1
|
He Z, Liu Y, Zheng ZL, Lv JC, Liu SB, Zhang J, Liu HH, Xu JZ, Li ZM, Luo E. Periodic Lamellae-Based Nanofibers for Precise Immunomodulation to Treat Inflammatory Bone Loss in Periodontitis. Adv Healthc Mater 2024; 13:e2303549. [PMID: 38333940 DOI: 10.1002/adhm.202303549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Periodontitis is a common oral disease accompanied by inflammatory bone loss. The pathological characteristics of periodontitis usually accompany an imbalance in the periodontal immune microenvironment, leading to difficulty in bone regeneration. Therefore, effective treatment strategies are needed to modulate the immune environment in order to treat periodontitis. Here, highly-oriented periodic lamellae poly(ε-caprolactone) electrospun nanofibers (PLN) are developed by surface-directed epitaxial crystallization. The in vitro result shows that the PLN can precisely modulate macrophage polarization toward the M2 phenotype. Macrophages polarized by PLN significantly enhance the migration and osteogenic differentiation of Bone marrow stromal cells. Notably, results suggest that the topographical cues presented by PLN can modulate macrophage polarization by activating YAP, which reciprocally inhibits the NF-κB signaling pathway. The in vivo results indicate that PLN can inhibit inflammatory bone loss and facilitate bone regeneration in periodontitis. The authors' findings suggest that topographical nanofibers with periodic lamellae is a promising strategy for modulating immune environment to treat inflammatory bone loss in periodontitis.
Collapse
Affiliation(s)
- Ze He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zi-Li Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jia-Cheng Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shi-Bo Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ju Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hang-Hang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Cai F, Blanquer A, Costa MB, Schweiger L, Sarac B, Greer AL, Schroers J, Teichert C, Nogués C, Spieckermann F, Eckert J. Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310364. [PMID: 38109153 PMCID: PMC11475312 DOI: 10.1002/smll.202310364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Ni-free Ti-based bulk metallic glasses (BMGs) are exciting materials for biomedical applications because of their outstanding biocompatibility and advantageous mechanical properties. The glassy nature of BMGs allows them to be shaped and patterned via thermoplastic forming (TPF). This work demonstrates the versatility of the TPF technique to create micro- and nano-patterns and hierarchical structures on Ti40Zr10Cu34Pd14Sn2 BMG. Particularly, a hierarchical structure fabricated by a two-step TPF process integrates 400 nm hexagonal close-packed protrusions on 2.5 µm square protuberances while preserving the advantageous mechanical properties from the as-cast material state. The correlations between thermal history, structure, and mechanical properties are explored. Regarding biocompatibility, Ti40Zr10Cu34Pd14Sn2 BMGs with four surface topographies (flat, micro-patterned, nano-patterned, and hierarchical-structured surfaces) are investigated using Saos-2 cell lines. Alamar Blue assay and live/dead analysis show that all tested surfaces have good cell proliferation and viability. Patterned surfaces are observed to promote the formation of longer filopodia on the edge of the cytoskeleton, leading to star-shaped and dendritic cell morphologies compared with the flat surface. In addition to potential implant applications, TPF-patterned Ti-BMGs enable a high level of order and design flexibility on the surface topography, expanding the available toolbox for studying cell behavior on rigid and ordered surfaces.
