1
|
Luo L, Li T, Wu Q, Yuan B, Hu C, Yang T, Wei H, Chen J. Retinoic acid administration normalizes aberrant microglial activation via regulating TREM2 transcription in the PFC of valproic acid induced autism rat. Neurosci Lett 2023; 803:137193. [PMID: 36924930 DOI: 10.1016/j.neulet.2023.137193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease with an unclear underlying pathogenesis. Disruption of retinoic acid (RA)-retinoic acid receptor α (RARα) signaling and aberrant microglial activation were reported to be involved in the pathogenesis of ASD. However, the effect of RA-RARα signaling on microglial activation in ASD and the underlying mechanisms are unknown. Herein, we found inhibited RA-RARα signaling and increased microglial activation in valproic acid (VPA)-induced autism rats. Furthermore, we administered RA to VPA rats and found that RA ameliorated autism-like behaviors, inhibited microglial activation and normalized microglial polarization in VPA rats. Additionally, the expression levels of RARα and triggering receptor expressed on myeloid cells 2 (TREM2) were increased in the prefrontal cortex (PFC) of VPA rats given RA. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays confirmed that RARα can regulate the transcriptional activity of the TREM2 gene by binding to its promoter. We conclude that RA administration ameliorates autism-like behaviors in VPA rats by inhibiting microglial activation and normalizing microglial polarization through the regulation of TREM2 transcription by RARα.
Collapse
Affiliation(s)
- Lijuan Luo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Binlin Yuan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chaoqun Hu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hua Wei
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
| |
Collapse
|
2
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
3
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
4
|
Nahi O, Kulak AN, Kress T, Kim YY, Grendal OG, Duer MJ, Cayre OJ, Meldrum FC. Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chem Sci 2021; 12:9839-9850. [PMID: 34349958 PMCID: PMC8293999 DOI: 10.1039/d1sc02991f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Nanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds. However, current formulations often employ open structures that achieve efficient loading of active agents, but that suffer undesired leakage and instability of the payloads over time. Here, a straightforward strategy that overcomes these issues is presented, in which protein nanogels are encapsulated within single crystals of calcite (CaCO3). Demonstrating our approach with bovine serum albumin (BSA) nanogels loaded with (bio)active compounds, including doxorubicin (a chemotherapeutic drug) and lysozyme (an antibacterial enzyme), we show that these nanogels can be occluded within calcite host crystals at levels of up to 45 vol%. Encapsulated within the dense mineral, the active compounds are stable against harsh conditions such as high temperature and pH, and controlled release can be triggered by a simple reduction of the pH. Comparisons with analogous systems - amorphous calcium carbonate, mesoporous vaterite (CaCO3) polycrystals, and calcite crystals containing polymer vesicles - demonstrate the superior encapsulation performance of the nanogel/calcite system. This opens the door to encapsulating a broad range of existing nanocarrier systems within single crystal hosts for the efficient storage, transport and controlled release of various active guest species.
Collapse
Affiliation(s)
- Ouassef Nahi
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Ola G Grendal
- The European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38000 Grenoble France
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
5
|
Valle F, Tortorella S, Scala A, Cordaro A, Barbalinardo M, Biscarini F, Mazzaglia A. Amphiphilic cationic cyclodextrin nanovesicles: a versatile cue for guiding cell adhesion. NANOSCALE ADVANCES 2020; 2:5897-5904. [PMID: 36133883 PMCID: PMC9417668 DOI: 10.1039/d0na00623h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 06/16/2023]
Abstract
It is well known that amphiphilic cationic β-cyclodextrins (amβCDs) form nanovesicles able to release their cargo in aqueous solution upon applying different stimuli. In addition they can be selectively positioned onto substrates by unconventional soft lithography. This makes them a powerful tool for designing environments where different cues can be externally supplied to the cells helping to achieve good control of their fate. Lithographically controlled wetting (LCW) of amβCD nanovesicles loaded with fluorescein isothiocyanate (FITC), amβCD/FITC, has been used here to fabricate geometrically functionalized surfaces, thus achieving multiscale control of the cell environment. The amβCD functionalization was strongly influenced by the surface energy of the underlying substrates that, according to their hydrophobicity, orient the amβCD in a different way, thus "offering" different portions to the cells. The structure of the pattern was characterized both over large scales exploiting the FITC fluorescence and at the nanoscale by atomic force microscopy. Cell guidance and aCD/FITC cell internalization were demonstrated in human neuroblastoma SHSY5Y cells.
