1
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
2
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
3
|
Ma T, Chen T, Tan H, Zhang S, Wei H, Wang Q, Zhang Z, Zhou W, Wang L, Wang G. Endocytosis efficiency and targeting ability by the cooperation of nanoparticles. NANOSCALE 2024; 16:18553-18569. [PMID: 39290054 DOI: 10.1039/d4nr01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cooperative wrapping of nanoparticles (NPs) with small sizes is an important pathway for the uptake of NPs by cell membranes. However, the cooperative wrapping efficiency and the effects of NPs' rigidity remain ambiguous. With the aid of computer simulations, we show that the complete wrapping mechanism of cooperative endocytosis is that the aggregation of NPs leads to greater wrapping forces than the single NP case, which triggers the increase of the wrapping degree and in turn further increases the wrapping forces until they are finally fully taken up. The effects of the NP size, initial distance, interaction strength, arrangement and stiffness on cooperative endocytosis were systematically studied. The cooperative wrapping efficiency increases as the NP radius increases. Hexagonal close packed NPs have the highest internalization efficiency. When the interactions are strong, softer NPs exhibit higher endocytosis efficiency. We further propose two strategies by combining NPs with different wrapping properties for targeting applications. By combining two NPs decorated with different types of ligands, the combination NPs can only be fully endocytosed by the cell membrane with two cognate types of receptors and adhere to the normal cell membrane with only one type of receptor. We also design composite NPs using a large NP non-covalently decorated with several small NPs. By harnessing the competition between the ligand-receptor interactions and the excluded volume interactions between the small NPs and the lipid membrane, the composite NPs have targeting ability towards the cancer cell membrane. The design concept of combining NPs with different wrapping properties for drug targeting applications may be very promising in biomedicine.
Collapse
Affiliation(s)
- Teng Ma
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Tianjiao Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Huifeng Tan
- National Key Laboratory of Science and Technology for National Defence on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Songsong Zhang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Hao Wei
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Qiang Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Zhijia Zhang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Wenjun Zhou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lin Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Guojun Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| |
Collapse
|
4
|
Yuan D, Niu Z, Zheng W, Zhao Q, Zhou F, Zhao M. Mind the Particle Rigidity: Blooms the Bioavailability via Rapidly Crossing the Mucus Layer and Alters the Intracellular Fate of Curcumin. ACS NANO 2024; 18:27026-27041. [PMID: 39297569 DOI: 10.1021/acsnano.4c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Overcoming intestinal epithelial barriers to enhance bioavailability is a major challenge for oral delivery systems. Desirable nanocarriers should simultaneously exhibit rapid mucus penetration and efficient epithelial uptake; however, they two generally require contradictory structural properties. Herein, we proposed a strategy to construct multiperformance nanoparticles by modifying the rigidity of amphiphilic nanostructures originating from soy polypeptides (SPNPs), where its ability to overcome multibarriers was examined from both in vitro and in vivo, using curcumin (CUR) as a model cargo. Low-rigidity SPNPs showed higher affinity to mucin and were prone to getting stuck in the mucus layer. When they reached epithelial cells, they tended to be endocytosed through the clathrin and macropinocytosis pathways and further transferred to lysosomes, showing severe degradation and lower transport of CUR. Increased particle rigidity generally improved the absorption of CUR, with medium-rigidity SPNPs bloomed maximum plasma concentration of CUR by 80.62-fold and showed the highest oral bioavailability. Results from monocultured and cocultured cell models demonstrated that medium-rigidity SPNPs were least influenced by the mucus layer and changes in rigidity significantly influenced the endocytosis and intracellular fate of SPNPs. Those with higher rigidity preferred to be endocytosed via a caveolae-mediated pathway and trafficked to the ER and Golgi, facilitating their whole transcytosis, and avoiding intracellular metabolism. Moreover, rigidity modulation efficiently induces the reversible opening of intercellular tight junctions, which synergistically improves the transport of CUR into blood circulation. This study suggested that rigidity regulation on food originated amphiphilic peptides could overcome multiple physiological barriers, showing great potential as natural building block toward oral delivery.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Zhicheng Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Wenyu Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
