect toward ClO- with high selectivity (≥ 28-folds) and sensitivity (LOD = 0.472 μM), fast response time (< 1 min) and large Stokes shift (150 nm) in PBS (pH = 7.4, 40% DMSO). Meanwhile, TF can visualize ClO- on the mung bean sprouts model and apply as testing strips for portable and rapid detecting ClO- by the naked eyes. A phenothiazine-based fluorescent probe with large Stokes shift was synthesized and its responding rapidly ability to detect ClO- was studied.
Collapse
Affiliation(s)
- Qianling Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Xue Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Ming Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Yin Ai
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, People's Republic of China.
| |
Collapse
|
6
|
Shang Z, Meng Q, Zhang R, Zhang Z. Bifunctional near-infrared fluorescent probe for the selective detection of bisulfite and hypochlorous acid in food, water samples and in vivo. Anal Chim Acta 2023; 1279:341783. [PMID: 37827680 DOI: 10.1016/j.aca.2023.341783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
We report the development of a bifunctional near-infrared fluorescent probe (QZB) for selective sensing of bisulfite (HSO3-) and hypochlorous acid (HOCl). The synergistic detection of HSO3- and HOCl was achieved via a C=C bond recognition site. In comparison with the red-fluorescence QZB, two different products with non-fluorescence and paleturquoise fluorescence were produced by the recognition of QZB towards HSO3- and HOCl respectively, which can realize effectively the dual-functional detection of HSO3- and HOCl. QZB features prominent preponderances of dual-function response, near-infrared emission, reliability at physiological pH, low cytotoxicity and high sensitivity to HSO3- and HOCl. The detection of HSO3- in actual food samples has been successfully achieved using QZB. Utilization of QZB-based test strip to semi-quantitatively detect HSO3- and HOCl in real-world water samples by the "naked-eye" colorimetry are then demonstrated. Simultaneously, the determination of HSO3- and HOCl in real-world water sample has been achieved by smartphone-based standard curves. Additionally, the applications of QZB for imaging HSO3- and HOCl in vivo are successfully demonstrated. Consequently, the successful development of QZB could be promising as an efficient tool for researching the role of HSO3-/HOCl in the regulation of redox homeostasis regulation in vivo and complex signal transduction and for future food safety evaluation.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
7
|
Sonawane PM, Jain N, Roychaudhury A, Park SJ, Bhosale VK, Halle MB, Kim CH, Nimse SB, Churchill DG. Highly sensitive and rapid detection of hypochlorous acid in aqueous media and its bioimaging in live cells and zebrafish using an ESIPT-driven mycophenolic acid-based fluorescent probe. Analyst 2023; 148:5203-5209. [PMID: 37721488 DOI: 10.1039/d3an01340e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Excessive production of potent biological oxidants such as HOCl has been implicated in numerous diseases. Thus, it is crucial to develop highly specific and precise methods to detect HOCl in living systems, preferably with molecules that can show a distinct therapeutic effect. Our study introduces the synthesis and application of a highly sensitive fluorescence "turn-on" probe, Myco-OCl, based on the mycophenolic acid scaffold with exceptional water solubility. The ESIPT-driven mechanism enables Myco-OCl to specifically and rapidly detect (<5 s) HOCl with an impressive Stokes shift of 105 nm (λex = 417 nm, λem = 522 nm) and a sub-nanomolar (97.3 nM) detection limit with the detection range of 0 to 50 μM. The potential of Myco-OCl as an excellent biosensor is evident from its successful application for live cell imaging of exogenous and endogenous HOCl. In addition, Myco-OCl enabled us to detect HOCl in a zebrafish inflammatory animal model. These underscore the great potential of Myco-OCl for detecting HOCl in diverse physiological systems. Our findings thus offer a highly promising tool for detecting HOCl in living organisms.
