1
|
Ghorbanizamani F, Moulahoum H, Timur S. Ionic liquid-reinforced Hydroxyapatite@nano-TiO 2 as a green platform for Immuno-electrochemical sensing applications. Talanta 2024; 280:126688. [PMID: 39128315 DOI: 10.1016/j.talanta.2024.126688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
In contemporary society, developing dependable point-of-care (POC) biosensors for the timely detection of cancer markers is crucial. Among various sensor types, screen-printed electrode (SPE)-based sensors, particularly electrochemical ones, stand out as promising candidates for POC applications. Despite ongoing efforts to create numerous SPE-based sensors, there is a continuous pursuit to enhance their sensitivity and analytical capabilities. This study presents an advanced electrochemical sensor designed to sensitively detect the hepatocellular carcinoma (HCC) marker Alpha-fetoprotein (AFP) in saliva. The sensor employs a gold SPE modified with hydroxyapatite, TiO2 nanoparticles, 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ionic liquid (IL), and AFP monoclonal antibodies. After thorough characterization and optimization using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), the biosensor exhibited a broad detection range (0.01-400 ng/mL), a low limit of detection (LOD) at 0.058 ng/mL, and demonstrated high selectivity, repeatability, reproducibility, and stability. Furthermore, when tested with spiked human saliva samples, the biosensor displayed excellent recovery and robustness, showcasing its potential for noninvasive and POC diagnosis of HCC. In an environmentally conscious evaluation, the biosensor's greenness was assessed using the AGREE metric, yielding a high score of 0.85. This score indicates the biosensor's alignment with the principles of green analytical chemistry, underlining its eco-friendly attributes. This innovative electrochemical sensor contributes to the ongoing efforts for efficient and reliable POC diagnostic tools and aligns with a broader commitment to developing environmentally friendly solutions.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
2
|
Yaiwong P, Anuthum S, Sangthong P, Jakmunee J, Bamrungsap S, Ounnunkad K. A new portable toluidine blue/aptamer complex-on-polyethyleneimine-coated gold nanoparticles-based sensor for label-free electrochemical detection of alpha-fetoprotein. Front Bioeng Biotechnol 2023; 11:1182880. [PMID: 37284243 PMCID: PMC10239980 DOI: 10.3389/fbioe.2023.1182880] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
The quantification of alpha-fetoprotein (AFP) as a potential liver cancer biomarker which is generally found in ultratrace level is of significance in biomedical diagnostics. Therefore, it is challenging to find a strategy to fabricate a highly sensitive electrochemical device towards AFP detection through electrode modification for signal generation and amplification. This work shows the construction of a simple, reliable, highly sensitive, and label-free aptasensor based on polyethyleneimine-coated gold nanoparticles (PEI-AuNPs). A disposable ItalSens screen-printed electrode (SPE) is employed for fabricating the sensor by successive modifying with PEI-AuNPs, aptamer, bovine serum albumin (BSA), and toluidine blue (TB), respectively. The AFP assay is easily performed when the electrode is inserted into a small Sensit/Smart potentiostat connected to a smartphone. The readout signal of the aptasensor derives from the electrochemical response of TB intercalating into the aptamer-modified electrode after binding with the target. The decrease in current response of the proposed sensor is proportional to the AFP concentration due to the restriction of the electron transfer pathway of TB by a number of insulating AFP/aptamer complexes on the electrode surface. PEI-AuNPs improve SPE's reactivity and provide a large surface area for aptamer immobilization whereas aptamer provides selectivity to the target AFP. Consequently, this electrochemical biosensor is highly sensitive and selective for AFP analysis. The developed assay reveals a linear range of detection from 10 to 50000 pg mL-1 with R 2 = 0.9977 and provided a limit of detection (LOD) of 9.5 pg mL-1 in human serum. With its simplicity and robustness, it is anticipated that this electrochemical-based aptasensor will be a benefit for the clinical diagnosis of liver cancer and further developed for other biomarkers analysis.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Anuthum
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Padchanee Sangthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Huang J, Xie Z, Li M, Luo S, Deng X, Xie L, Fan Q, Zeng T, Zhang Y, Zhang M, Wang S, Xie Z, Li D. An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype. NANOSCALE RESEARCH LETTERS 2022; 17:110. [PMID: 36404373 PMCID: PMC9676155 DOI: 10.1186/s11671-022-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Avian influenza virus H9 subtype (AIV H9) has contributed to enormous economic losses. Effective diagnosis is key to controlling the spread of AIV H9. In this study, a nonenzymatic highly electrocatalytic material was prepared using chitosan (Chi)-modified graphene sheet (GS)-functionalized Au/Pt nanoparticles (GS-Chi-Au/Pt), followed by the construction of a novel enzyme-free sandwich electrochemical immunosensor for the detection of AIV H9 using GS-Chi-Au/Pt and graphene-chitosan (GS-Chi) nanocomposites as a nonenzymatic highly electrocatalytic material and a substrate material to immobilize capture antibodies (avian influenza virus H9-monoclonal antibody, AIV H9/MAb), respectively. GS, which has a large specific surface area and many accessible active sites, permitted multiple Au/Pt nanoparticles to be attached to its surface, resulting in substantially improved conductivity and catalytic ability. Au/Pt nanoparticles can provide modified active sites for avian influenza virus H9-polyclonal antibody (AIV H9/PAb) immobilization as signal labels. Upon establishing the electrocatalytic activity of Au/Pt nanoparticles on graphene towards hydrogen peroxide (H2O2) reduction for signal amplification and optimizing the experimental parameters, we developed an AIV H9 electrochemical immunosensor, which showed a wide linear range from 101.37 EID50 mL-1 to 106.37 EID50 mL-1 and a detection limit of 100.82 EID50 mL-1. This sandwich electrochemical immunosensor also exhibited high selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China.