5
|
T Cruz J, Karen Álvarez, H Orozco V, Mauricio Rojas, A Morales-Luckie R, F Giraldo L. PLGA-LEC/F127 hybrid nanoparticles loaded with curcumin and their modulatory effect on monocytes. Nanomedicine (Lond) 2024; 19:1407-1423. [PMID: 38920352 PMCID: PMC11382718 DOI: 10.1080/17435889.2024.2357530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Aim: To investigate the effect of surfactant type on curcumin-loaded (CUR) PLGA nanoparticles (NPs) to modulate monocyte functions. Materials & methods: The nanoprecipitation method was used, and PLGA NPs were designed using Pluronic F127 (F127) and/or lecithin (LEC) as surfactants. Results: The Z-average of the NPs was <200 nm, they had a spherical shape, Derjaguin-Muller-Toporov modulus >0.128 MPa, they were stable during storage at 4°C, ζ-potential ∼-40 mV, polydispersity index <0.26 and % EE of CUR >94%. PLGA-LEC/F127 NPs showed favorable physicochemical and nanomechanical properties. These NPs were bound and internalized mainly by monocytes, suppressed monocyte-induced reactive oxygen species production, and decreased the ability of monocytes to modulate T-cell proliferation. Conclusion: These results demonstrate the potential of these NPs for targeted therapy.
Collapse
Affiliation(s)
- Jennifer T Cruz
- Polymer Research Laboratory (LIPOL), Institute of Chemistry, University of Antioquia (UdeA), Medellín, Colombia
- Faculty of Basic Sciences, University of the Amazonia (UDLA), Florencia, Colombia
| | - Karen Álvarez
- Cellular Immunology & Immunogenetics Group (GICIG), University Research Headquarters (SIU), University of Antioquia (UdeA), Medellín, Colombia
| | - Víctor H Orozco
- Polymer Research Laboratory (LIPOL), Institute of Chemistry, University of Antioquia (UdeA), Medellín, Colombia
| | - Mauricio Rojas
- Cellular Immunology & Immunogenetics Group (GICIG), University Research Headquarters (SIU), University of Antioquia (UdeA), Medellín, Colombia
| | - Raul A Morales-Luckie
- Autonomous University of the State of Mexico, Sustainable Chemistry Research Joint Center UAEM-UNAM (CCIQS), Toluca, Estado de México, México
| | - Luis F Giraldo
- Polymer Research Laboratory (LIPOL), Institute of Chemistry, University of Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
6
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
7
|
Sakamoto Y, Fujii S, Takano S, Fukushima J, Ando M, Kodera N, Nishimura T. Manipulation of Macrophage Uptake by Controlling the Aspect Ratio of Graft Copolymer Micelles. NANO LETTERS 2024; 24:5838-5846. [PMID: 38661003 DOI: 10.1021/acs.nanolett.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanostructures of drug carriers play a crucial role in nanomedicine due to their ability to influence drug delivery. There is yet no clear consensus regarding the optimal size and shape (e.g., aspect ratio) of nanoparticles for minimizing macrophage uptake, given the difficulties in controlling the shape and size of nanoparticles while maintaining identical surface properties. Here, we employed graft copolymer self-assembly to prepare polymer micelles with aspect ratios ranging from 1.0 (spherical) to 10.8 (cylindrical) and closely matched interfacial properties. Notably, our findings emphasize that cylindrical micelles with an aspect ratio of 2.4 are the least susceptible to macrophage uptake compared with both their longer counterparts and spherical micelles. This reduced uptake of the short cylindrical micelles results in a 3.3-fold increase in blood circulation time compared with their spherical counterparts. Controlling the aspect ratio of nanoparticles is crucial for improving drug delivery efficacy through better nanoparticle design.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jokichi Fukushima
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Ishikawa 920-1192, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
8
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
9
|
