1
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
2
|
Fox J, Batchelor DVB, Roberts H, Moorcroft SC, Valleley EM, Coletta PL, Evans SD. Gold Nanotapes and Nanopinecones in a Quantitative Lateral Flow Assay for the Cancer Biomarker Carcinoembryonic Antigen. ACS APPLIED NANO MATERIALS 2023; 6:17769-17777. [PMID: 37854850 PMCID: PMC10580237 DOI: 10.1021/acsanm.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer is the third most common malignancy and the second leading cause of cancer death globally. Multiple studies have linked levels of carcinoembryonic antigen in patient serum to poor disease prognosis. Hence, the ability to detect low levels of carcinoembryonic antigen has applications in earlier disease diagnosis, assessment, and recurrence monitoring. Existing carcinoembryonic antigen detection methods often require multiple reagents, trained operators, or complex procedures. A method alleviating these issues is the lateral flow assay, a paper-based platform that allows the detection and quantification of target analytes in complex mixtures. The tests are rapid, are point-of-care, possess a long shelf life, and can be stored at ambient conditions, making them ideal for use in a range of settings. Although lateral flow assays typically use spherical gold nanoparticles to generate the classic red signal, recent literature has shown that alternate morphologies to spheres can improve the limit of detection. In this work, we report the application of alternative gold nanoparticle morphologies, gold nanotapes (∼35 nm in length) and gold nanopinecones (∼90 nm in diameter), in a lateral flow assay for carcinoembryonic antigen. In a comparative assay, gold nanopinecones exhibited a ∼2× improvement in the limit of detection compared to commercially available spherical gold nanoparticles for the same antibody loading and total gold content, whereas the number of gold nanopinecones in each test was ∼3.2× less. In the fully optimized test, a limit of detection of 14.4 pg/mL was obtained using the gold nanopinecones, representing a 24-fold improvement over the previously reported gold-nanoparticle-based carcinoembryonic antigen lateral flow assay.
Collapse
Affiliation(s)
- Joseph Fox
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Damien V. B. Batchelor
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Holly Roberts
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Samuel C.T. Moorcroft
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elizabeth M.A. Valleley
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Patricia Louise Coletta
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds LS9 7TF, United Kingdom
| | - Stephen D. Evans
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Toldrà A, Chondrogiannis G, Hamedi MM. A 3D paper microfluidic device for enzyme-linked assays: Application to DNA analysis. Biotechnol J 2023; 18:e2300143. [PMID: 37222181 DOI: 10.1002/biot.202300143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/31/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
A paper microfluidic device capable of conducting enzyme-linked assays is presented: a microfluidic enzyme-linked paper analytical device (μEL-PAD). The system exploits a wash-free sandwich coupling to form beads/analyte/enzyme complexes, which are subsequently added to the vertical flow device composed of wax-printed paper, waxed nitrocellulose membrane and absorbent/barrier layers. The nitrocellulose retains the bead complexes without disrupting the flow, enabling for an efficient washing step. The entrapped complexes then interact with the chromogenic substrate stored on the detection paper, generating a color change on it, quantified with an open-source smartphone software. This is a universal paper-based technology suitable for high-sensitivity quantification of many analytes, such as proteins or nucleic acids, with different enzyme-linked formats. Here, the potential of the μEL-PAD is demonstrated to detect DNA from Staphylococcus epidermidis. After generation of isothermally amplified genomic DNA from bacteria, Biotin/FITC-labeled products were analyzed with the μEL-PAD, exploiting streptavidin-coated beads and antiFITC-horseradish peroxidase. The μEL-PAD achieved a limit of detection (LOD) and quantification <10 genome copies/μL, these being at least 70- and 1000-fold lower, respectively, than a traditional lateral flow assay (LFA) exploiting immobilized streptavidin and antiFITC-gold nanoparticles. It is envisaged that the device will be a good option for low-cost, simple, quantitative, and sensitive paper-based point-of-care testing.
Collapse
Affiliation(s)
- Anna Toldrà
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Georgios Chondrogiannis
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mahiar M Hamedi
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Jin YJ, Si BM, Kim E, Lee J, Kim H, Kwak G, Sakaguchi T, Lee J, Song IY, Lee CL, Kim JH, Heo K, Lee WE. Reusable, Ultrasensitive, Patterned Conjugated Polyelectrolyte-Surfactant Complex Film with a Wide Detection Range for Copper Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12339-12349. [PMID: 36847579 DOI: 10.1021/acsami.2c21388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conjugated polyelectrolytes (CPEs) are emerging as promising materials in the sensor field because they enable high-sensitivity detection of various substances in aqueous media. However, most CPE-based sensors have serious problems in real-world application because the sensor system is operated only when the CPE is dissolved in aqueous media. Here, the fabrication and performance of a water-swellable (WS) CPE-based sensor driven in the solid state are demonstrated. The WS CPE films are prepared by immersing a water-soluble CPE film in cationic surfactants of different alkyl chain lengths in a chloroform solution. The prepared film exhibits rapid, limited water swellability despite the absence of chemical crosslinking. The water swellability of the film enables the highly sensitive and selective detection of Cu2+ in water. The fluorescence quenching constant and the detection limit of the film are 7.24 × 106 L mol-1 and 4.38 nM (0.278 ppb), respectively. Moreover, the film is reusable via a facile treatment. Furthermore, various fluorescent patterns introduced by different surfactants are successfully fabricated by a simple stamping method. By integrating the patterns, Cu2+ detection in a wide concentration range (nM-mM) can be achieved.
