1
|
Rostamani H, Fakhraei O, Kelidari N, Toosizadeh Khorasani F. Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2549-2569. [PMID: 39078801 DOI: 10.1080/09205063.2024.2385182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/16/2024] [Indexed: 11/05/2024]
Abstract
In this study, polycaprolactone (PCL) scaffolds have been employed as structural framework scaffolds for patellofemoral cartilage tissue regeneration. The biomechanical and biological properties of different scaffolds were investigated by varying alginate concentrations and the number of scaffold layers. Patellofemoral cartilage defects result in knee pain and reduced mobility, and they are usually treated with conventional methods, often with limited success. Generally, tissue-engineered PCL-alginate scaffolds fabricated by bioprinting technology show promise for enhanced cartilage regeneration due to the biocompatibility and mechanical stability of PCL. In addition, alginate is known for its cell encapsulation capabilities and for promoting cell viability. Biological and morphological assessments, utilizing water contact angle, cell adhesion tests, MTT assays, and scanning electron microscopy (SEM), informed the selection of the optimized scaffold. Comparative analyses between the initial optimal scaffolds with the same chemical composition also included flexural and compression tests and fracture surface observations using SEM. The controlled integration of PCL and alginate offers a hybrid approach, that assembles the mechanical strength of PCL and the bioactive properties of alginate for tissue reconstruction potential. This study aims to identify the most effective scaffold composition for patellofemoral articular cartilage tissue engineering, emphasizing cell viability, structural morphology, and mechanical integrity. The results showed that the optimum biomechanical and biological properties of scaffolds were obtained with a 10% alginate concentration in the monolayer of PCL structure. The findings contribute to regenerative medicine by advancing the understanding of functional tissue constructs, bringing us closer to addressing articular cartilage defects and related clinical challenges.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Narges Kelidari
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
2
|
Cruz-Maya I, Cirillo V, Serrano-Bello J, Serri C, Alvarez-Perez MA, Guarino V. Optimization of Diclofenac-Loaded Bicomponent Nanofibers: Effect of Gelatin on In Vitro and In Vivo Response. Pharmaceutics 2024; 16:925. [PMID: 39065622 PMCID: PMC11279899 DOI: 10.3390/pharmaceutics16070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The use of electrospun fibers as anti-inflammatory drug carriers is currently one of the most interesting approaches for the design of drug delivery systems. In recent years, biodegradable polymers blended with naturally derived ones have been extensively studied to fabricate bioinspired platforms capable of driving biological responses by releasing selected molecular/pharmaceutical signals. Here, sodium diclofenac (DicNa)-loaded electrospun fibers, consisting of polycaprolactone (PCL) or gelatin-functionalized PCL, were studied to evaluate fibroblasts' in vitro and in vivo response. In vitro studies demonstrated that cell adhesion of L929 cells (≈70%) was not affected by the presence of DicNa after 4 h. Moreover, the initial burst release of the drug from PD and PGD fibers, e.g., 80 and 48%, respectively, after 5 h-combined with its sustained release-did not produce any cytotoxic effect and did not negatively influence the biological activity of the cells. In particular, it was demonstrated that the addition of gelatin concurred to slow down the release mechanism, thus limiting the antiproliferative effect of DicNa, as confirmed by the significant increase in cell viability and collagen deposition after 7 days, with respect to PCL alone. In vivo studies in a rat subcutaneous model also confirmed the ability of DicNa-loaded fibers to moderate the inflammatory/foreign body response independently through the presence of gelatin that played a significant role in supporting the formation of small-caliber vessels after 10 days of implantation. All of these results suggest using bicomponent fibers loaded with DicNa as a valid therapeutic tool capable of supporting the wound healing process and limiting in vivo inflammation and rejection phenomena.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Valentina Cirillo
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| | - Janeth Serrano-Bello
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy;
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Department of Posgraduate Studies and Research (DEPeI), School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Mexico City 04510, Mexico;
| | - Vincenzo Guarino
- Institute of Polymers, Composite and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, V.le J.F.Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.C.)
| |
Collapse
|
3
|
Zhang Z, Zhang Y, Guo Y, Qian C, Chen K, Fang S, Qiu A, Zhong L, Zhang J, He R. Preparing gelatin-containing polycaprolactone / polylactic acid nanofibrous membranes for periodontal tissue regeneration using side-by-side electrospinning technology. J Biomater Appl 2024; 39:48-57. [PMID: 38659361 DOI: 10.1177/08853282241248778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.
Collapse
Affiliation(s)
- Zhuochen Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Ying Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yabin Guo
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Cheng Qian
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Kailun Chen
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Sheng Fang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Anna Qiu
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Liangjun Zhong
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Rui He
- Department of Stomatology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Liu S, Al-Danakh A, Wang H, Sun Y, Wang L. Advancements in scaffold for treating ligament injuries; in vitro evaluation. Biotechnol J 2024; 19:e2300251. [PMID: 37974555 DOI: 10.1002/biot.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haowen Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Min D, Ahn Y, Lee HK, Jung W, Kim H. A novel optical coherence tomography-based in vitro method of anti-aging skin analysis using 3D skin wrinkle mimics. Skin Res Technol 2023; 29:e13354. [PMID: 37357658 PMCID: PMC10209839 DOI: 10.1111/srt.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/08/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Wrinkles represent a characteristic symptom of skin aging. In recent years, various studies have focused on their prevention and/or cure. However, clinical tests are still the only method available to directly detect and evaluate the anti-wrinkle efficacy of various substances. Moreover, no in vitro strategy for such anti-aging skin analysis has been reported. Therefore, in this study, we aimed to develop a novel technology to overcome these limitations. MATERIALS AND METHODS Full-thickness (FT) skin wrinkle mimics with various widths and depths were fabricated using a collagen stamping method. These were analyzed and compared using 2D and 3D Swept Source-Optical Coherence Tomography (SS-OCT) imaging technologies. RESULTS SS-OCT demonstrated superficial and cross-sectional images of the wrinkle mimics, and the size of the wrinkles was validated using image analysis. Retinoic acid treatment significantly decreased both the depth and width of wrinkles formed in the FT skin wrinkle mimics. CONCLUSIONS Using 3D tissue engineering and SS-OCT imaging technologies, we developed a novel in vitro technique that can directly detect skin wrinkles. This significantly efficient method could lead to an alternative strategy for animal experiments and preclinical anti-aging research on the skin.