Yong X, Du K. Effects of Shape on Interaction Dynamics of Tetrahedral Nanoplastics and the Cell Membrane. J Phys Chem B 2023; 127:1652-1663. [PMID: 36763902 DOI: 10.1021/acs.jpcb.2c07460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cellular uptake of nanoplastics is instrumental in their environmental accumulation and transfer to humans through the food chain. Despite extensive studies using spherical plastic nanoparticles, the influence of the morphological characteristics of environmentally released nanoplastics is understudied. Using dissipative particle dynamics simulations, we modeled the interactions between a cell membrane and hydrophobic nanotetrahedra, which feature high shape anisotropy and large surface curvature seen for environmental nanoplastics. We observe robust uptake of nanotetrahedra with sharp vertices and edges by the lipid membrane. Two local energy minimum configurations of nanotetrahedra embedded in the membrane bilayer were identified for particles of large sizes. Further analysis of particle dynamics within the membrane shows that the two interaction states exhibit distinct translational and rotational dynamics in the directions normal and parallel to the plane of the membrane. The membrane confinement significantly arrests the out-of-plane motion, resulting in caged translation and subdiffusive rotation. While the in-plane diffusion remains Brownian, we find that the translational and rotational modes decouple from each other as the particle size increases. The rotational diffusion decreases by a greater extent compared to the translational diffusion, deviating from the continuum theory predictions. These results provide fundamental insights into the shape effect on the nanoparticle dynamics in crowded lipid membranes.
Collapse
Affiliation(s)
- Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
10
|
Han J, Tian Y, Wang M, Li Y, Yin J, Qu W, Yan C, Ding R, Guan Y, Wang Q. Proteomics unite traditional toxicological assessment methods to evaluate the toxicity of iron oxide nanoparticles. Front Pharmacol 2022; 13:1011065. [PMID: 36172182 PMCID: PMC9512491 DOI: 10.3389/fphar.2022.1011065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are the first generation of nanomaterials approved by the Food and Drug Administration for use as imaging agents and for the treatment of iron deficiency in chronic kidney disease. However, several IONPs-based imaging agents have been withdrawn because of toxic effects and the poor understanding of the underlying mechanisms. This study aimed to evaluate IONPs toxicity and to elucidate the underlying mechanism after intravenous administration in rats. Seven-week-old rats were intravenously administered IONPs at doses of 0, 10, 30, and 90 mg/kg body weight for 14 consecutive days. Toxicity and molecular perturbations were evaluated using traditional toxicological assessment methods and proteomics approaches, respectively. The administration of 90 mg/kg IONPs induced mild toxic effects, including abnormal clinical signs, lower body weight gain, changes in serum biochemical and hematological parameters, and increased organ coefficients in the spleen, liver, heart, and kidneys. Toxicokinetics, tissue distribution, histopathological, and transmission electron microscopy analyses revealed that the spleen was the primary organ for IONPs elimination from the systemic circulation and that the macrophage lysosomes were the main organelles of IONPs accumulation after intravenous administration. We identified 197 upregulated and 75 downregulated proteins in the spleen following IONPs administration by proteomics. Mechanically, the AKT/mTOR/TFEB signaling pathway facilitated autophagy and lysosomal activation in splenic macrophages. This is the first study to elucidate the mechanism of IONPs toxicity by combining proteomics with traditional methods for toxicity assessment.
Collapse
|
11
|
Sachdeva V, Monga A, Vashisht R, Singh D, Singh A, Bedi N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Witzmann T, Ramsperger AFRM, Wieland S, Laforsch C, Kress H, Fery A, Auernhammer GK. Repulsive Interactions of Eco-corona-Covered Microplastic Particles Quantitatively Follow Modeling of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8748-8756. [PMID: 35736564 DOI: 10.1021/acs.langmuir.1c03204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The environmental fate and toxicity of microplastic particles are dominated by their surface properties. In the environment, an adsorbed layer of biomolecules and natural organic matter forms the so-called eco-corona. A quantitative description of how this eco-corona changes the particles' colloidal interactions is still missing. Here, we demonstrate with colloidal probe-atomic force microscopy that eco-corona formation on microplastic particles introduces a compressible film on the surface, which changes the mechanical behavior. We measure single particle-particle interactions and find a pronounced increase of long-range repulsive interactions upon eco-corona formation. These force-separation characteristics follow the Alexander-de Gennes (AdG) polymer brush model under certain conditions. We further compare the obtained fitting parameters to known systems like polyelectrolyte multilayers and propose these as model systems for the eco-corona. Our results show that concepts of fundamental polymer physics, like the AdG model, also help in understanding more complex systems like biomolecules adsorbed to surfaces, i.e., the eco-corona.