Collapse
Affiliation(s)
- Prasad M Sonawane
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| | - Neha Jain
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| | | | - Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Vikas K Bhosale
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| | - Mahesh B Halle
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Republic of Korea.
| | - David G Churchill
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Yuan X, Zhang W, Liu L, Lin Y, Xie L, Chai X, Xu K, Du G, Zhang L. A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water. Molecules 2023; 28:6316. [PMID: 37687144 PMCID: PMC10489715 DOI: 10.3390/molecules28176316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Using chitosan as a raw material, 1,8-naphthimide as the fluorescent chromophore, and sulfur-containing compounds as the recognition groups, a novel naphthimide-functionalized chitosan probe, CS-BNS, for the detection of ClO- was successfully synthesized. The modification of chitosan was verified by SEM, XRD, FTIR, mapping, 13C-NMR, TG and the structure of the probe molecule was characterized. The identification performance of the probes was studied using UV and fluorescence spectrophotometers. The results show that CS-BNS exhibits a specific response to ClO- based on the oxidative reaction of ClO- to the recognition motifs, as well as a good resistance to interference. And the probe has high sensitivity and fast response time, and can complete the detection of ClO- in a pure water system within 60 s. The probe can also quantify ClO- (y = 30.698x + 532.37, R2 = 0.9833) with a detection limit as low as 0.27 μM. In addition, the combination of the probe with smartphone technology enables the visualization and real-time monitoring of ClO-. Moreover, an identification system for ClO- was established by combining the probe with smartphone technology, which realized the visualization and real-time monitoring of ClO-.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Wenli Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| |
Collapse
|
9
|
Li S, Zeng Y, Tang C, Wang F, Gu B, Tang S. A red-emissive benzothiazole-based luminophore with ESIPT and AIE natures and its application for detecting and imaging hypochlorous acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121601. [PMID: 35816864 DOI: 10.1016/j.saa.2022.121601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
A new "ESIPT + AIE" based dye of benzothiazole with red emission and a large Stokes shift was constructed by combining 2-(2'-hydroxyphenyl)benzothiazole as the ESIPT unit and α-cyanostilbene as the AIE unit. The compound BACN was found to be a ideal HClO chemosensor, and presented palpable fluorescence and colorimetric responses toward HClO via the HClO-trigged oxidation cleavage of the ethylene bridge activated by the electron withdrawing cyano group. BACN was capable of recognizing HClO rapidly (12 s) and sensitively under physiological conditions, with good selectivity over other biologically pertinent substances. Thanks to strong red emission (λem = 606 nm) and large Stokes shift (213 nm) resulted from the combination of ESIPT and AIE effects, it was successfully utilized for the recognition of exogenous and endogenous HClO in living HeLa cells.
Collapse
Affiliation(s)
- Siyun Li
- Key Laboratory of Chemical Sensing and Catalysis, Hengyang Key Laboratory of New Detection Technology and Biological Agents of Animal Microorganism, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Ying Zeng
- Key Laboratory of Chemical Sensing and Catalysis, Hengyang Key Laboratory of New Detection Technology and Biological Agents of Animal Microorganism, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Can Tang
- Key Laboratory of Chemical Sensing and Catalysis, Hengyang Key Laboratory of New Detection Technology and Biological Agents of Animal Microorganism, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Feifei Wang
- Key Laboratory of Chemical Sensing and Catalysis, Hengyang Key Laboratory of New Detection Technology and Biological Agents of Animal Microorganism, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China
| | - Biao Gu
- Key Laboratory of Chemical Sensing and Catalysis, Hengyang Key Laboratory of New Detection Technology and Biological Agents of Animal Microorganism, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| | - Siping Tang
- Key Laboratory of Chemical Sensing and Catalysis, Hengyang Key Laboratory of New Detection Technology and Biological Agents of Animal Microorganism, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, PR China.
| |
Collapse
|
10
|
Yang Y, Han B, Dong F, Lv J, Lu H, Sun Y, Lei Z, Yang Z, Ma H. A Cost-Effective Way to Produce Gram-Scale 18O-Labeled Aromatic Aldehydes. Org Lett 2022; 24:4409-4414. [PMID: 35699733 DOI: 10.1021/acs.orglett.2c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obtaining 18O-labeled organic substances is of great research importance and also an extremely challenging work. In this work, depending on the reversed Knoevenagel reaction, 18O-labeled aromatic aldehydes (3a-3x) are successfully obtained with high total yields (52-72%) and sufficient 18O abundance (90.90-96.09%).