Collapse
Affiliation(s)
- Daejin Min
- AMOREPACIFIC Research and Innovation CenterYonginRepublic of Korea
| | - Yujin Ahn
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | | | - Woonggyu Jung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Hyoung‐June Kim
- AMOREPACIFIC Research and Innovation CenterYonginRepublic of Korea
| |
Collapse
|
7
|
Fuchs A, Bartolf-Kopp M, Böhm H, Straub A, Kübler AC, Linz C, Gbureck U. Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects. Clin Oral Investig 2023; 27:3199-3209. [PMID: 36864278 PMCID: PMC10264493 DOI: 10.1007/s00784-023-04932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Synthetic bone substitutes which can be adapted preoperatively and patient specific may be helpful in various bony defects in the field of oral- and maxillofacial surgery. For this purpose, composite grafts made of self-setting and oil-based calcium phosphate cement (CPC) pastes, which were reinforced with 3D-printed polycaprolactone (PCL) fiber mats were manufactured. MATERIALS AND METHODS Bone defect models were acquired using patient data from real defect situations of patients from our clinic. Using a mirror imaging technique, templates of the defect situation were fabricated via a commercially available 3D-printing system. The composite grafts were assembled layer by layer, aligned on top of these templates and fitted into the defect situation. Besides, PCL-reinforced CPC samples were evaluated regarding their structural and mechanical properties via X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), and 3-point-bending testing. RESULTS The process sequence including data acquisition, template fabrication, and manufacturing of patient specific implants proved to be accurate and uncomplicated. The individual implants consisting mainly of hydroxyapatite and tetracalcium phosphate displayed good processability and a high precision of fit. The mechanical properties of the CPC cements in terms of maximum force and stress load to material fatigue were not negatively affected by the PCL fiber reinforcement, whereas clinical handling properties increased remarkably. CONCLUSION PCL fiber reinforcement of CPC cements enables the production of very freely modelable three-dimensional implants with adequate chemical and mechanical properties for bone replacement applications. CLINICAL RELEVANCE The complex bone morphology in the region of the facial skull often poses a great challenge for a sufficient reconstruction of bony defects. A full-fledged bone replacement here often requires the replication of filigree three-dimensional structures partly without support from the surrounding tissue. With regard to this problem, the combination of smooth 3D-printed fiber mats and oil-based CPC pastes represents a promising method for fabricating patient specific degradable implants for the treatment of various craniofacial bone defects.
Collapse
Affiliation(s)
- Andreas Fuchs
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Hartmut Böhm
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
8
|
Kim K, Kim H, Do S, Kim H. Potential of Aligned Electrospun PLGA/SIS Blended Nanofibrous Membrane for Tendon Tissue Engineering. Polymers (Basel) 2023; 15:polym15102313. [PMID: 37242888 DOI: 10.3390/polym15102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tendons are responsible for transmitting mechanical forces from muscles to bones for body locomotion and joint stability. However, tendons are frequently damaged with high mechanical forces. Various methods have been utilized for repairing damaged tendons, including sutures, soft tissue anchors, and biological grafts. However, tendons experience a higher rate of retear post-surgery due to their low cellularity and vascularity. Surgically sutured tendons are vulnerable to reinjury due to their inferior functionality when compared with native tendons. Surgical treatment using biological grafts also has complications such as joint stiffness, re-rupture, and donor-site morbidity. Therefore, current research is focused on developing novel materials that can facilitate the regeneration of tendons with histological and mechanical characteristics similar to those of intact tendons. With respect to the complications in association with the surgical treatment of tendon injuries, electrospinning may be an alternative for tendon tissue engineering. Electrospinning is an effective method for fabrication of polymeric fibers with diameters ranging from nanometers to micrometers. Thus, this method produces nanofibrous membranes with an extremely high surface area-to-volume ratio, which is similar to the extracellular matrix structure, making them suitable candidates for application in tissue engineering. Moreover, it is possible to fabricate nanofibers with specific orientations that are similar to those of the native tendon tissue using an adequate collector. To increase the hydrophilicity of the electrospun nanofibers, natural polymers in addition to synthetic polymers are used concurrently. Therefore, in this study, aligned nanofibers composed of poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) were fabricated using electrospinning with rotating mandrel. The diameter of aligned PLGA/SIS nanofibers was 568.44 ± 135.594 nm, which closely resembles that of native collagen fibrils. Compared to the results of the control group, the mechanical strength exhibited by the aligned nanofibers was anisotropic in terms of break strain, ultimate tensile strength, and elastic modulus. Elongated cellular behavior was observed in the aligned PLGA/SIS nanofibers using confocal laser scanning microscopy, indicating that the aligned nanofibers were highly effective with regard to tendon tissue engineering. In conclusion, considering its mechanical properties and cellular behavior, aligned PLGA/SIS is a promising candidate for tendon tissue engineering.
Collapse
Affiliation(s)
- Kihoon Kim
- Department of Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyosung Kim
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunhee Do
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hwiyool Kim
- Department of Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Sun J, Wang W, Hu X, Zhang X, Zhu C, Hu J, Ma R. Local delivery of gaseous signaling molecules for orthopedic disease therapy. J Nanobiotechnology 2023; 21:58. [PMID: 36810201 PMCID: PMC9942085 DOI: 10.1186/s12951-023-01813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Over the past decade, a proliferation of research has used nanoparticles to deliver gaseous signaling molecules for medical purposes. The discovery and revelation of the role of gaseous signaling molecules have been accompanied by nanoparticle therapies for their local delivery. While most of them have been applied in oncology, recent advances have demonstrated their considerable potential in diagnosing and treating orthopedic diseases. Three of the currently recognized gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are highlighted in this review along with their distinctive biological functions and roles in orthopedic diseases. Moreover, this review summarizes the progress in therapeutic development over the past ten years with a deeper discussion of unresolved issues and potential clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Sun
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
10
|
Ning C, Li P, Gao C, Fu L, Liao Z, Tian G, Yin H, Li M, Sui X, Yuan Z, Liu S, Guo Q. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol 2023; 11:1115312. [PMID: 36890920 PMCID: PMC9986339 DOI: 10.3389/fbioe.2023.1115312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.