Collapse
Affiliation(s)
- Thomas Witzmann
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Günter K Auernhammer
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
13
|
Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers (Basel) 2022; 14:polym14132601. [PMID: 35808648 PMCID: PMC9268820 DOI: 10.3390/polym14132601] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/17/2022] Open
Abstract
Passive targeting is the foremost mechanism by which nanocarriers and drug-bearing macromolecules deliver their payload selectively to solid tumors. An important driver of passive targeting is the enhanced permeability and retention (EPR) effect, which is the cornerstone of most carrier-based tumor-targeted drug delivery efforts. Despite the huge number of publications showcasing successes in preclinical animal models, translation to the clinic has been poor, with only a few nano-based drugs currently being used for the treatment of cancers. Several barriers and factors have been adduced for the low delivery efficiency to solid tumors and poor clinical translation, including the characteristics of the nanocarriers and macromolecules, vascular and physiological barriers, the heterogeneity of tumor blood supply which affects the homogenous distribution of nanocarriers within tumors, and the transport and penetration depth of macromolecules and nanoparticles in the tumor matrix. To address the challenges associated with poor tumor targeting and therapeutic efficacy in humans, the identified barriers that affect the efficiency of the enhanced permeability and retention (EPR) effect for macromolecular therapeutics and nanoparticle delivery systems need to be overcome. In this review, approaches to facilitate improved EPR delivery outcomes and the clinical translation of novel macromolecular therapeutics and nanoparticle drug delivery systems are discussed.
Collapse
|
14
|
Stanciu SG, Tranca DE, Zampini G, Hristu R, Stanciu GA, Chen X, Liu M, Stenmark HA, Latterini L. Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles. ACS OMEGA 2022; 7:11353-11362. [PMID: 35415325 PMCID: PMC8992282 DOI: 10.1021/acsomega.2c00410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 05/14/2023]
Abstract
Scattering-type scanning near-field optical microscopy (s-SNOM) has emerged over the past years as a powerful characterization tool that can probe important properties of advanced materials and biological samples in a label-free manner, with spatial resolutions lying in the nanoscale realm. In this work, we explore such usefulness in relationship with an interesting class of materials: polymer-coated gold nanoparticles (NPs). As thoroughly discussed in recent works, the interplay between the Au core and the polymeric shell has been found to be important in many applications devoted to biomedicine. We investigate bare Au NPs next to polystyrenesulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) coated ones under 532 nm laser excitation, an wavelength matching the surface plasmon band of the custom-synthesized nanoparticles. We observe consistent s-SNOM phase signals in the case of bare and shallow-coated Au NPs, whereas for thicker shell instances, these signals fade. For all investigated samples, the s-SNOM amplitude signals were found to be very weak, which may be related to reduced scattering efficiency due to absorption of the incident beam. We consider these observations important, as they may facilitate studies and applications in nanomedicine and nanotechnology where the precise positioning of polymer-coated Au NPs with nanoscale resolution is needed besides their dielectric function and related intrinsic optical properties, which are also quantitatively available with s-SNOM.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Denis E. Tranca
- Center
for Microscopy-Microanalysis and Information Processing, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Giulia Zampini
- Department
of Chemistry, Biology and Biotechnology, Perugia University, Via Elce di sotto, 8, 06123 Perugia, Italy
| | - Radu Hristu
- Center
for Microscopy-Microanalysis and Information Processing, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - George A. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Xinzhong Chen
- Department
of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mengkun Liu
- Department
of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
- National
Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Harald A. Stenmark
- Department
of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo 0379, Norway
| | - Loredana Latterini
- Department
of Chemistry, Biology and Biotechnology, Perugia University, Via Elce di sotto, 8, 06123 Perugia, Italy
| |
Collapse
|
15
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Guan YH, Wang N, Deng ZW, Chen XG, Liu Y. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 2022; 282:121434. [DOI: 10.1016/j.biomaterials.2022.121434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
