1
|
Shams S, Ahmed S, Smaje D, Tengsuttiwat T, Lima C, Goodacre R, Muhamadali H. Application of infrared spectroscopy to study carbon-deuterium kinetics and isotopic spectral shifts at the single-cell level. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125374. [PMID: 39522229 DOI: 10.1016/j.saa.2024.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microbial communities play crucial roles in shaping natural ecosystems, impacting human well-being, and driving advancements in industrial biotechnology. However, associating specific metabolic functions with bacteria proves challenging due to the vast diversity of microorganisms within these communities. In the past decades stable isotope probing (SIP) approaches, coupled with vibrational spectroscopy, have emerged as a novel method for revealing microbial metabolic roles and interactions in complex communities. In this study, we employed various combinations of heavy stable isotopes (D, 13C, 15N, and 18O), to evaluate all possible isotopic spectral shifts in the mid-IR region using Fourier-Transform Infrared (FT-IR) and Optical Photothermal Infrared (O-PTIR) spectroscopy, at both community and single-cell levels. Additionally, we conducted a time-course study to explore the kinetics of CD vibration in Escherichia coli bacteria, allowing time-based sampling and assessment of isotopic labeling kinetics. The FT-IR and O-PTIR, along with the second derivative spectra of E. coli cells cultured in minimal medium supplemented with various combinations of heavy isotopes exhibited notable similarities. Several spectral shifts in primary vibrational peaks were observed due to the incorporation of heavy isotopes into various biomolecules. Remarkably, the incorporation of deuterium into amide groups, resulting in the formation of nitrogen-deuterium bonds, caused a shift in amide A and B into the silent region, overlapping with CD signature peaks. The incorporation of 18O into the ester group of lipids and the carbonyl group of proteins resulted in a notable shift to the lower wavenumber region. Additionally, the second derivative of FT-IR spectral data highlighted the integration of 18O into α-helix and β-sheet structures. Furthermore, the spectra, second derivative, and PC-DFA scores and loadings plot of FT-IR data collectively illustrated the practicality of monitoring 13C and D incorporation into E. coli bacterial cells within the first 30-min incubation period. The findings of this study suggest that FT-IR and O-PTIR can serve as efficient tools for monitoring the incorporation of heavy isotopes into bacteria at both the population and single-cell levels. Additionally, the SIP approach allowed us to assign two new deuterium-associated vibrational peaks to their corresponding functional groups, which to the best of our knowledge have not been reported previously.
Collapse
Affiliation(s)
- Sahand Shams
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Kurdistan Region, Iraq
| | - Daniel Smaje
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Thanyaporn Tengsuttiwat
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
2
|
Karlo J, Carrasco-Navarro V, Koistinen A, Singh SP. Tracking trash to treasure: in situ monitoring of single microbial cell oil biosynthesis from waste cooking oil using Raman spectroscopy and imaging. RSC Adv 2024; 14:33323-33331. [PMID: 39435003 PMCID: PMC11493132 DOI: 10.1039/d4ra05187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Waste cooking oil is a major pollutant that contaminates terrestrial and aquatic bodies which is generated from household kitchens and eateries. The bioremediation of waste cooking oil (WCO) into microbial oil, also known as single microbial cell oil (SMCO), can be accomplished by oleaginous microbes. Conventional methods excel in SMCO analysis but lack efficacy for in situ or lysis-free monitoring of nascent SMCO synthesis and turnover. To bridge this knowledge gap, this study shows the applicability of Raman reverse stable isotope probing (RrSIP) in monitoring time-dependent nascent SMCO synthesis and assimilation in Yarrowia lipolytica, an oleaginous yeast grown in hydrophilic (glucose) as well as hydrophobic carbon sources (cooking oil and waste cooking oil). This study also combines the RrSIP approach with Raman imaging for temporal visualization of the distribution and turnover dynamics of the SMCO pool in a single cell. Our finding provides a unique perspective utilizing optical spectroscopy methods for lysis-free SMCO analysis and holds potential for prospective utility as an adjunct tool in bioprocess and biofuel industries.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad Dharwad 580011 Karnataka India
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus Yliopistonranta 8 Kuopio 70210 Finland
| | - Arto Koistinen
- Department of Technical Physics, University of Eastern Finland Kuopio 70210 Finland
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad Dharwad 580011 Karnataka India
| |
Collapse
|
3
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
4
|