Collapse
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Pinxue Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cangjian Gao
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Liwei Fu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiyao Liao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Han Yin
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Muzhe Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Chinese PLA Medical School, Beijing, China
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Novel hybrid biocomposites for tendon grafts: The addition of silk to polydioxanone and poly(lactide-co-caprolactone) enhances material properties, in vitro and in vivo biocompatibility. Bioact Mater 2023; 25:291-306. [PMID: 36844365 PMCID: PMC9945711 DOI: 10.1016/j.bioactmat.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Biopolymers play a critical role as scaffolds used in tendon and ligament (TL) regeneration. Although advanced biopolymer materials have been proposed with optimised mechanical properties, biocompatibility, degradation, and processability, it is still challenging to find the right balance between these properties. Here, we aim to develop novel hybrid biocomposites based on poly(p-dioxanone) (PDO), poly(lactide-co-caprolactone) (LCL) and silk to produce high-performance grafts suitable for TL tissue repair. Biocomposites containing 1-15% of silk were studied through a range of characterisation techniques. We then explored biocompatibility through in vitro and in vivo studies using a mouse model. We found that adding up to 5% silk increases the tensile properties, degradation rate and miscibility between PDO and LCL phases without agglomeration of silk inside the composites. Furthermore, addition of silk increases surface roughness and hydrophilicity. In vitro experiments show that the silk improved attachment of tendon-derived stem cells and proliferation over 72 h, while in vivo studies indicate that the silk can reduce the expression of pro-inflammatory cytokines after six weeks of implantation. Finally, we selected a promising biocomposite and created a prototype TL graft based on extruded fibres. We found that the tensile properties of both individual fibres and braided grafts could be suitable for anterior cruciate ligament (ACL) repair applications.
Collapse
|
12
|
Han F, Li T, Li M, Zhang B, Wang Y, Zhu Y, Wu C. Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing. Bioact Mater 2023; 20:29-40. [PMID: 35633872 PMCID: PMC9123220 DOI: 10.1016/j.bioactmat.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery, however, this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity. Inspired by the high-performance exoskeleton of natural organisms, we set out to apply natural fish scale (FS) modified by calcium silicate nanoparticles (CS NPs) as a new biomaterial (CS-FS) to overcome the challenge. Benefit from its “Bouligand” microstructure, such FS-based scaffold maintained excellent tensile strength (125.05 MPa) and toughness (14.16 MJ/m3), which are 1.93 and 2.72 times that of natural tendon respectively, allowing it to well meet the requirements for rotator cuff tendon repair. Additionally, CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction, (e.g. bone marrow mesenchymal stem cells (BMSCs), chondrocyte, and tendon stem/progenitor cells (TSPCs)). In both rat and rabbit rotator cuff tear (RCT) models, CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function, which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs. Therefore, natural fish scale -based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity. Nano-calcium silicate mineralized fish scale scaffold was first developed for tendon defect repair. •CS-FS exhibited excellent mechanical properties superior to those of natural tendon. •CS-FS showed diverse bioactivities by stimulating the differentiation of multiple types of cells. •CS NPs accelerated tendon-bone interface tendon-bone healing enhancement and biomechanical recovery.
Collapse
|
13
|
Cai J, Liu J, Xu J, Li Y, Zheng T, Zhang T, Han K, Chen S, Jiang J, Wu S, Zhao J. Constructing high-strength nano-micro fibrous woven scaffolds with native-like anisotropic structure and immunoregulatory function for tendon repair and regeneration. Biofabrication 2023; 15:025002. [PMID: 36608336 DOI: 10.1088/1758-5090/acb106] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Tendon injuries are common debilitating musculoskeletal diseases with high treatment expenditure in sports medicine. The development of tendon-biomimetic scaffolds may be promising for improving the unsatisfactory clinical outcomes of traditional therapies. In this study, we combined an advanced electrospun nanofiber yarn-generating technique with a traditional textile manufacturing strategy to fabricate innovative nano-micro fibrous woven scaffolds with tendon-like anisotropic structure and high-strength mechanical properties for the treatment of large-size tendon injury. Electrospun nanofiber yarns made from pure poly L-lactic acid (PLLA) or silk fibroin (SF)/PLLA blend were fabricated, and their mechanical properties matched and even exceeded those of commercial PLLA microfiber yarns. The PLLA or SF/PLLA nanofiber yarns were then employed as weft yarns interlaced with commercial PLLA microfiber yarns as warp yarns to generate two new types of nanofibrous scaffolds (nmPLLA and nmSF/PLLA) with a plain-weaving structure. Woven scaffolds made from pure PLLA microfiber yarns (both weft and warp directions) (mmPLLA) were used as controls.In vitroexperiments showed that the nmSF/PLLA woven scaffold with aligned fibrous topography significantly promoted cell adhesion, elongation, proliferation, and phenotypic maintenance of tenocytes compared with mmPLLA and nmPLLA woven scaffolds. Moreover, the nmSF/PLLA woven scaffold exhibited the strongest immunoregulatory functions and effectively modulated macrophages towards the M2 phenotype.In vivoexperiments revealed that the nmSF/PLLA woven scaffold notably facilitated Achilles tendon regeneration with improved structure by macroscopic, histological, and ultrastructural observations six months after surgery, compared with the other two groups. More importantly, the regenerated tissue in the nmSF/PLLA group had excellent biomechanical properties comparable to those of the native tendon. Overall, our study provides an innovative biological-free strategy with ready-to-use features, which presents great potential for clinical translation for damaged tendon repair.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiao Liu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Yufeng Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Ting Zheng
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Tianlun Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
| |
Collapse
|
14
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
15
|
T G D, Chen CH, Kuo CY, Shalumon KT, Chien YM, Kao HH, Chen JP. Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering. Int J Biol Macromol 2022; 221:314-333. [PMID: 36075304 DOI: 10.1016/j.ijbiomac.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
This study develops a spiral wound scaffold based on gelatin/PCL/heparin (GPH) nanofiber membranes for tendon tissue engineering. By embedding sutures in dual layers of aligned GPH nanofiber membranes, prepared from mixed electrospinning of gelatin and PCL/heparin solutions, we fabricate a high resilience scaffold intended for the high loading environment experienced by tendons. The basic fibroblast growth factor (bFGF) was anchored to GPH scaffold through bioaffinity between heparin and bFGF, aim to provide biological cues for maintenance of tenogenic phenotype. In addition, the aligned nanofiber morphology is expected to provide physical cues toward seeded tenocytes. With sustained release of bFGF, GPH-bFGF can enhance proliferation, up-regulate tenogenic gene expression, and increase synthesis of tendon-specific proteins by tenocytes in vitro. Furthermore, by properly maintaining tendon phenotypes, GPH-bFGF/tenocytes constructs showed improved mechanical properties over GPH-bFGF. From in vivo study using GPH-bFGF/tenocytes constructs to repair rabbit Achilles tendon defects, neotendon tissue formation was confirmed from histological staining and biomechanical analysis. These findings collectively demonstrate that the newly designed GPH-bFGF scaffold could provide a niche for inducing tendon tissue regeneration by effectively restoring the tendon tissue structure and function.