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| |
Collapse
|
5
|
PSA detection electrochemical immunosensor based on MOF-235 nanomaterial adsorption aggregation signal amplification strategy. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Rinaldi C, Corrigan DK, Dennany L, Jarrett RF, Lake A, Baker MJ. Development of an Electrochemical CCL17/TARC Biosensor toward Rapid Triage and Monitoring of Classic Hodgkin Lymphoma. ACS Sens 2021; 6:3262-3272. [PMID: 34478275 DOI: 10.1021/acssensors.1c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A point-of-care blood test for the detection of an emerging biomarker, CCL17/TARC, could prove transformative for the clinical management of classic Hodgkin lymphoma (cHL). Primary care diagnosis is challenging due to nonspecific clinical presentation and lack of a diagnostic test, leading to significant diagnostic delays. Treatment monitoring encounters false-positive and negative results, leading to avoidable chemotherapy toxicity, or undertreatment, impacting patient morbidity and mortality. Here, we present an amperometric CCL17/TARC immunosensor, based on the utilization of a thiolated heterobifunctional cross-linker and sandwich antibody assay, to facilitate novel primary care triage and chemotherapy monitoring strategies for cHL. The immunosensor shows excellent analytical performance for clinical testing; linearity (R2 = 0.986), detection limit (194 pg/mL), and lower and upper limits of quantitation (387-50 000 pg/mL). The biosensor differentiated all 42 newly diagnosed cHL patients from healthy volunteers, based on serum CCL17/TARC concentration, using blood samples collected prior to treatment intervention. The immunosensor also discriminated between paired blood samples of all seven cHL patients, respectively, collected prior to treatment and during chemotherapy, attributed to the decrease in serum CCL17/TARC concentration following chemotherapy response. Overall, we have shown, for the first time, the potential of an electrochemical CCL17/TARC biosensor for primary care triage and chemotherapy monitoring for cHL, which would have positive clinical and psychosocial implications for patients, while streamlining current healthcare pathways.
Collapse
Affiliation(s)
- Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Damion K. Corrigan
- Department of Biomedical Engineering, University of Strathclyde, 40 George Street, Glasgow G1 1QE, U.K
| | - Lynn Dennany
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Ruth F. Jarrett
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Bearsden, Glasgow G61 1QH, U.K
| | - Annette Lake
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Bearsden, Glasgow G61 1QH, U.K
| | - Matthew J. Baker
- DXCOVER Ltd., University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| |
Collapse
|
7
|
Zang Y, Cao R, Zhang C, Xu Q, Yang Z, Xue H, Shen Y. TiO 2-sensitized double-shell ZnCdS hollow nanospheres for photoelectrochemical immunoassay of carcinoembryonic antigen coupled with hybridization chain reaction-dependent Cu 2+ quenching. Biosens Bioelectron 2021; 185:113251. [PMID: 33905965 DOI: 10.1016/j.bios.2021.113251] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
A novel photoelectrochemical immunosensor was constructed to monitor carcinoembryonic antigen (CEA) based on hybridization chain reaction (HCR)-mediated in situ generation of copper nanoparticles (Cu NPs) and subsequent Cu2+-dependent quenching reaction, in which titanium dioxide nanoparticles-sensitized double-shell zinc cadmium sulfide hollow nanospheres (TiO2/DS-ZnCdS)-modified ITO electrode and anti-CEA antibody-modified 96-well plate served as biological recognition and signal detection platforms, respectively. The synergistic effect of TiO2 NPs and DS-ZnCdS hollow nanospheres contributed to the improvement of photoelectric conversion efficiency, and HCR-mediated signal cascade benefited the enhancement of detection sensitivity. In the presence of CEA, biotin-labelled anti-CEA antibodies were immobilized onto anti-CEA antibody-modified 96-well plate, and triggered HCR process to form long double stranded DNA, which could adsorb a large number of Cu2+ ions and then in situ form Cu NPs on double stranded DNA template by a facile reduction reaction. After acid treatment, the dissolved Cu2+ ions could significantly reduce the photocurrent response due to the generation of CuxS. Under optimal conditions, the immunosensor exhibited a desirable liner range of 1 pg mL-1 - 50 ng mL-1 and a low detection limit of 0.1 pg mL-1, as well as excellent selectivity and stability. Meanwhile, the recoveries of human serum sample analysis ranged from 96.8% to 103.6%, and the relative standard deviation was less than 7.40%, showing a good feasibility in early clinical diagnosis.