Collapse
Affiliation(s)
- Yuan Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Bingyang Han
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Fenghao Dong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiawei Lv
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Huiming Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuqing Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zengming Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hengchang Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
11
|
The Development of a 4-aminonaphthalimide-based Highly Selective Fluorescent Probe for Rapid Detection of HOCl. J Fluoresc 2022; 32:1843-1849. [PMID: 35731451 DOI: 10.1007/s10895-022-02996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Recently, more and more evidence indicated that intracellular HOCl plays a crucial role in the regulation of inflammation and apoptosis, while excessive HOCl has an impact on human health problems. So, the development of methods for sensitive detection of HOCl is very vital to reveal its various physiological and pathological functions. In this paper, we have described a simple fluorescent probe for selective detection of HOCl, whereas for higher concentrations of other biological important substances, the probe almost does not respond. The experimental results show that the probe can quantitatively determine the range of 0-1 μM HOCl, the detection limit is 0.05 μM. In addition, the probe reacts quickly with HOCl (< 3 s), which is helpful to monitor HOCl in biological system because HOCl is highly reactive and short-lived. The ability of the probe to HOCl enables it to be used to track the HOCl levels in living systems.
Collapse
|
12
|
Zhang S, Ning L, Song Z, Zhao X, Guan F, Yang XF, Zhang J. Activatable Near-Infrared Fluorescent Organic Nanoprobe for Hypochlorous Acid Detection in the Early Diagnosis of Rheumatoid Arthritis. Anal Chem 2022; 94:5805-5813. [PMID: 35380780 DOI: 10.1021/acs.analchem.1c05184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early diagnosis of rheumatoid arthritis (RA) is crucial to prevent deterioration and improve the prognosis of disease outcome. However, current clinical diagnostic methods are unable to achieve accurate and early detection of RA. In this work, we designed an activatable organic nanoprobe (ONP-CySe) capable of specific and real-time imaging of ClO- in early RA. ONP-CySe comprises a near-infrared fluorescent selenomorpholine-caged cyanine dye as the sensing component and an amphiphilic triblock copolymer triphenyl phosphine derivative for mitochondria targeting. Our results showed that ONP-CySe successfully detected elevated levels of ClO- in the mitochondria of macrophages with high selectivity, low limit of detection (31.5 nM), excellent photostability, and good biocompatibility. Furthermore, ONP-CySe can also be used to monitor anti-inflammatory responses and efficacies of RA therapeutics, such as selenocysteine and methotrexate, in BALB/c mouse models. Therefore, our research proposes a universal molecular design strategy for the detection of ClO-, which holds potential for early diagnosis and drug screening for RA.
Collapse
Affiliation(s)
- Suya Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhihui Song
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xinyue Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Feng Guan
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
13
|
Liu J, Yin H, Shang Z, Gu P, He G, Meng Q, Zhang R, Zhang Z. Sequential detection of hypochlorous acid and sulfur dioxide derivatives by a red-emitting fluorescent probe and bioimaging applications in vitro and in vivo. RSC Adv 2022; 12:15861-15869. [PMID: 35733666 PMCID: PMC9135002 DOI: 10.1039/d2ra01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
A red-emitting fluorescence probe (DP) has been successfully developed for the sequential detection of hypochlorous acid (HOCl) and sulfur dioxide derivatives (SO32−/HSO3−) in vitro and in vivo.