Collapse
Affiliation(s)
- Young-Jae Jin
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Beom-Min Si
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Eonji Kim
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Heesang Kim
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Toshikazu Sakaguchi
- Department of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan
| | - Jinhee Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - In Young Song
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 61005, South Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 61005, South Korea
| | - Kyuyoung Heo
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Wang-Eun Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| |
Collapse
|
5
|
Dobrynin D, Polischuk I, Pokroy B. A Comparison Study of the Detection Limit of Omicron SARS-CoV-2 Nucleocapsid by Various Rapid Antigen Tests. BIOSENSORS 2022; 12:1083. [PMID: 36551050 PMCID: PMC9775131 DOI: 10.3390/bios12121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Rapid antigen tests (RATs) are widely used worldwide to detect SARS-CoV-2 since they are an easy-to-use kit and offer rapid results. The RAT detects the presence of the nucleocapsid protein, which is located inside the virus. However, the sensitivity of the different RATs varies between commercially available kits. The test result might change due to various factors, such as the variant type, infection date, swab's surface, the manner in which one performs the testing and the mucus components. Here, we compare the detection limit of seven commercially available RATs by introducing them to known SARS-CoV-2 nucleocapsid protein amounts from the Omicron variant. It allows us to determine the detection limit, disregarding the influences of other factors. A lower detection limit of the RAT is necessary since earlier detection will help reduce the spread of the virus and allow faster treatment, which might be crucial for the population at risk.
Collapse
Affiliation(s)
- Daniela Dobrynin
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Iryna Polischuk
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- The Russel Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Toldrà A, Ainla A, Khaliliazar S, Landin R, Chondrogiannis G, Hanze M, Réu P, Hamedi MM. Portable electroanalytical nucleic acid amplification tests using printed circuit boards and open-source electronics. Analyst 2022; 147:4249-4256. [PMID: 35993403 PMCID: PMC9511072 DOI: 10.1039/d2an00923d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 09/19/2023]
Abstract
The realization of electrochemical nucleic acid amplification tests (NAATs) at the point of care (POC) is highly desirable, but it remains a challenge given their high cost and lack of true portability/miniaturization. Here we show that mass-produced, industrial standardized, printed circuit boards (PCBs) can be repurposed to act as near-zero cost electrodes for self-assembled monolayer-based DNA biosensing, and further integration with a custom-designed and low-cost portable potentiostat. To show the analytical capability of this system, we developed a NAAT using isothermal recombinase polymerase amplification, bypassing the need of thermal cyclers, followed by an electrochemical readout relying on a sandwich hybridization assay. We used our sensor and device for analytical detection of the toxic microalgae Ostreopsis cf. ovata as a proof of concept. This work shows the potential of PCBs and open-source electronics to be used as powerful POC DNA biosensors at a low-cost.
Collapse
Affiliation(s)
- Anna Toldrà
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Shirin Khaliliazar
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Roman Landin
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Georgios Chondrogiannis
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Martin Hanze
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Pedro Réu
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| | - Mahiar M Hamedi
- School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
| |
Collapse
|
7
|
Muzembo BA, Kitahara K, Ohno A, Ntontolo NP, Ngatu NR, Okamoto K, Miyoshi SI. Rapid diagnostic tests versus RT-PCR for Ebola virus infections: a systematic review and meta-analysis. Bull World Health Organ 2022; 100:447-458. [PMID: 35813519 PMCID: PMC9243686 DOI: 10.2471/blt.21.287496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the clinical accuracy of rapid diagnostic tests for the detection of Ebola virus. Methods We searched MEDLINE®, Embase® and Web of Science for articles published between 1976 and October 2021 reporting on clinical studies assessing the performance of Ebola virus rapid diagnostic tests compared with reverse transcription polymerase chain reaction (RT-PCR). We assessed study quality using the QUADAS-2 criteria. To estimate the pooled sensitivity and specificity of these rapid diagnostic tests, we used a bivariate random-effects meta-analysis. Findings Our search identified 113 unique studies, of which nine met the inclusion criteria. The studies were conducted in the Democratic Republic of the Congo, Guinea, Liberia and Sierra Leone and they evaluated 12 rapid diagnostic tests. We included eight studies in the meta-analysis. The pooled sensitivity and specificity of the rapid tests were 86% (95% confidence interval, CI: 80-91) and 95% (95% CI: 91-97), respectively. However, pooled sensitivity decreased to 83% (95% CI: 77-88) after removing outliers. Pooled sensitivity increased to 90% (95% CI: 82-94) when analysis was restricted to studies using the RT-PCR from altona Diagnostics as gold standard. Pooled sensitivity increased to 99% (95% CI: 67-100) when the analysis was restricted to studies using whole or capillary blood specimens. Conclusion The included rapid diagnostic tests did not detect all the Ebola virus disease cases. While the sensitivity and specificity of these tests are moderate, they are still valuable tools, especially useful for triage and detecting Ebola virus in remote areas.