Collapse
Affiliation(s)
- Francesco Valle
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) Via P. Gobetti 101 40129 Bologna Italy
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) Firenze Italy
| | - Silvia Tortorella
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna "Alma Mater Studiorum" Via Zamboni 33 40126 Bologna Italy
| | - Angela Scala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
| | - Annalaura Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
| | - Marianna Barbalinardo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) Via P. Gobetti 101 40129 Bologna Italy
| | - Fabio Biscarini
- Università di Modena e Reggio Emilia, Dipartimento di Scienze della Vita Via Campi 103 41125 Modena Italy
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology Via Fossato di Mortara 17-19 4412 Ferrara Italy
| | - Antonino Mazzaglia
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina Viale F. Stagno D'Alcontres, 31 98166 Messina Italy
| |
Collapse
|
6
|
Mills DK, Luo Y, Elumalai A, Esteve S, Karnik S, Yao S. Creating Structured Hydrogel Microenvironments for Regulating Stem Cell Differentiation. Gels 2020; 6:gels6040047. [PMID: 33276682 PMCID: PMC7768466 DOI: 10.3390/gels6040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The development of distinct biomimetic microenvironments for regulating stem cell behavior and bioengineering human tissues and disease models requires a solid understanding of cell-substrate interactions, adhesion, and its role in directing cell behavior, and other physico-chemical cues that drive cell behavior. In the past decade, innovative developments in chemistry, materials science, microfabrication, and associated technologies have given us the ability to manipulate the stem cell microenvironment with greater precision and, further, to monitor effector impacts on stem cells, both spatially and temporally. The influence of biomaterials and the 3D microenvironment's physical and biochemical properties on mesenchymal stem cell proliferation, differentiation, and matrix production are the focus of this review chapter. Mechanisms and materials, principally hydrogel and hydrogel composites for bone and cartilage repair that create "cell-supportive" and "instructive" biomaterials, are emphasized. We begin by providing an overview of stem cells, their unique properties, and their challenges in regenerative medicine. An overview of current fabrication strategies for creating instructive substrates is then reviewed with a focused discussion of selected fabrication methods with an emphasis on bioprinting as a critical tool in creating novel stem cell-based biomaterials. We conclude with a critical assessment of the current state of the field and offer our view on the promises and potential pitfalls of the approaches discussed.
Collapse
Affiliation(s)
- David K. Mills
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
- Correspondence:
| | - Yangyang Luo
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Anusha Elumalai
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Savannah Esteve
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, IUPUI, Indianapolis, IN 46202, USA;
| | - Shaomian Yao
- Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
7
|
Guidotti G, Soccio M, Posati T, Sotgiu G, Tiboni M, Barbalinardo M, Valle F, Casettari L, Zamboni R, Lotti N, Aluigi A. Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Giuri D, Barbalinardo M, Zanna N, Paci P, Montalti M, Cavallini M, Valle F, Calvaresi M, Tomasini C. Tuning Mechanical Properties of Pseudopeptide Supramolecular Hydrogels by Graphene Doping. Molecules 2019; 24:E4345. [PMID: 31795090 PMCID: PMC6930602 DOI: 10.3390/molecules24234345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Supramolecular hydrogels, obtained from small organic molecules, may be advantageous over polymeric ones for several applications, because these materials have some peculiar properties that differentiate them from the traditional polymeric hydrogels, such as elasticity, thixotropy, self-healing propensity, and biocompatibility. We report here the preparation of strong supramolecular pseudopeptide-based hydrogels that owe their strength to the introduction of graphene in the gelling mixture. These materials proved to be strong, stable, thermoreversible and elastic. The concentration of the gelator, the degree of graphene doping, and the nature of the trigger are crucial to get hydrogels with the desired properties, where a high storage modulus coexists with a good thixotropic behavior. Finally, NIH-3T3 cells were used to evaluate the cell response to the presence of the most promising hydrogels. The hydrogels biocompatibility remains good, if a small degree of graphene doping is introduced.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marianna Barbalinardo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Nicola Zanna
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Paolo Paci
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marco Montalti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Massimiliano Cavallini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Claudia Tomasini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| |
Collapse
|