Collapse
Affiliation(s)
- Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
- College of Pharmacy, Jilin Medical University, Jilin Province, 132001, P. R. China
| | - Haoyuan Yin
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Pengli Gu
- School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, Henan Province, 453003, P. R. China
| | - Guangjie He
- School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang, Henan Province, 453003, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
14
|
Hu Y, Shang Z, Wang J, Hong M, Zhang R, Meng Q, Zhang Z. A phenothiazine-based turn-on fluorescent probe for the selective detection of hydrogen sulfide in food, live cells and animals. Analyst 2021; 146:7528-7536. [PMID: 34816828 DOI: 10.1039/d1an01762d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a phenothiazine-based fluorescent probe (PR) has been developed for the selective detection of hydrogen sulfide (H2S) in biosystems and monitoring H2S produced in the food spoilage process. The nucleophilic attack of H2S on the CC double bond of PRvia a Michael addition interdicted the ICT process to trigger 34-fold enhancement of the fluorescence emission. PR featured high selectivity and sensitivity (1.8 μM), low cytotoxicity and reliability at physiological pH. "Naked-eye" monitoring of H2S produced in the food spoilage process using PR was successfully accomplished. The preliminary fluorescence imaging studies showed that PR is suitable for the visualization of exogenous and endogenous H2S in living cells and live animals. Moreover, PR has been successfully applied to the visualization of H2S generation in an inflammation model. The results indicated that PR is an effective tool to monitor H2S production in the fields of biomedicine and food safety.
Collapse
Affiliation(s)
- Yaoyun Hu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
| |
Collapse
|
15
|
Wang Y, Zhou F, Meng Q, Zhang S, Jia H, Wang C, Zhang R, Zhang Z. A Novel Fluorescence Probe for the Reversible Detection of Bisulfite and Hydrogen Peroxide Pair in Vitro and in Vivo. Chem Asian J 2021; 16:3419-3426. [PMID: 34476907 DOI: 10.1002/asia.202100926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The detection of changes in the reactive oxygen species (ROS)/reactive sulfur species (RSS) couple is important for studying the cellular redox state. Herein, we developed a 1,8-naphthalimide-based fluorescence probe (NI) for the reversible detection of bisulfite (HSO3 - ) and hydrogen peroxide (H2 O2 ) in vitro and in vivo. NI has been designed with a reactive ethylene unit which specifically reacts with HSO3 - by a Michael addition reaction mechanism, resulting in the quenching of yellow fluorescence at 580 nm and the appearing of green fluorescence at 510 nm upon excitation at 500 nm and 430 nm, respectively. The addition product (NI-HSO3 ) could be specifically oxidized to form the original C=C bond of NI, recovering the fluorescence emission and color. The detection limits of NI for HSO3 - and NI-HSO3 for H2 O2 were calculated to be 2.05 μM and 4.23 μM, respectively. The reversible fluorescence response of NI towards HSO3 - /H2 O2 couple can be repeated for at least five times. NI is reliable at a broad pH range (pH 3.0-11.5) and features outstanding selectivity, which enabled its practical applications in biological and food samples. Monitoring the reversible and dynamic inter-conversion between HSO3 - and H2 O2 in vitro and in vivo has been verified by fluorescence imaging in live HeLa cells, adult zebrafish and nude mice. Moreover, NI has been successfully applied to detect of HSO3 - levels in food samples.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Fang Zhou
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Songhe Zhang
- Anshan Tumor Hospital, 339 Shenhua Road, Lishan District, Anshan, Liaoning Province, P. R. China
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cuiping Wang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
16
|
Yang X, Wang Y, Shang Z, Zhang Z, Chi H, Zhang Z, Zhang R, Meng Q. Quinoline-based fluorescent probe for the detection and monitoring of hypochlorous acid in a rheumatoid arthritis model. RSC Adv 2021; 11:31656-31662. [PMID: 35496887 PMCID: PMC9041640 DOI: 10.1039/d1ra06224g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