Collapse
Affiliation(s)
- Fei‐Fan Cai
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| | - Andreu Blanquer
- Departament de Biologia Cel·lularFisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsBellaterra08193Spain
| | - Miguel B. Costa
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Lukas Schweiger
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
| | - Baran Sarac
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| | - A. Lindsay Greer
- Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Jan Schroers
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenCT 06511USA
| | - Christian Teichert
- Department PhysicsMechanics and Electrical EngineeringChair of PhysicsMontanuniversität LeobenFranz‐Josef‐Strasse 18LeobenA‐8700Austria
| | - Carme Nogués
- Departament de Biologia Cel·lularFisiologia i ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsBellaterra08193Spain
| | - Florian Spieckermann
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
| | - Jürgen Eckert
- Department of Materials ScienceChair of Materials PhysicsMontanuniversität LeobenJahnstraße 12LeobenA‐8700Austria
- Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesJahnstraße 12LeobenA‐8700Austria
| |
Collapse
|
3
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Wei SY, Chen PY, Hsieh CC, Chen YS, Chen TH, Yu YS, Tsai MC, Xie RH, Chen GY, Yin GC, Melero-Martin JM, Chen YC. Engineering large and geometrically controlled vascularized nerve tissue in collagen hydrogels to restore large-sized volumetric muscle loss. Biomaterials 2023; 303:122402. [PMID: 37988898 PMCID: PMC11606314 DOI: 10.1016/j.biomaterials.2023.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, PA, USA
| | - Yu-Shan Yu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Chen J, Chen X, Ma Y, Liu Y, Li J, Peng K, Dai Y, Chen X. Effect of Anisotropic Structural Depth on Orientation and Differentiation Behavior of Skeletal Muscle Cells. ACS OMEGA 2023; 8:41374-41382. [PMID: 37969971 PMCID: PMC10634202 DOI: 10.1021/acsomega.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Extensive research has been conducted to examine how substrate topological factors are involved in modulating the cell behavior. Among numerous topological factors, the vital influence of the touchable depth of substrates on cell behaviors has already been extensively characterized, but the response of cells to the topological structure at untouchable depth is still elusive. Herein, the influences of substrate depth on myoblast behaviors are systematically investigated using substrates with depths ranging from touchable depth (microgrooved) to untouchable depth (microbridges). The results show that an increase in microgroove depth is accompanied by an inhibited cell spreading, an enhanced elongation, and a more obvious orientation along microgrooves. Interestingly, myoblasts located on microbridges show a more pronounced elongation with increasing culture time but a position-dependent orientation. Myoblasts on the center and parallel boundary of microbridges orient along the bridges, while myoblasts on the vertical boundary align perpendicular to the microbridges. Moreover, the differentiation results of the myoblasts indicate that the differentiated myotubes can maintain this position-dependent orientation. The simulation of the stress field in cell monolayers suggests that the position-dependent orientation is caused by the comprehensive response of myoblasts to the substrate discontinuity and substrate depth. These findings provide valuable insights into the mechanism of cell depth sensing and could inform the design of tissue engineering scaffolds for skeletal muscle and biohybrid actuation.
Collapse
Affiliation(s)
- Jianfeng Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Xuefei Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yihao Ma
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yiran Liu
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Jin Li
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Kai Peng
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yichuan Dai
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Xiaoxiao Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
6
|
Wu P, Yanagi K, Yokota K, Hakamada M, Mabuchi M. Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:54. [PMID: 37884819 PMCID: PMC10602965 DOI: 10.1007/s10856-023-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
A variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan.
| | - Kazuya Yanagi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
7
|
Smith MAA, Khot MI, Taccola S, Fry NR, Muhonen PL, Tipper JL, Jayne DG, Kay RW, Harris RA. A digitally driven manufacturing process for high resolution patterning of cell formations. Biomed Microdevices 2023; 25:16. [PMID: 37084116 PMCID: PMC10121500 DOI: 10.1007/s10544-023-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
This paper presents the engineering and validation of an enabling technology that facilitates new capabilities in in vitro cell models for high-throughput screening and tissue engineering applications. This is conducted through a computerized system that allows the design and deposition of high-fidelity microscale patterned coatings that selectively alter the chemical and topographical properties of cell culturing surfaces. Significantly, compared to alternative methods for microscale surface patterning, this is a digitally controlled and automated process thereby allowing scientists to rapidly create and explore an almost infinite range of cell culture patterns. This new capability is experimentally validated across six different cell lines demonstrating how the precise microscale deposition of these patterned coatings can influence spatiotemporal growth and movement of endothelial, fibroblast, neuronal and macrophage cells. To further demonstrate this platform, more complex patterns are then created and shown to guide the behavioral response of colorectal carcinoma cells.
Collapse
Affiliation(s)
- Matthew A A Smith
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - M Ibrahim Khot
- Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Silvia Taccola
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas R Fry
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Pirkko L Muhonen
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanne L Tipper
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David G Jayne
- Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert W Kay
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Russell A Harris
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Abdo VL, Suarez LJ, de Paula LG, Costa RC, Shibli J, Feres M, Barāo VAR, Bertolini M, Souza JGS. Underestimated microbial infection of resorbable membranes on guided regeneration. Colloids Surf B Biointerfaces 2023; 226:113318. [PMID: 37075523 DOI: 10.1016/j.colsurfb.2023.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
Collapse
Affiliation(s)
- Victoria L Abdo
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Lina J Suarez
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85, Bogotá 11001, Colombia
| | - Lucca Gomes de Paula
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jamil Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Valentim A R Barāo
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, 3501 Terrace St, Pittsburgh, PA 15213, USA
| | - Joāo Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Av. Waldomiro Marcondes Oliveira, 20 - Ibituruna, Montes Claros, Minas Gerais 39401-303, Brazil.