Collapse
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China.
| | - Rong Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Chenyang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Yizhong Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China.
| |
Collapse
|
8
|
Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 2021; 225:122006. [DOI: 10.1016/j.talanta.2020.122006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
|
9
|
Wang XY, Feng YG, Wang AJ, Mei LP, Luo X, Xue Y, Feng JJ. Facile construction of ratiometric electrochemical immunosensor using hierarchical PtCoIr nanowires and porous SiO 2@Ag nanoparticles for accurate detection of septicemia biomarker. Bioelectrochemistry 2021; 140:107802. [PMID: 33794412 DOI: 10.1016/j.bioelechem.2021.107802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Procalcitonin (PCT) is a sensitive and specific biomarker for sepsis diagnosis. In this study, a novel ratio-typed electrochemical immunosensor was constructed for reliable and sensitive assay of PCT based on hierarchical PtCoIr nanowires/polyethylene polyamine-grafted-ferrocene (PtCoIr HNWs/PEPA-Fc) and porous SiO2@Ag nanoparticles-toluidine blue (porous SiO2@Ag NPs-TB). Importantly, the PtCoIr HNWs/PEPA-Fc was first modified on the sensing interface, which harvested stable and strong electrochemical signals for readout of Fc due to the enriched anchoring sites created by the PtCoIr HNWs. Meanwhile, porous SiO2@Ag NPs-TB behaved as the label to conjugate with secondary antibody (Ab2), which also provided another strong detection signals originated from TB confined in such porous structures. The resulting immunosensor displayed a measurable output of procalcitonin (PCT) in the dynamic scope of 0.001 ~ 100 ng mL-1 with a low limit of detection (LOD) of 0.46 pg mL-1 (S/N = 3). Moreover, we exploited this strategy for PCT assay in a diluted human serum sample with acceptable results, exhibiting promising applications in the clinical analysis.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Jinhua Central Hospital, Jinhua 321001, China; Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yi-Ge Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Ping Mei
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yadong Xue
- Jinhua Central Hospital, Jinhua 321001, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
Brownson DAC, Garcia-Miranda Ferrari A, Ghosh S, Kamruddin M, Iniesta J, Banks CE. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. NANOSCALE ADVANCES 2020; 2:5319-5328. [PMID: 36132042 PMCID: PMC9417807 DOI: 10.1039/d0na00587h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/06/2020] [Indexed: 05/04/2023]
Abstract
The electrochemical response of different morphologies (microstructures) of vertically aligned graphene (VG) configurations is reported. Electrochemical properties are analysed using the outer-sphere redox probes Ru(NH3)6 2+/3+ (RuHex) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), with performances de-convoluted via accompanying physicochemical characterisation (Raman, TEM, SEM, AFM and XPS). The VG electrodes are fabricated using an electron cyclotron resonance chemical vapour deposition (ECR-CVD) methodology, creating vertical graphene with a range of differing heights, spacing and edge plane like-sites/defects (supported upon underlying SiO2/Si). We correlate the electrochemical reactivity/response of these novel VG configurations with the level of edge plane sites (%-edge) comprising their structure and calculate corresponding heterogeneous electron transfer (HET) rates, k 0. Taller VG structures with more condensed layer stacking (hence a larger global coverage of exposed edge plane sites) are shown to exhibit improved HET kinetics, supporting the claims that edge plane sites are the predominant source of electron transfer in carbon materials. A measured k 0 eff of ca. 4.00 × 10-3 cm s-1 (corresponding to an exposed surface coverage of active edge plane like-sites/defects (% θ edge) of 1.00%) was evident for the tallest and most closely stacked VG sample, with the inverse case true, where a VG electrode possessing large inter-aligned-graphene spacing and small flake heights exhibited only 0.08% of % θ edge and a k 0 eff value one order of magnitude slower at ca. 3.05 × 10-4 cm s-1. Control experiments are provided with conventional CVD (horizontal) grown graphene and the edge plane of highly ordered pyrolytic graphite (EPPG of HOPG), demonstrating that the novel VG electrodes exhibit ca. 3× faster k 0 than horizontal CVD graphene. EPPG exhibited the fastest HET kinetics, exhibiting ca. 2× larger k 0 than the best VG. These results are of significance to those working in the field of 2D-carbon electrochemistry and materials scientists, providing evidence that the macroscale electrochemical response of carbon-based electrodes is dependent on the edge plane content and showing that a range of structural configurations can be employed for tailored properties and applications.
Collapse
Affiliation(s)
- Dale A C Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476561 +44 (0)1612471196
| | - Alejandro Garcia-Miranda Ferrari
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476561 +44 (0)1612471196
| | - Subrata Ghosh
- Materials Science Group, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India
- Department of Materials, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Mohammed Kamruddin
- Materials Science Group, Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India
| | - Jesús Iniesta
- Physical Chemistry Department, Institute of Electrochemistry, University of Alicante 03690 San Vicente del Raspeig Alicante Spain
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476561 +44 (0)1612471196
| |
Collapse
|