Collapse
Affiliation(s)
- Darshan T G
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K T Shalumon
- Department of Chemistry, Sacred Heart College, MG University, Kochi 682013, India
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
16
|
Yang Q, Li J, Su W, Yu L, Li T, Wang Y, Zhang K, Wu Y, Wang L. Electrospun aligned poly(ε-caprolactone) nanofiber yarns guiding 3D organization of tendon stem/progenitor cells in tenogenic differentiation and tendon repair. Front Bioeng Biotechnol 2022; 10:960694. [PMID: 36110313 PMCID: PMC9468671 DOI: 10.3389/fbioe.2022.960694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Hierarchical anisotropy structure directing 3D cellular orientation plays a crucial role in designing tendon tissue engineering scaffolds. Despite recent development of fabrication technologies for controlling cellular organization and design of scaffolds that mimic the anisotropic structure of native tendon tissue, improvement of tenogenic differentiation remains challenging. Herein, we present 3D aligned poly (ε-caprolactone) nanofiber yarns (NFYs) of varying diameter, fabricated using a dry-wet electrospinning approach, that integrate with nano- and micro-scale structure to mimic the hierarchical structure of collagen fascicles and fibers in native tendon tissue. These aligned NFYs exhibited good in vitro biocompatibility, and their ability to induce 3D cellular alignment and elongation of tendon stem/progenitor cells was demonstrated. Significantly, the aligned NFYs with a diameter of 50 μm were able to promote the tenogenic differentiation of tendon stem/progenitor cells due to the integration of aligned nanofibrous structure and suitable yarn diameter. Rat tendon repair results further showed that bundled NFYs encouraged tendon repair in vivo by inducing neo-collagen organization and orientation. These data suggest that electrospun bundled NFYs formed by aligned nanofibers can mimic the aligned hierarchical structure of native tendon tissue, highlighting their potential as a biomimetic multi-scale scaffold for tendon tissue regeneration.
Collapse
Affiliation(s)
- Qiao Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jianfeng Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongdi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kairui Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Yaobin Wu, ; Ling Wang,
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- *Correspondence: Yaobin Wu, ; Ling Wang,
| |
Collapse
|
17
|
Allur Subramanian S, Oh S, Mariadoss AVA, Chae S, Dhandapani S, Parasuraman PS, Song SY, Woo C, Dong X, Choi JY, Kim SJ. Tunable mechanical properties of Mo 3Se 3-poly vinyl alcohol-based/silk fibroin-based nanowire ensure the regeneration mechanism in tenocytes derived from human bone marrow stem cells. Int J Biol Macromol 2022; 210:196-207. [PMID: 35513108 DOI: 10.1016/j.ijbiomac.2022.04.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Silk fibroin (SF) and poly vinyl alcohol (PVA)-based nanomaterial has exceptional attention in regenerative medicine. However, the preparation of SF and PVA-based nanomaterials in the desired form is complex due to their poor mechanical strength, brittleness, and compatibility. To this end, Mo3Se3 is chosen as a bio-nanowire to fabricate by combining PVA and SF to improve the mechanical properties. Physicochemical and structural features of the Mo3Se3-PVA-SF nanowire hydrogel (Mo3Se3-PVA-SF-NWH) were characterized by field emission scanning electron microscope (FE-SEM). Mechanical properties, degradation ratio, hydrophilicity, water uptake capacity, biocompatibility, and biological activity of the hydrogel were also studied. Superior interactions were formed between the reinforcing molecules of Mo3Se3 and PVA/SF in the hydrogel network by introducing Mo3Se3 nanowire (NW) into the hydrogel. Conversely, Mo3Se3 NW imparts mechanical stability and robustness to the blends (hydrogel) with predictable long-term degradation characteristics. It was proven by in vitro biodegradable rate, and swelling behaviour was varied depending on the concentration of Mo3Se3 NW. Mo3Se3 reinforced the hydrogels and found high porosity with superior biocompatibility. Excellent cellular adaptation was analyzed by MTT assay, live/dead staining, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). It revealed moderate toxicity at a concentration of 0.02% among the control samples. There was no discernible difference in 0.01% and 0.005% of Mo3Se3-PVA-SF-NWH in tenocytes derived from human bone marrow mesenchymal stem cells (hBMSC). Hence, this Mo3Se3-PVA-SF-NWH might be considered biocompatible due to its biological activities and appropriate mechanical properties. Overall, the Mo3Se3-PVA-SF-NWH might be considered a biocompatible scaffold for the possible biomedical applications of tendon tissue engineering.