Razi S, Tarcea N, Henkel T, Ravikumar R, Pistiki A, Wagenhaus A, Girnus S, Taubert M, Küsel K, Rösch P, Popp J. Raman-Activated, Interactive Sorting of Isotope-Labeled Bacteria. SENSORS (BASEL, SWITZERLAND) 2024; 24:4503. [PMID: 39065901 PMCID: PMC11281290 DOI: 10.3390/s24144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Due to its high spatial resolution, Raman microspectroscopy allows for the analysis of single microbial cells. Since Raman spectroscopy analyzes the whole cell content, this method is phenotypic and can therefore be used to evaluate cellular changes. In particular, labeling with stable isotopes (SIPs) enables the versatile use and observation of different metabolic states in microbes. Nevertheless, static measurements can only analyze the present situation and do not allow for further downstream evaluations. Therefore, a combination of Raman analysis and cell sorting is necessary to provide the possibility for further research on selected bacteria in a sample. Here, a new microfluidic approach for Raman-activated continuous-flow sorting of bacteria using an optical setup for image-based particle sorting with synchronous acquisition and analysis of Raman spectra for making the sorting decision is demonstrated, showing that active cells can be successfully sorted by means of this microfluidic chip.
Collapse
Affiliation(s)
- Sepehr Razi
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
| | - Nicolae Tarcea
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Thomas Henkel
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Ramya Ravikumar
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Aikaterini Pistiki
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Martin Taubert
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kirsten Küsel
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| |
Collapse
|
5
|
Karlo J, Dhillon AK, Siddhanta S, Singh SP. Reverse stable isotope labelling with Raman spectroscopy for microbial proteomics. JOURNAL OF BIOPHOTONICS 2024; 17:e202300341. [PMID: 38010366 DOI: 10.1002/jbio.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Global proteome changes in microbes affect the survival and overall production of commercially relevant metabolites through different bioprocesses. The existing methods to monitor proteome level changes are destructive in nature. Stable isotope probing (SIP) coupled with Raman spectroscopy is a relatively new approach for proteome analysis. However, applying this approach for monitoring changes in a large culture volume is not cost-effective. In this study, for the first time we are presenting a novel method of combining reverse SIP using 13 C-glucose and Deuterium to monitor the proteome changes through Raman spectroscopy. The findings of the study revealed visible changes (blue shifts) in proteome related peaks that can be used for monitoring proteome dynamics, that is, synthesis of nascent amino acids and its turnover with time in a non-destructive, cost-effective, and label-free manner.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
6
|
Karlo J, Dhillon AK, Siddhanta S, Singh SP. Monitoring of microbial proteome dynamics using Raman stable isotope probing. JOURNAL OF BIOPHOTONICS 2023; 16:e202200341. [PMID: 36527375 DOI: 10.1002/jbio.202200341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Abnormal protein kinetics could be a cause of several diseases associated with essential life processes. An accurate understanding of protein dynamics and turnover is essential for developing diagnostic or therapeutic tools to monitor these changes. Raman spectroscopy in combination with stable isotope probes (SIP) such as carbon-13, and deuterium has been a breakthrough in the qualitative and quantitative study of various metabolites. In this work, we are reporting the utility of Raman-SIP for monitoring dynamic changes in the proteome at the community level. We have used 13 C-labeled glucose as the only carbon source in the medium and verified its incorporation in the microbial biomass in a time-dependent manner. A visible redshift in the Raman spectral vibrations of major biomolecules such as nucleic acids, phenylalanine, tyrosine, amide I, and amide III were observed. Temporal changes in the intensity of these bands demonstrating the feasibility of protein turnover monitoring were also verified. Kanamycin, a protein synthesis inhibitor was used to assess the feasibility of identifying effects on protein turnover in the cells. Successful application of this work can provide an alternate/adjunct tool for monitoring proteome-level changes in an objective and nondestructive manner.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
7
|
Rios Garza D, Gonze D, Zafeiropoulos H, Liu B, Faust K. Metabolic models of human gut microbiota: Advances and challenges. Cell Syst 2023; 14:109-121. [PMID: 36796330 DOI: 10.1016/j.cels.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 02/17/2023]
Abstract
The human gut is a complex ecosystem consisting of hundreds of microbial species interacting with each other and with the human host. Mathematical models of the gut microbiome integrate our knowledge of this system and help to formulate hypotheses to explain observations. The generalized Lotka-Volterra model has been widely used for this purpose, but it does not describe interaction mechanisms and thus does not account for metabolic flexibility. Recently, models that explicitly describe gut microbial metabolite production and consumption have become popular. These models have been used to investigate the factors that shape gut microbial composition and to link specific gut microorganisms to changes in metabolite concentrations found in diseases. Here, we review how such models are built and what we have learned so far from their application to human gut microbiome data. In addition, we discuss current challenges of these models and how these can be addressed in the future.