| |
Collapse
|
9
|
Zhang QY, Tan J, Nie R, Song YT, Zhou XL, Feng ZY, Huang K, Zou CY, Yuan QJ, Zhao LM, Zhang XZ, Jiang YL, Liu LM, Li-Ling J, Xie HQ. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 254:110550. [DOI: 10.1016/j.compositesb.2023.110550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
10
|
Cortelli G, Grob L, Patruno L, Cramer T, Mayer D, Fraboni B, Wolfrum B, de Miranda S. Determination of Stiffness and the Elastic Modulus of 3D-Printed Micropillars with Atomic Force Microscopy-Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7602-7609. [PMID: 36706051 PMCID: PMC9923676 DOI: 10.1021/acsami.2c21921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, many applications in diverse fields are taking advantage of micropillars such as optics, tribology, biology, and biomedical engineering. Among them, one of the most attractive is three-dimensional microelectrode arrays for in vivo and in vitro studies, such as cellular recording, biosensors, and drug delivery. Depending on the application, the micropillar's optimal mechanical response ranges from soft to stiff. For long-term implantable devices, a mechanical mismatch between the micropillars and the biological tissue must be avoided. For drug delivery patches, micropillars must penetrate the skin without breaking or bending. The accurate mechanical characterization of the micropillar is pivotal in the fabrication and optimization of such devices, as it determines whether the device will fail or not. In this work, we demonstrate an experimental method based only on atomic force microscopy-force spectroscopy that allows us to measure the stiffness of a micropillar and the elastic modulus of its constituent material. We test our method with four different types of 3D inkjet-printed micropillars: silver micropillars sintered at 100 and 150 °C and polyacrylate microstructures with and without a metallic coating. The estimated elastic moduli are found to be comparable with the corresponding bulk values. Furthermore, our findings show that neither the sintering temperature nor the presence of a thin metal coating plays a major role in defining the mechanical properties of the micropillar.
Collapse
Affiliation(s)
- Giorgio Cortelli
- Department
of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Leroy Grob
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Luca Patruno
- Department
of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Tobias Cramer
- Department
of Physics and Astronomy, University of
Bologna, Viale Berti
Pichat 6/2, 40127 Bologna, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Beatrice Fraboni
- Department
of Physics and Astronomy, University of
Bologna, Viale Berti
Pichat 6/2, 40127 Bologna, Italy
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Stefano de Miranda
- Department
of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
11
|
Sharma SK, Grewal HS. Tribological Behavior of Bioinspired Surfaces. Biomimetics (Basel) 2023; 8:biomimetics8010062. [PMID: 36810393 PMCID: PMC9944884 DOI: 10.3390/biomimetics8010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Energy losses due to various tribological phenomena pose a significant challenge to sustainable development. These energy losses also contribute toward increased emissions of greenhouse gases. Various attempts have been made to reduce energy consumption through the use of various surface engineering solutions. The bioinspired surfaces can provide a sustainable solution to address these tribological challenges by minimizing friction and wear. The current study majorly focuses on the recent advancements in the tribological behavior of bioinspired surfaces and bio-inspired materials. The miniaturization of technological devices has increased the need to understand micro- and nano-scale tribological behavior, which could significantly reduce energy wastage and material degradation. Integrating advanced research methods is crucial in developing new aspects of structures and characteristics of biological materials. Depending upon the interaction of the species with the surrounding, the present study is divided into segments depicting the tribological behavior of the biological surfaces inspired by animals and plants. The mimicking of bio-inspired surfaces resulted in significant noise, friction, and drag reduction, promoting the development of anti-wear and anti-adhesion surfaces. Along with the reduction in friction through the bioinspired surface, a few studies providing evidence for the enhancement in the frictional properties were also depicted.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Harpreet Singh Grewal
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
12
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Recent Developments in Surface Topography-Modulated Neurogenesis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Huang WY, Suye SI, Fujita S. Cell Trapping via Migratory Inhibition within Density-Tuned Electrospun Nanofibers. ACS APPLIED BIO MATERIALS 2021; 4:7456-7466. [PMID: 35006712 DOI: 10.1021/acsabm.1c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is an essential bioprocess that occurs during wound healing and tissue regeneration. Abnormal cell migration is observed in various pathologies, including cancer metastasis. Glioblastoma multiforme (GBM) is an aggressive and highly infiltrative brain tumor. The white matter tracts are considered the preferred routes for GBM invasion and the subsequent spread throughout the brain tissue. In the present study, a platform based on electrospun nanofibers with a consistent alignment and controlled density was designed to inhibit cell migration. The observation of the cells cultured on the nanofibers with different fiber densities revealed an inverse correlation between the cell migration velocity and nanofiber density. This was attributed to the formation of focal adhesions (FAs). The FAs in the sparse fiber matrix were small, whereas those in the dense fiber matrix were large, aligned with the nanofibers, and distributed throughout the cells. A nanofiber-based platform with stepwise different fiber densities was designed based on the aforementioned observation. A time-lapse observation of the GBM cells cultured on the platform revealed a directional one-way migration that induced the entrapment of cells in the dense-fiber zone. The designed platform mimicked the structure of the white matter tracts and enabled the entrapment of migrating cells. The demonstrated approach is suitable for inhibiting metastasis and understanding the biology of invasion, thereby functioning as a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Wan-Ying Huang