Collapse
Affiliation(s)
- Sivakumar Allur Subramanian
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Arokia Vijaya Anand Mariadoss
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sanjeevram Dhandapani
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Perumalswamy Sekar Parasuraman
- Department of Environmental and Biotechnology, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | - Si Young Song
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Chaeheon Woo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Xue Dong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea.
| | - Sung Jae Kim
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea.
| |
Collapse
|
18
|
Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration. Acta Biomater 2022; 140:233-246. [PMID: 34852300 DOI: 10.1016/j.actbio.2021.11.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/11/2023]
Abstract
Ligament injuries are common in sports and other rigorous activities. It is a great challenge to achieve ligament regeneration after an injury due the avascular structure and low self-renewal capability. Herein, we developed vascular endothelial growth factor (VEGF)-binding aligned electrospun poly(caprolactone)/gelatin (PCL/Gel) scaffolds by incorporating prominin-1-binding peptide (BP) sequence and exploited them for patellar ligament regeneration. The adsorption of BP onto scaffolds was discerned by various techniques, such as Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and confocal laser scanning microscope. The accumulation of VEGF onto scaffolds correlated with the concentration of the peptide in vitro. BP-anchored PCL/Gel scaffolds (BP@PCL/Gel) promoted the tubular formation of human umbilical vein endothelial cells (HUVECs) and wound healing in vitro. Besides, BP containing scaffolds exhibited higher content of CD31+ cells than that of the control scaffolds at 1 week after implantation in vivo. Moreover, BP containing scaffolds improved biomechanical properties and facilitated the regeneration of matured collagen in patellar ligament 4 weeks after implantation in mice. Overall, this strategy of peptide-mediated orchestration of VEGF provides an enticing platform for the ligament regeneration, which may also have broad implications for tissue repair applications. STATEMENT OF SIGNIFICANCE: Ligament injuries are central to sports and other rigorous activities. Given to the avascular nature and poor self-healing capability of injured ligament tissues, it is a burgeoning challenge to fabricate tissue-engineered scaffolds for ligament reconstruction. Vascular endothelial growth factor (VEGF) is pivotal to the neo-vessel formation. However, the high molecular weight of VEGF as well as its short half-life in vitro and in vivo limits its therapeutic potential. To circumvent these limitations, herein, we functionalized aligned electrospun polycaprolactone/gelatin (PCL/Gel)-based scaffolds with VEGF-binding peptide (BP) and assessed their biocompatibility and performance in vitro and in vivo. BP-modified scaffolds accumulated VEGF, improved tube formation of HUVECs, and induced wound healing in vitro, which may have broad implications for regenerative medicine and tissue engineering.
Collapse
|
19
|
Hou Y, Zhou B, Ni M, Wang M, Ding L, Li Y, Liu Y, Zhang W, Li G, Wang J, Xu L. Nonwoven-based gelatin/polycaprolactone membrane loaded with ERK inhibitor U0126 for treatment of tendon defects. Stem Cell Res Ther 2022; 13:5. [PMID: 35012661 PMCID: PMC8744263 DOI: 10.1186/s13287-021-02679-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. METHODS Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. RESULTS In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFβ superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. CONCLUSION Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.
Collapse
Affiliation(s)
- Yonghui Hou
- Key Laboratory of Orthopaedics & Traumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Bingyu Zhou
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ming Ni
- Department of Orthopedics, the First Medical Center, the Fourth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, People's Republic of China
| | - Min Wang
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ying Li
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yamei Liu
- Departments of Diagnostics of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Wencai Zhang
- Neo Modulus (Suzhou) Medical Sci-Tech Co., Ltd., Suzhou, People's Republic of China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China. .,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Room 904, 9/F, Shatin, Hong Kong, SAR, People's Republic of China.
| | - Jiali Wang
- Biomedical Engineering School, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
Park S, Lee MS, Jeon J, Lim J, Jo CH, Bhang SH, Yang HS. Micro-groove patterned PCL patches with DOPA for rat Achilles tendon regeneration. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Korbut A, Włodarczyk M, Rudnicka K, Szwed A, Płociński P, Biernat M, Tymowicz-Grzyb P, Michalska M, Karska N, Rodziewicz-Motowidło S, Szustakiewicz K. Three Component Composite Scaffolds Based on PCL, Hydroxyapatite, and L-Lysine Obtained in TIPS-SL: Bioactive Material for Bone Tissue Engineering. Int J Mol Sci 2021; 22:ijms222413589. [PMID: 34948389 PMCID: PMC8707467 DOI: 10.3390/ijms222413589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023] Open
Abstract
In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young’s modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.
Collapse
Affiliation(s)
- Aleksandra Korbut
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (A.K.); (K.S.)
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (A.S.); (P.P.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (A.S.); (P.P.)
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (A.S.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; (M.W.); (K.R.); (A.S.); (P.P.)
| | - Monika Biernat
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw, Poland; (M.B.); (P.T.-G.)
| | - Paulina Tymowicz-Grzyb
- Biomaterials Research Group, Ceramic and Concrete Division in Warsaw, Łukasiewicz Research Network Institute of Ceramics and Building Materials, Postępu 9, 02-676 Warsaw, Poland; (M.B.); (P.T.-G.)
| | - Martyna Michalska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Natalia Karska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (N.K.); (S.R.-M.)
| | | | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (A.K.); (K.S.)
| |
Collapse
|
22
|
Ma K, Liao C, Huang L, Liang R, Zhao J, Zheng L, Su W. Electrospun PCL/MoS 2 Nanofiber Membranes Combined with NIR-Triggered Photothermal Therapy to Accelerate Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104747. [PMID: 34647419 DOI: 10.1002/smll.202104747] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Electrospun nanofiber membranes have been widely used for guided bone regeneration (GBR). For assistance in bone healing, photothermal therapy which renders moderate heat stimulation to defect regions by near-infrared (NIR) light irradiation has attracted much attention in recent years. Combined with photothermal therapy, novel electrospun poly(ε-caprolactone)/molybdenum disulfide (PCL/MoS2 ) nanofiber membranes are innovatively synthesized as GBR for bone therapy, wherein the exfoliated MoS2 nanosheets served as osteogenic enhancers and NIR photothermal agents. With the doping of MoS2 , the mechanical properties of nanofiber membranes got improved with the degradation unaffected. The composite PCL/MoS2 membranes show enhanced cell growth and osteogenic performance compared with PCL alone. Under NIR-triggered mild photothermal therapy, osteogenesis and bone healing are accelerated by using PCL/MoS2 nanofiber membranes for growth of bone mesenchymal stem cells in vitro and repair of rat tibia bone defect in vivo. The novel nanofiber membranes may be developed as intelligent GBR in the therapy of bone defects.