The development of effective bioanalytical methods for the visualization of hypochlorous acid (HOCl) in situ in rheumatoid arthritis (RA) directly contributes to better understanding the roles of HOCl in this disease. In this work, a new quinoline-based fluorescence probe (HQ) has been developed for the detection and visualization of a HOCl-mediated inflammatory response in a RA model. HQ possesses a donor–π–acceptor (D–π–A) structure that was designed by conjugating p-hydroxybenzaldehyde (electron donor) and 1-ethyl-4-methylquinolinium iodide (electron acceptor) through a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C double bond. In the presence of HOCl, oxidation of phenol to benzoquinone led to the red-shift (93 nm) of the adsorption and intense quenching of the fluorescence emission. The proposed response reaction mechanism was verified by high performance liquid chromatography (HPLC) and high-resolution mass spectroscopy (HRMS) titration analysis. The remarkable color changes of the HQ solution from pale yellow to pink enabled the application of HQ-stained chromatography plates for the “naked-eye” detection of HOCl in real-world water samples. HQ featured high selectivity and sensitivity (6.5 nM), fast response time (<25 s) to HOCl, reliability at different pH (3.0 to 11.5) and low cytotoxicity. HQ's application in biological systems was then demonstrated by the monitoring of HOCl-mediated treatment response to RA. This work thus provided a new tool for the detection and imaging of HOCl in inflammatory disorders. A quinoline-based fluorescent probe (HQ) has been designed and synthesized for the monitoring of HOCl-mediated treatment response of a rheumatoid arthritis (RA) model and “naked-eye” detection of HOCl in real water samples.![]()
Collapse
Affiliation(s)
- Xinyi Yang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane 4072 Australia
| | - Haijun Chi
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5928002
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5928002
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane 4072 Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| |
Collapse
|
17
|
Mao GJ, Wang YY, Dong WP, Meng HM, Wang QQ, Luo XF, Li Y, Zhang G. A lysosome-targetable two-photon excited near-infrared fluorescent probe for visualizing hypochlorous acid-involved arthritis and its treatment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119326. [PMID: 33360565 DOI: 10.1016/j.saa.2020.119326] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Lysosome of phagocyte is the main site of hypochlorous acid (HClO) production, and HClO can be employed as the biomarker for the diagnosis and treatment evaluation of arthritis. In recent years, developing fluorescent probes for lysosomal HClO has attracted considerable attention, but most of them still have some defects, such as autofluorescence, phototoxicity and photobleaching because of their excitation and emission located in short-wavelength region. Due to the advantages of two-photon fluorescent probes with near-infrared emissions, a lysosome-targetable two-photon fluorescent probe (Lyso-TP-HClO) with a near-infrared emission was reported in this paper. Lyso-TP-HClO has a high selectivity and a high sensitivity to HClO in the linear range (10.0 × 10-8 to 5.0 × 10-6 M), with a detection limit of 3.0 × 10-8 M. Due to the two-photon excited near-infrared emission, Lyso-TP-HClO has excellent imaging performances, such as small autofluorescence, excellent photostability, and large imaging depth. Furthermore, Lyso-TP-HClO was successfully employed for visualizing lysosomal HClO in bacteria-infected cells. At last, we have successfully used Lyso-TP-HClO to image the arthritis and evaluate the treatment of arthritis in mice. All the results confirm that Lyso-TP-HClO is a useful chemical tool for imaging of lysosomal HClO, the diagnosis of arthritis, and treatment evaluation of arthritis.
Collapse
Affiliation(s)
- Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Ying-Ying Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Wen-Pei Dong
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Hong-Min Meng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Qian-Qian Wang
- Department of Pharmacy, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Xiao-Feng Luo
- Gansu Chemical Industry Research Institute CO., LTD., Gansu Key Laboratory of Fine Chemicals, 1 Guchengping, Chengguan District, Lanzhou 730020, PR China
| | - Yao Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Guisheng Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
18
|
Wang TR, Zhang XF, Huang XQ, Cao XQ, Shen SL. Rapid and selective visualization of mitochondrial hypochlorite by a red region water-soluble fluorescence probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119115. [PMID: 33161266 DOI: 10.1016/j.saa.2020.119115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 05/26/2023]
Abstract
Hypochlorite (-OCl) has long been recognized as an effective microbicidal agent in immune system. Herein, we report the design, preparation and spectral characteristics of a -OCl fluorescent probe (FI-Mito). The probe exhibited remarkable fluorescence turn-on signal in the red region upon -OCl titration with the detection limit as low as 0.9 nM. FI-Mito displayed specific response for -OCl in completely aqueous solution. Meanwhile, the introduction of quaternized pyridine realized mitochondria-targeting ability. FI-Mito was further applied to monitor the generation of endogenous -OCl in the mitochondria of macrophage cells and mice. Therefore, it was established that FI-Mito may serve as a useful molecular tool for -OCl detection in vivo.