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shin-Ichiro Suye
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan.,Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan.,Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Advanced Interdisciplinary Science and Technology, Graduate School of Engineering, University of Fukui, Fukui 910-8507, Japan.,Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan.,Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
16
|
Capel AJ, Smith MAA, Taccola S, Pardo-Figuerez M, Rimington RP, Lewis MP, Christie SDR, Kay RW, Harris RA. Digitally Driven Aerosol Jet Printing to Enable Customisable Neuronal Guidance. Front Cell Dev Biol 2021; 9:722294. [PMID: 34527674 PMCID: PMC8435718 DOI: 10.3389/fcell.2021.722294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Digitally driven manufacturing technologies such as aerosol jet printing (AJP) can make a significant contribution to enabling new capabilities in the field of tissue engineering disease modeling and drug screening. AJP is an emerging non-contact and mask-less printing process which has distinct advantages over other patterning technologies as it offers versatile, high-resolution, direct-write deposition of a variety of materials on planar and non-planar surfaces. This research demonstrates the ability of AJP to print digitally controlled patterns that influence neuronal guidance. These consist of patterned poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) tracks on both glass and poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) coated glass surfaces, promoting selective adhesion of SH-SY5Y neuroblastoma cells. The cell attractive patterns had a maximum height ≥0.2 μm, width and half height ≥15 μm, Ra = 3.5 nm, and RMS = 4.1. The developed biocompatible PEDOT:PSS ink was shown to promote adhesion, growth and differentiation of SH-SY5Y neuronal cells. SH-SY5Y cells cultured directly onto these features exhibited increased nuclei and neuronal alignment on both substrates. In addition, the cell adhesion to the substrate was selective when cultured onto the PKSPMA surfaces resulting in a highly organized neural pattern. This demonstrated the ability to rapidly and flexibly realize intricate and accurate cell patterns by a computer controlled process.
Collapse
Affiliation(s)
- Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Matthew A A Smith
- Faculty of Engineering and Physical Sciences, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Silvia Taccola
- Faculty of Engineering and Physical Sciences, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Maria Pardo-Figuerez
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Robert W Kay
- Faculty of Engineering and Physical Sciences, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| | - Russell A Harris
- Faculty of Engineering and Physical Sciences, School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
17
|
Joshi A, Kaur T, Singh N. Exploiting Substrate Cues for Co-Culturing Cells in a Micropattern. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4933-4942. [PMID: 33870690 DOI: 10.1021/acs.langmuir.1c00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spatial distribution of cells and their interactions between neighboring cells in native microenvironments are of fundamental importance in determining cell fate decisions such as migration, growth, and differentiation. Controlling the spatial distribution of different cell types in defined geometries can replicate these native environments, which can be a useful model for several studies. While spatiotemporal control over multiple cell arrangements is required to achieve the complex tissue architecture, unfortunately, conventional cell patterning techniques usually allow only single patterning with a single cell type. In the present study, we introduce a simple lithographic method to pattern multiple cell types in a spatially controlled manner by utilizing the biophysical cues present at the corners of the patterned geometry. By fabricating micropatterns of different shapes, we demonstrate how the cell can be constrained to pattern along the corners of patterned geometries owing to the presence of topographical cues, leaving empty voids in the center that can be further utilized for patterning a second cell type. We also demonstrate that the cell alignment along the pattern is a dynamic process and the cells migrate from a more uniform cell-adhesive region toward the topographical cues. The cytoskeleton arrangement was geometry-dependent, which was confirmed through a series of in vitro evaluations, such as scanning electron microscopy and fluorescence microscopy. These findings have not only helped us in exploring the importance of these cues in guiding the cell fate but have also allowed us to develop a technique, which self-patterns the cells without any expensive exogenous cues and can be used as a model protocol to eventually organize cells into a specific pattern with micron-scale precision in vitro.