Collapse
Affiliation(s)
- Basilua Andre Muzembo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530, Japan
| | - Kei Kitahara
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | - Ayumu Ohno
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | | | - Nlandu Roger Ngatu
- Department of Public Health, Kagawa University Faculty of Medicine, Miki, Japan
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530, Japan
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530, Japan
| |
Collapse
|
8
|
Kalil MNA, Yusof W, Ahmed N, Fauzi MH, Bakar MAA, Sjahid AS, Hassan R, Yean Yean C. Performance Validation of COVID-19 Self-Conduct Buccal and Nasal Swabs RTK-Antigen Diagnostic Kit. Diagnostics (Basel) 2021; 11:2245. [PMID: 34943482 PMCID: PMC8700408 DOI: 10.3390/diagnostics11122245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The antigen rapid diagnostic test (Ag-RDT) is an immunodiagnostic test that detects the presence of viral proteins (antigens) expressed by the COVID-19 virus in a sample from a patient's respiratory tract. This study focused on evaluating the performance of self-conduct buccal and nasal swabs RTK-antigen test compared to nasopharyngeal swab RTK-based COVID-19 diagnostic assays, Panbio™ COVID-19 Ag Rapid Test Device (Nasopharyngeal) (Abbott Rapid Diagnostics Jena GmbH, Jena, Germany) used in hospitals for first-line screening. The sensitivity and specificity of the paired RTK-Ag test in detecting the an-tigen were calculated at 96.4% and 100%, respectively. Fisher exact tests showed the association between nasopharyngeal swabs RTK-Ag assay and buccal-nasal swabs RTK-Ag from ProdetectTM is significant (p-values < 0.001). The result showed that a self-conducted buccal and nasal RTK-antigen rapid test by the patients is comparable to the results obtained from a rapid test device conducted by trained medical personnel using a nasopharyngeal swab.
Collapse
Affiliation(s)
- Mohammad Nur Amin Kalil
- Department of Emergency Medicine, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.N.A.K.); (M.H.F.); (M.A.A.B.); (A.S.S.)
| | - Wardah Yusof
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (W.Y.); (N.A.)
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (W.Y.); (N.A.)
| | - Mohd Hashairi Fauzi
- Department of Emergency Medicine, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.N.A.K.); (M.H.F.); (M.A.A.B.); (A.S.S.)
| | - Mimi Azliha Abu Bakar
- Department of Emergency Medicine, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.N.A.K.); (M.H.F.); (M.A.A.B.); (A.S.S.)
| | - Afifah Sjamun Sjahid
- Department of Emergency Medicine, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.N.A.K.); (M.H.F.); (M.A.A.B.); (A.S.S.)
| | - Rosline Hassan
- Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (W.Y.); (N.A.)
| |
Collapse
|
9
|
Development of an artificial zinc finger - Luciferase fusion protein for the rapid detection of Salmonella typhimurium. Biochem Biophys Res Commun 2021; 579:35-39. [PMID: 34583193 DOI: 10.1016/j.bbrc.2021.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022]
Abstract
A novel artificial Zinc finger - luciferase fusion protein was successfully developed for rapid detection of Salmonella typhimurium, a worldwide-distributed foodborne pathogen. The designed Zinc finger (ZF) protein bound specifically to a 12 bp region of the Salmonella spp invasion gene invA. While the luciferase from Gaussia princeps called Gaussia luciferase (Gluc) was for the first time fused with the artificial ZF domain to improve the detection sensitivity. The fusion protein successfully recognized and bound to the synthesized invA dsDNA with high specificity and sensitivity. The detection limit was as low as 10 fmol of dsNDA. Then, the bacteria PCR products were subsequently used to assess the zinc finger - luciferase fusion protein. The final results indicated that the ZF-Gluc fusion protein system could detect S. typhimurium as low as 1 CFU/mL in 2 h after the PCR. Therefore, this study provided us with a novel artificial zinc finger fusion protein and an efficient method to accomplish the rapid detection of the major foodborne pathogen S. typhimurium. In addition, the specific artificial ZF proteins that bund to particular dsDNA sequences could be easily designed, the ZF-Gluc might has broad application prospects in the field of rapid pathogenic bacteria detection.
Collapse
|