Collapse
Affiliation(s)
- Ke Ma
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chuanan Liao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Postdoctoral Mobile Station of Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Pharmaceutical college, Guangxi Medical University, Nanning, 530021, China
| | - Lanli Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Pharmaceutical college, Guangxi Medical University, Nanning, 530021, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wei Su
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
23
|
Abstract
Abstract
Polycaprolactone (PCL) is a biodegradable polyester that has advantages over other biopolymers, making it an extensively researched polymer. PCL is a hydrophobic, slow-degrading, synthetic polymer making it particularly interesting for the preparation of long-term implantable devices and a variety of drug delivery systems. Recently, PCL has been used for additional applications including food packaging and tissue engineering. In this chapter, the processing methods and characterization of PCL will be discussed. The chapter will summarize the synthesis of poly(α-hydroxy acid) and the ring-opening polymerization of PCL. Discussion on the biodegradability of PCL will be reviewed. The biomedical applications of PCL, such as, drug-delivery systems, medical devices, and tissue engineering will be also summarized. Finally, the chapter will conclude with a characterization section outlining recent studies focusing on PCL based composites and films.
Collapse
|
24
|
Sankar D, Mony U, Rangasamy J. Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (ε-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112206. [PMID: 34225858 DOI: 10.1016/j.msec.2021.112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Tendon being a hypocellular, low vascularized tissue often requires assistance for restoration after complete tear. Tendon tissue engineering aims in the development of suitable scaffold that could support the regeneration of tendon after damage. The success of such scaffolds is dependent on its integration with the native tissue which in turn is influenced by the cell-material interaction. In this work aligned poly(ε-caprolactone)/collagen (PCL/collagen) multiscale fibers were developed and plasma treatment using argon, nitrogen and its combination was accessed for inducing tenogenic differentiation in mesenchymal stem cells. The developed fibers mimicked tendon extracellular matrix (ECM) which upon plasma treatment maintained moderate hydrophilicity. Oxygen and nitrogen containing groups were observed to be incorporated after argon and nitrogen treatment respectively. Statistically significant (p < 0.001) enhancement was observed in average and root mean square (RMS) roughness after plasma treatment with the maximum in argon treated fibers. Vitronectin was competitively (statistically significant, p < 0.05) adsorbed after argon and combination treatment whereas nitrogen treatment led to the competitive adsorption of fibronectin (statistically significant, p < 0.05). Human mesenchymal stem cells (hMSCs) showed enhanced proliferation and attachment on plasma treated fibers. Increased porosity due to the presence of sacrificial collagen nanofibers improved cell infiltration which was further enhanced upon plasma treatment. RhoA activation was observed (statistically significant, p < 0.05) on aligned PCL/collagen multiscale fibers and PCL microfibers, which proved its impact on tenogenic differentiation. Further enhancement in rhoA expression was observed on argon (p < 0.01) and combination plasma (p < 0.05) treated fibers. Tenogenic differentiation of hMSCs was enhanced (statistically significant) on argon plasma treated aligned fibers which was confirmed by the expression of scleraxis, mohawk (early markers) and tenomodulin (late marker) at protein level and mohawk, collagen I, collagen III (early markers), thrombospondin 4 and tenascin C (late markers) at gene level. Thus argon plasma treatment on aligned fibers is an effective method to induce tenogenesis even in non-tenogenic media.
Collapse
Affiliation(s)
- Deepthi Sankar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
25
|
Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous Systems as Potential Solutions for Tendon and Ligament Repair, Healing, and Regeneration. Adv Healthc Mater 2021; 10:e2001305. [PMID: 33576158 PMCID: PMC8048718 DOI: 10.1002/adhm.202001305] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Tendon and ligament injuries caused by trauma and degenerative diseases are frequent and affect diverse groups of the population. Such injuries reduce musculoskeletal performance, limit joint mobility, and lower people's comfort. Currently, various treatment strategies and surgical procedures are used to heal, repair, and restore the native tissue function. However, these strategies are inadequate and, in some cases, fail to re-establish the lost functionality. Tissue engineering and regenerative medicine approaches aim to overcome these disadvantages by stimulating the regeneration and formation of neotissues. Design and fabrication of artificial scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of tendons. In this review, the tendon and ligament structure, their physiology, and performance are presented. On the other hand, the requirements are focused for the development of an effective reconstruction device. The most common fiber-based scaffolding systems are also described for tendon and ligament tissue regeneration like strand fibers, woven, knitted, braided, and braid-twisted fibrous structures, as well as electrospun and wet-spun constructs, discussing critically the advantages and limitations of their utilization. Finally, the potential of multilayered systems as the most effective candidates for tendon and ligaments tissue engineering is pointed out.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA, 90024, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
26
|
Boosting in vitro cartilage tissue engineering through the fabrication of polycaprolactone-gelatin 3D scaffolds with specific depth-dependent fiber alignments and mechanical stimulation. J Mech Behav Biomed Mater 2021; 117:104373. [PMID: 33618241 DOI: 10.1016/j.jmbbm.2021.104373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
Due to the limited self-healing ability of natural cartilage, several tissue engineering strategies have been explored to develop functional replacements. Still, most of these approaches do not attempt to recreate in vitro the anisotropic organization of its extracellular matrix, which is essential for a suitable load-bearing function. In this work, different depth-dependent alignments of polycaprolactone-gelatin electrospun fibers were assembled into three-dimensional scaffold architectures to assess variations on chondrocyte response under static, unconfined compressed and perfused culture conditions. The in vitro results confirmed that not only the 3D scaffolds specific depth-dependent fiber alignments potentiated chondrocyte proliferation and migration towards the fibrous systems, but also the mechanical stimulation protocols applied were able to enhance significantly cell metabolic activity and extracellular matrix deposition, respectively.