17
|
Sun Y, Zheng Y, Song L, Sun P, Zhao M, Zhou Y, Tee CATH. Elasticity and damping ratio measurement of droplets on super-hydrophobic surfaces. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211632. [PMID: 35242354 PMCID: PMC8753166 DOI: 10.1098/rsos.211632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The measurement of the droplets' elasticity is vitally important in microfluidic and ink-jet printing. It refers to the ability of the droplet to restore its original shape and strong robustness. This study investigated a novel method to measure elasticity. The plate coated with super-hydrophobic layers pressed on a droplet and the elastic force was recorded by an electronic balance. Meanwhile, a mathematical model was constructed to calculate the changes of the droplet area under the force. The measurement showed that external work mainly converts into surface energy and the damping ratio increases from 0.068 to 0.261 with the increase of mass fraction from 0 to 80 wt%. It also indicates that the novel method can accurately and efficiently measure the elasticity of droplets.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, People’s Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, People’s Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, People’s Republic of China
| | - Peiyuan Sun
- Dongying Vocational Institute, Dongying, People’s Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, People’s Republic of China
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Clarence Augustine TH Tee
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Srinivas M, Sharma P, Jhunjhunwala S. Phagocytic Uptake of Polymeric Particles by Immune Cells under Flow Conditions. Mol Pharm 2021; 18:4501-4510. [PMID: 34748349 DOI: 10.1021/acs.molpharmaceut.1c00698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Particles injected intravenously are thought to be cleared by macrophages residing in the liver and spleen, but they also encounter circulating immune cells. It remains to be established if the circulating cells can take up particles while flowing and if the uptake capacity is similar under static and flow conditions. Here, we use an in vitro peristaltic pump setup that mimics pulsatile blood flow to determine if immune cells take up particles under constant fluidic flow. We use polystyrene particles of varying sizes as the model of a polymeric particle for these studies. Our results show that the immune cells do phagocytose under flow conditions. We demonstrate that cell lines representing myeloid cells, primary human neutrophils, and monocytes take up submicrometer-sized particles at similar or better rates under flow compared to static conditions. Experiments with whole human blood show that, even under the crowding effects of red blood cells, neutrophils and monocytes take up particles while flowing. Together, these data suggest that circulating immune cells are likely to phagocytose intravenously injected particulates, which has implications for the design of particles to evade or target these cells.
Collapse
Affiliation(s)
- Megha Srinivas
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.,Undergraduate Program, Indian Institute of Science, Bengaluru 560012, India
| | - Preeti Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
19
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
20
|
Rodrigues G, Gonçalves da Costa Sousa M, da Silva DC, Berto Rezende TM, de Morais PC, Franco OL. Nanostrategies to Develop Current Antiviral Vaccines. ACS APPLIED BIO MATERIALS 2021; 4:3880-3890. [PMID: 35006813 DOI: 10.1021/acsabm.0c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infectious diseases are a worldwide concern. They are responsible for increasing the mortality rate and causing economic and social problems. Viral epidemics and pandemics, such as the COVID-19 pandemic, force the scientific community to consider molecules with antiviral activity. A number of viral infections still do not have a vaccine or efficient treatment and it is imperative to search for vaccines to control these infections. In this context, nanotechnology in association with the design of vaccines has presented an option for virus control. Nanovaccines have displayed an impressive immune response using a low dosage. This review aims to describe the advances and update the data in studies using nanovaccines and their immunomodulatory effect against human viruses.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Mauricio Gonçalves da Costa Sousa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Dieime Custódia da Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Departamento de Física, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Taia Maria Berto Rezende