Collapse
Affiliation(s)
- Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
18
|
Wang Y, Yang Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Regulation of gene transfection by cell size, shape and elongation on micropatterned surfaces. J Mater Chem B 2021; 9:4329-4339. [PMID: 34013946 DOI: 10.1039/d1tb00815c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene transfection has been widely studied due to its potential applications in tissue repair and gene therapy. Many studies have focused on designing gene carriers and developing novel transfection techniques. However, the influence of cell size, shape and elongation on gene transfection has rarely been investigated. In this study, poly(vinyl alcohol)-micropatterned surfaces were prepared to precisely manipulate the size, shape and elongation of mesenchymal stem cells, and the influences of these factors on gene transfection were investigated. Cell size showed a significant influence on gene transfection. Elongation could affect the gene transfection of large cells but not small cells. Cells with a large spreading area and high aspect ratio showed high transfection with exogenous plasmid DNA. In particular, the transfection efficiency was the highest in micropatterned cells with a spreading area of 5024 μm2 and an aspect ratio of 8 : 1. In contrast, cell shape had no significant influence on gene transfection. The different influences of cell size, shape and elongation were correlated with their respective impacts on cytoskeletal structures, cellular nanoparticle uptake and DNA synthesis. Cells with a large size and elongated morphology showed well-organized actin filaments with a high cellular modulus, therefore promoting cellular nanoparticle uptake and DNA synthesis. Cells with different shapes showed similarities in actin filament organization, cellular modulus, uptake capacity and DNA synthesis. The results suggest the importance of cell size and elongation in exogenous gene transfection and should provide useful information for gene transfection and gene therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
19
|
Lei R, Kumar S. Getting the big picture of cell-matrix interactions: High-throughput biomaterial platforms and systems-level measurements. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100871. [PMID: 33244294 PMCID: PMC7685248 DOI: 10.1016/j.cossms.2020.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living cells interact with the extracellular matrix (ECM) in a complex and reciprocal manner. Much has been learned over the past few decades about cell-ECM interactions from targeted studies in which a specific matrix parameter (e.g. stiffness, adhesivity) has been varied across a few discrete values, or in which the level or activity of a protein is controlled in an isolated fashion. As the field moves forward, there is growing interest in addressing cell-matrix interactions from a systems perspective, which has spurred a new generation of matrix platforms capable of interrogating multiple ECM inputs in a combinatorial and parallelized fashion. Efforts are also actively underway to integrate specialized, synthetic ECM platforms with global measures of cell behaviors, including at the transcriptomic, proteomic and epigenomic levels. Here we review recent advances in both areas. We describe how new combinatorial ECM technologies are revealing unexpected crosstalk and nonlinearity in the relationship between cell phenotype and matrix properties. Similarly, efforts to integrate "omics" measurements with synthetic ECM platforms are illuminating how ECM properties can control cell biology in surprising and functionally important ways. We expect that advances in both areas will deepen the field's understanding of cell-ECM interactions and offer valuable insight into the design of biomaterials for specific biomedical applications.
Collapse
Affiliation(s)
- Ruoxing Lei
- Department of Chemistry, University of California, Berkeley, CA, 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720
| |
Collapse
|
20
|
Zhao B, Zheng ZL, Liu W, Yin HM, Lan RT, Xu L, Xu JZ, Song X, Li ZM. Combination of nanolamellae and PDA coating on promoting the long-term adhesion, proliferation, and differentiation of osteoblasts. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|