Collapse
|
27
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
28
|
An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Liang B, Shi Q, Xu J, Chai YM, Xu JG. Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration. Front Chem 2020; 8:603577. [PMID: 33330398 PMCID: PMC7719816 DOI: 10.3389/fchem.2020.603577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, bone repair biomaterials that combine cells and bioactive factors are superior to autologous and allogeneic bone implants. However, neither natural nor synthetic biomaterials can possess all desired qualities such as strength, porosity, and biological activity. In this study, we used poly (glycerol sebacate) (PGS), a synthetic material with great osteogenic potential that has attracted more attention in the field of tissue (such as bone tissue) regeneration owing to its good biocompatibility and high elasticity. It also has the advantage of being regulated by material synthesis to match the bone tissue's strength and can be easily modified to become functional. However, pure PGS lacks functional groups and hydrophilicity. Therefore, we used PGS as the substrate to graft the adhesive ligands RGD and vascular endothelial growth factor mimetic peptide. The bone repair scaffold can be prepared through photo crosslinking, as it not only improves hydrophobicity but also promotes vascularization and accelerates osteogenesis. Simultaneously, we improved the preparation method of hydrogels after freeze-drying and crosslinking to form a sponge-like structure and to easily regenerate blood vessels. In summary, a bone repair scaffold was prepared to meet the structural and biological requirements. It proved to serve as a potential bone-mimicking scaffold by enhancing tissue regenerative processes such as cell infiltration and vascularization and subsequent replacement by the native bone tissue.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Guang Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
30
|
Chen J, Sheng D, Ying T, Zhao H, Zhang J, Li Y, Xu H, Chen S. MOFs-Based Nitric Oxide Therapy for Tendon Regeneration. NANO-MICRO LETTERS 2020; 13:23. [PMID: 34138189 PMCID: PMC8187533 DOI: 10.1007/s40820-020-00542-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 05/06/2023]
Abstract
Tendon regeneration is still a great challenge due to its avascular structure and low self-renewal capability. The nitric oxide (NO) therapy emerges as a promising treatment for inducing the regeneration of injured tendon by angiogenesis. Here, in this study, a system that NO-loaded metal-organic frameworks (MOFs) encapsulated in polycaprolactone (PCL)/gelatin (Gel) aligned coaxial scaffolds (NMPGA) is designed and prepared for tendon repair. In this system, NO is able to be released in vitro at a slow and stable average speed of 1.67 nM h-1 as long as 15 d without a burst release stage in the initial 48 h. Furthermore, NMPGA can not only improve the tubular formation capability of endothelial cells in vitro but also obviously increase the blood perfusion near the injured tendon in vivo, leading to accelerating the maturity of collagen and recovery of biomechanical strength of the regenerated tendon tissue. As a NO-loaded MOFs therapeutic system, NMPGA can promote tendon regeneration in a shorter healing period with better biomechanical properties in comparison with control group by angiogenesis. Therefore, this study not only provides a promising scaffold for tendon regeneration, but also paves a new way to develop a NO-based therapy for biomedical application in the future.
Collapse
Affiliation(s)
- Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Dandan Sheng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ting Ying
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Haojun Zhao
- Department of Ultrasound, Jing'an District Center Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jian Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yunxia Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China.
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
31
|
Design and development of a reinforced tubular electrospun construct for the repair of ruptures of deep flexor tendons. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111504. [PMID: 33321603 DOI: 10.1016/j.msec.2020.111504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
This research aims at developing a more potent solution for deep flexor tendon repair by combining a mechanical and biological approach. A reinforced, multi-layered electrospun tubular construct is developed, composed of three layers: an inner electrospun layer containing an anti-inflammatory component (Naproxen), a middle layer of braided monofilament as reinforcement and an outer electrospun layer containing an anti-adhesion component (hyaluronic acid, HA). In a first step, a novel acrylate endcapped urethane-based precursor (AUP) is developed and characterized by measuring molar mass, acrylate content and thermo-stability. The AUP material is benchmarked against commercially available poly(ε-caprolactone) (PCL). Next, the materials are processed into multi-layered, tubular constructs with bio-active components (Naproxen and HA) using electrospinning. In vitro assays using human fibroblasts show that incorporation of the bio-active components is successful and not-cytotoxic. Moreover, tensile testing using ex vivo sheep tendons prove that the developed multi-layered constructs fulfill the required strength for tendon repair (i.e. 2.79-3.98 MPa), with an ultimate strength of 8.56 ± 1.92 MPa and 8.36 ± 0.57 MPa for PCL and AUP/PCL constructs respectively. In conclusion, by combining a mechanical approach (improved mechanical properties) with the incorporation of bio-active compounds (biological approach), this solution shows its potential for application in deep flexor tendon repair.
Collapse
|
32
|
Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells. Polymers (Basel) 2020; 12:polym12081758. [PMID: 32781567 PMCID: PMC7465675 DOI: 10.3390/polym12081758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Limbal Stem Cell Deficiency (LSCD) is a very serious and painful disease that often results in impaired vision. Cultivation of limbal stem cells for clinical application is usually performed on carriers such as amniotic membrane or surgical fibrin gel. Transplantation of these grafts is associated with the risk of local postoperative infection that can destroy the graft and devoid therapeutic benefit. For this reason, electrospun scaffolds are good alternatives, as proven to mimic the natural cells surroundings, while their fabrication technique is versatile with regard to polymer functionalization and scaffolds architecture. This study considers the development of poly(ε-caprolactone) (PCL) immune-compatible and biodegradable electrospun scaffolds, comprising cefuroxime (CF) or titanium dioxide (TiO2) active components, that provide both bactericidal activity against eye infections and support of limbal stem cells growth in vitro. The PCL/CF scaffolds were prepared by blend electrospinning, while functionalization with the TiO2 particles was performed by ultrasonic post-processing treatment. The fabricated scaffolds were evaluated in regard to their physical structure, wetting ability, static and dynamic mechanical behaviour, antimicrobial efficiency and drug release, through scanning electron microscopy, water contact angle measurement, tensile testing and dynamic mechanical analysis, antimicrobial tests and UV-Vis spectroscopy, respectively. Human limbal stem cells, isolated from surgical remains of human cadaveric cornea, were cultured on the PCL/CF and PCL/TiO2 scaffolds and further identified through immunocytochemistry in terms of cell type thus were stained against p63 marker for limbal stem cells, a nuclear transcription factor and cytokeratin 3 (CK3), a corneal epithelial differentiation marker. The electrospun PCL/CF and PCL/TiO2 successfully supported the adhesion, proliferation and differentiation of the cultivated limbal cells and provided the antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans.