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Curso de Odontologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Paulo César de Morais
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Nanociências e Nanobiotecnologia, Universidade de Brasília, Brasília Distrito Federal 70790-160, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| |
Collapse
|
21
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. J Control Release 2020; 328:59-77. [DOI: 10.1016/j.jconrel.2020.08.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022]
|
22
|
Alsharif N, Eshaghi B, Reinhard BM, Brown KA. Physiologically Relevant Mechanics of Biodegradable Polyester Nanoparticles. NANO LETTERS 2020; 20:7536-7542. [PMID: 32986433 PMCID: PMC7834348 DOI: 10.1021/acs.nanolett.0c03004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the extensive use of biodegradable polyester nanoparticles for drug delivery, and reports of the strong influence of nanoparticle mechanics on nano-bio interactions, there is a lack of systematic studies on the mechanics of these nanoparticles under physiologically relevant conditions. Here, we report indentation experiments on poly(lactic acid) and poly(lactide-co-glycolide) nanoparticles using atomic force microscopy. While dried nanoparticles were found to be rigid at room temperature, their elastic modulus was found to decrease by as much as 30 fold under simulated physiological conditions (i.e., in water at 37 °C). Differential scanning calorimetry confirms that this softening can be attributed to the glass transition of the nanoparticles. Using a combination of mechanical and thermoanalytical characterization, the plasticizing effects of miniaturization, molecular weight, and immersion in water were investigated. Collectively, these experiments provide insight for experimentalists exploring the relationship between polymer nanoparticle mechanics and in vivo behavior.
Collapse
Affiliation(s)
- Nourin Alsharif
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Behnaz Eshaghi
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts, 02215, United States
| | - Björn M. Reinhard
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts, 02215, United States
| | - Keith A. Brown
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Physics Department and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
23
|
Stanciu SG, Latterini L, Charitidis CA. Editorial: Recent Trends in Optical and Mechanical Characterization of Nanomaterials. Front Chem 2020; 8:564014. [PMID: 33134272 PMCID: PMC7567032 DOI: 10.3389/fchem.2020.564014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, Politehnica University of Bucharest, Bucharest, Romania
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Costas A. Charitidis
- RNANO Lab—Research Unit of Advanced, Composite, Nano Materials & Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
24
|
Eshaghi B, Alsharif N, An X, Akiyama H, Brown KA, Gummuluru S, Reinhard BM. Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000649. [PMID: 32999830 PMCID: PMC7509657 DOI: 10.1002/advs.202000649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The monosialodihexosylganglioside, GM3, and its binding to CD169 (Siglec-1) have been indicated as key factors in the glycoprotein-independent sequestration of the human immunodeficiency virus-1 (HIV-1) in virus-containing compartments (VCCs) in myeloid cells. Here, lipid-wrapped polymer nanoparticles (NPs) are applied as a virus-mimicking model to characterize the effect of core stiffness on NP uptake and intracellular fate triggered by GM3-CD169 binding in macrophages. GM3-functionalized lipid-wrapped NPs are assembled with poly(lactic-co-glycolic) acid (PLGA) as well as with low and high molecular weight polylactic acid (PLAlMW and PLAhMW) cores. The NPs have an average diameter of 146 ± 17 nm and comparable surface properties defined by the self-assembled lipid layer. Due to differences in the glass transition temperature, the Young's modulus (E) differs substantially under physiological conditions between PLGA (E PLGA = 60 ± 32 MPa), PLAlMW (E PLA lMW = 86 ± 25 MPa), and PLAhMW (E PLA hMW = 1.41 ± 0.67 GPa) NPs. Only the stiff GM3-presenting PLAhMW NPs but not the softer PLGA or PLAlMW NPs avoid a lysosomal pathway and localize in tetraspanin (CD9)-positive compartments that resemble VCCs. These observations suggest that GM3-CD169-induced sequestration of NPs in nonlysosomal compartments is not entirely determined by ligand-receptor interactions but also depends on core stiffness.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Nourin Alsharif
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Xingda An
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Hisashi Akiyama
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Keith A. Brown
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|