Collapse
Affiliation(s)
- Tian-Ran Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China; Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Xiao-Fan Zhang
- Taian Center For Food and Drug Control, Taian 271000, PR China
| | - Xiao-Qing Huang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China; Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Xiao-Qun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China; Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Shi-Li Shen
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China; Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China.
| |
Collapse
|
19
|
Zeng ZX, Gu J, Liu YN, Li DD, Yang YS, Wang BZ, Zhu HL. A fluorescent sensor for selective detection of hypochlorite and its application in Arabidopsis thaliana. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118830. [PMID: 32858451 DOI: 10.1016/j.saa.2020.118830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Hypochlorite, as one of reactive oxygen species, has drawn much attention due to its essential roles in special biological events and disorders. The exogenous hypochlorite remains a risk for human, animals and plants. In this work, a novel water soluble quinolin-containing nitrone derivative T has been developed for fluorometric sensing hypochlorite. The response mechanism of T towards ClO- was reported for the first time. In comparison with the reported sensors for ClO-, the sensor T in this work exhibited advantages including high selectivity (80 fold over other analytes), rapid response (within 5 s) and lipid-water distribution transformation (LogP from 2.979 to 6.131). Further biological applications suggested that T was capable of monitoring both exogenous and endogenous ClO- in living cells. The imaging in Arabidopsis thaliana indicated that the absorption and transmission of ClO- in plant could be monitored by this sensor through the chlorine-related mechanism. This work might raise referable information for further investigations in the physiological and pathological events in both tumor and plants.
Collapse
Affiliation(s)
- Zi-Xuan Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin Gu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ya-Ni Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dong-Dong Li
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Zhao Y, Li Y, Li R, Wang Y, Fan X. A New Fluorescent Probe for Hypochlorous Acid Based on Chlorinium Ions Recognition Mechanism and Its Bioimaging Research in Living Cells. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wu H, Zhang W, Wu Y, Liu N, Meng F, Xie Y, Yan L. A 7-diethylaminocoumarin-based chemosensor with barbituric acid for hypochlorite and hydrazine. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Chen W, Li G, Chen C, Sheng J, Yang L. Aggregation-enhanced emission enables phenothiazine coumarin as a robust ratiometric fluorescent for rapid and selective detection of HClO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117724. [PMID: 31753645 DOI: 10.1016/j.saa.2019.117724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/27/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
By taking advantage of phenothiazine moiety as an electron-donating group, a novel donor-acceptor (D-A) type coumarin dye, PTZ-Et, was developed. The introduction of phenothiazine moiety not only caused emission red-shifting and Stokes shift enlarging, but also endowed PTZ-Et with significant aggregation-enhanced emission (AEE) features, thereby enabled PTZ-Et as a robust ratiometric fluorescent probe for HClO detection. Upon oxidation of the sulfur atom on phenothiazine into sulfoxide, PTZ-Et displayed remarkable ratiometric fluorescence response (over 150 folds variations of F534/F626) toward HClO with rapid response time (<30 s) and ultra-sensitivity (LOD = 15 nM). Additionally, the corresponding sensing mechanism of PTZ-Et for HClO was fully elucidated through the successful purification and well characterization (1H NMR, 13C NMR, HRMS, and single crystal data) of the corresponding reaction product between PTZ-Et and HClO. Significantly, PTZ-Et was capable of monitoring both exogenous and endogenous HClO in living RAW 264.7 cells by ratiometric fluorescence imaging.