Collapse
|
33
|
El Khatib M, Mauro A, Di Mattia M, Wyrwa R, Schweder M, Ancora M, Lazzaro F, Berardinelli P, Valbonetti L, Di Giacinto O, Polci A, Cammà C, Schnabelrauch M, Barboni B, Russo V. Electrospun PLGA Fiber Diameter and Alignment of Tendon Biomimetic Fleece Potentiate Tenogenic Differentiation and Immunomodulatory Function of Amniotic Epithelial Stem Cells. Cells 2020; 9:cells9051207. [PMID: 32413998 PMCID: PMC7290802 DOI: 10.3390/cells9051207] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
- Correspondence:
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Martina Schweder
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany;
| | - Massimo Ancora
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Francesco Lazzaro
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L’Aquila, Italy;
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Andrea Polci
- Laboratory of Diagnosis and surveillance of foreign diseases, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy;
| | - Cesare Cammà
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| |
Collapse
|
34
|
Abalymov A, Parakhonskiy B, Skirtach AG. Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers (Basel) 2020; 12:E620. [PMID: 32182751 PMCID: PMC7182904 DOI: 10.3390/polym12030620] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of "one-matches-all" referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | - Andre G. Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Russo V, El Khatib M, di Marcantonio L, Ancora M, Wyrwa R, Mauro A, Walter T, Weisser J, Citeroni MR, Lazzaro F, Di Federico M, Berardinelli P, Cammà C, Schnabelrauch M, Barboni B. Tendon Biomimetic Electrospun PLGA Fleeces Induce an Early Epithelial-Mesenchymal Transition and Tenogenic Differentiation on Amniotic Epithelial Stem Cells. Cells 2020; 9:E303. [PMID: 32012741 PMCID: PMC7072418 DOI: 10.3390/cells9020303] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 01/08/2023] Open
Abstract
Background. The design of tendon biomimetic electrospun fleece with Amniotic Epithelial Stem Cells (AECs) that have shown a high tenogenic attitude may represent an alternative strategy to overcome the unsatisfactory results of conventional treatments in tendon regeneration. Methods. In this study, we evaluated AEC-engineered electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned fibers (ha-PLGA) that mimic tendon extracellular matrix, their biocompatibility, and differentiation towards the tenogenic lineage. PLGA fleeces with randomly distributed fibers (rd-PLGA) were generated as control. Results. Optimal cell infiltration and biocompatibility with both PLGA fleeces were shown. However, only ha-PLGA fleeces committed AECs towards an Epithelial-Mesenchymal Transition (EMT) after 48 h culture, inducing their cellular elongation along the fibers' axis and the upregulation of mesenchymal markers. AECs further differentiated towards tenogenic lineage as confirmed by the up-regulation of tendon-related genes and Collagen Type 1 (COL1) protein expression that, after 28 days culture, appeared extracellularly distributed along the direction of ha-PLGA fibers. Moreover, long-term co-cultures of AEC-ha-PLGA bio-hybrids with fetal tendon explants significantly accelerated of half time AEC tenogenic differentiation compared to ha-PLGA fleeces cultured only with AECs. Conclusions. The fabricated tendon biomimetic ha-PLGA fleeces induce AEC tenogenesis through an early EMT, providing a potential tendon substitute for tendon engineering research.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Lisa di Marcantonio
- Laboratory of Bacteriology, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, 64100 Teramo, Italy;
| | - Massimo Ancora
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Torsten Walter
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Jürgen Weisser
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Francesco Lazzaro
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L’Aquila, Italy;
| | - Marta Di Federico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| | - Cesare Cammà
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Matthias Schnabelrauch
- Department of Biomaterials, INNOVENT e. V, J-07749 Jena, Germany; (R.W.); (T.W.); (J.W.); (M.S.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.R.C.); (M.D.F.); (P.B.); (B.B.)
| |
Collapse
|
36
|
Pensa NW, Curry AS, Bonvallet PP, Bellis NF, Rettig KM, Reddy MS, Eberhardt AW, Bellis SL. 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds. Biomater Res 2019; 23:22. [PMID: 31798944 PMCID: PMC6884787 DOI: 10.1186/s40824-019-0171-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background There is substantial interest in electrospun scaffolds as substrates for tissue regeneration and repair due to their fibrous, extracellular matrix-like composition with interconnected porosity, cost-effective production, and scalability. However, a common limitation of these scaffolds is their inherently low mechanical strength and stiffness, restricting their use in some clinical applications. In this study we developed a novel technique for 3D printing a mesh reinforcement on electrospun scaffolds to improve their mechanical properties. Methods A poly (lactic acid) (PLA) mesh was 3D-printed directly onto electrospun scaffolds composed of a 40:60 ratio of poly(ε-caprolactone) (PCL) to gelatin, respectively. PLA grids were printed onto the electrospun scaffolds with either a 6 mm or 8 mm distance between the struts. Scanning electron microscopy was utilized to determine if the 3D printing process affected the archtitecture of the electrospun scaffold. Tensile testing was used to ascertain mechanical properties (strength, modulus, failure stress, ductility) of both unmodified and reinforced electrospun scaffolds. An in vivo bone graft model was used to assess biocompatibility. Specifically, reinforced scaffolds were used as a membrane cover for bone graft particles implanted into rat calvarial defects, and implant sites were examined histologically. Results We determined that the tensile strength and elastic modulus were markedly increased, and ductility reduced, by the addition of the PLA meshes to the electrospun scaffolds. Furthermore, the scaffolds maintained their matrix-like structure after being reinforced with the 3D printed PLA. There was no indication at the graft/tissue interface that the reinforced electrospun scaffolds elicited an immune or foreign body response upon implantation into rat cranial defects. Conclusion 3D-printed mesh reinforcements offer a new tool for enhancing the mechanical strength of electrospun scaffolds while preserving the advantageous extracellular matrix-like architecture. The modification of electrospun scaffolds with 3D-printed reinforcements is expected to expand the range of clinical applications for which electrospun materials may be suitable.
Collapse
Affiliation(s)
- Nicholas W Pensa
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Andrew S Curry
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Paul P Bonvallet
- 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Nathan F Bellis
- 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Kayla M Rettig
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Michael S Reddy
- 3School of Dentistry, University of California at San Francisco, San Francisco, USA
| | - Alan W Eberhardt
- 1Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Susan L Bellis
- 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|