Collapse
Affiliation(s)
- Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi, 530001, PR China.
| | - Guofang Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi, 530001, PR China
| | - Chunfei Chen
- Guangxi Zhuang Autonomous Region Environmental Monitoring Centre, Nanning, 530028, PR China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi, 530001, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, PR China.
| |
Collapse
|
23
|
Wang Y, Feng H, Li H, Yang X, Jia H, Kang W, Meng Q, Zhang Z, Zhang R. A Copper (II) Ensemble-Based Fluorescence Chemosensor and Its Application in the 'Naked-Eye' Detection of Biothiols in Human Urine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1331. [PMID: 32121408 PMCID: PMC7085593 DOI: 10.3390/s20051331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Quick and effective detection of biothiols in biological fluids has gained increasing attention due to its vital biological functions. In this paper, a novel reversible fluorescence chemosensor (L-Cu2+) based on a benzocoumarin-Cu2+ ensemble has been developed for the detection of biothiols (Cys, Hcy and GSH) in human urine. The chemosensing ensemble (L-Cu2+) contains a 2:1 stoichiometry structure between fluorescent ligand L and paramagnetic Cu2+. L was found to exclusively bond with Cu2+ ions accompanied with a dramatic fluorescence quenching maximum at 443 nm and an increase of an absorbance band centered at 378 nm. Then, the in situ generated fluorescence sluggish ensemble, L-Cu2+, was successfully used as a chemosensor for the detection of biothiols with a fluorescence "OFF-ON" response modality. Upon the addition of biothiols, the decomplexation of L-Cu2+ led to the liberation of the fluorescent ligand, L, resulting in the recovery of fluorescence and absorbance spectra. Studies revealed that L-Cu2+ possesses simple synthesis, excellent stability, high sensitivity, reliability at a broad pH range and desired renewability (at least 5 times). The practical application of L-Cu2+ was then demonstrated by the detection of biothiols in human urine sample.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China; (H.L.); (W.K.)
| | - Xinyi Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China; (H.L.); (W.K.)
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| |
Collapse
|
24
|
Zhang Y, Ma Y, Wang Z, Zhang X, Chen X, Hou S, Wang H. A novel colorimetric and far-red emission ratiometric fluorescent probe for the highly selective and ultrafast detection of hypochlorite in water and its application in bioimaging. Analyst 2020; 145:939-945. [DOI: 10.1039/c9an02034a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypochlorous acid (HOCl)/hypochlorite (OCl−), an important reactive oxygen species, plays a number of important roles in various physiological processes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Science
- China Agricultural University
- Beijing
- P.R. China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering College of Chemistry
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xueyan Zhang
- College of Science
- China Agricultural University
- Beijing
- P.R. China
| | - Xin Chen
- College of Science
- China Agricultural University
- Beijing
- P.R. China
| | - Shicong Hou
- College of Science
- China Agricultural University
- Beijing
- P.R. China
| | - Hongmei Wang
- College of Science
- China Agricultural University
- Beijing
- P.R. China
| |
Collapse
|
25
|
Coutinho MS, Latocheski E, Neri JM, Neves ACO, Domingos JB, Cavalcanti LN, Gasparotto LHS, Moraes EP, Menezes FG. Rutin-modified silver nanoparticles as a chromogenic probe for the selective detection of Fe3+ in aqueous medium. RSC Adv 2019; 9:30007-30011. [PMID: 35531525 PMCID: PMC9072079 DOI: 10.1039/c9ra06653e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
The use of rutin-modified silver nanoparticles for selective detection and sensitive quantification of Fe3+ in aqueous solution is described.
Collapse
Affiliation(s)
- Mayra S. Coutinho
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Eloah Latocheski
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Jannyely M. Neri
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Ana C. O. Neves
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Josiel B. Domingos
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | | | | | - Edgar P. Moraes
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | | |
Collapse
|