Collapse
Affiliation(s)
- Daniel Rios Garza
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP 231, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Bruxelles, Belgium
| | - Haris Zafeiropoulos
- Biology Department, University of Crete, Heraklion 700 13, Greece; Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Bin Liu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Karoline Faust
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Shams S, Lima C, Xu Y, Ahmed S, Goodacre R, Muhamadali H. Optical photothermal infrared spectroscopy: A novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Front Microbiol 2023; 14:1077106. [PMID: 36819022 PMCID: PMC9929359 DOI: 10.3389/fmicb.2023.1077106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
The rise and extensive spread of antimicrobial resistance (AMR) has become a growing concern, and a threat to the environment and human health globally. The majority of current AMR identification methods used in clinical setting are based on traditional microbiology culture-dependent techniques which are time-consuming or expensive to be implemented, thus appropriate antibiotic stewardship is provided retrospectively which means the first line of treatment is to hope that a broad-spectrum antibiotic works. Hence, culture-independent and single-cell technologies are needed to allow for rapid detection and identification of antimicrobial-resistant bacteria and to support a more targeted and effective antibiotic therapy preventing further development and spread of AMR. In this study, for the first time, a non-destructive phenotyping method of optical photothermal infrared (O-PTIR) spectroscopy, coupled with deuterium isotope probing (DIP) and multivariate statistical analysis was employed as a metabolic fingerprinting approach to detect AMR in Uropathogenic Escherichia coli (UPEC) at both single-cell and population levels. Principal component-discriminant function analysis (PC-DFA) of FT-IR and O-PTIR spectral data showed clear clustering patterns as a result of distinctive spectral shifts (C-D signature peaks) originating from deuterium incorporation into bacterial cells, allowing for rapid detection and classification of sensitive and resistant isolates at the single-cell level. Furthermore, the single-frequency images obtained using the C-D signature peak at 2,163 cm-1 clearly displayed the reduced ability of the trimethoprim-sensitive strain for incorporating deuterium when exposed to this antibiotic, compared to the untreated condition. Hence, the results of this study indicated that O-PTIR can be employed as an efficient tool for the rapid detection of AMR at the single-cell level.
Collapse
Affiliation(s)
- Sahand Shams
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Kurdistan Region, Iraq
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Weng J, Müller K, Morgaienko O, Elsner M, Ivleva NP. Multi-element stable isotope Raman microspectroscopy of bacterial carotenoids unravels rare signal shift patterns and single-cell phenotypic heterogeneity. Analyst 2023; 148:128-136. [DOI: 10.1039/d2an01603f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Investigation of bacteria with D-carotenoids reveals unique Raman signatures, inclusive unexpected blue-shift. Simultaneous monitoring of 13C & D of carotenoids provides complementary information on cell growth and metabolic activity, respectively.
Collapse
Affiliation(s)
- Julian Weng
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Kara Müller
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Oleksii Morgaienko
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Elsner
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Natalia P. Ivleva
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
10
|
Jayan H, Sun DW, Pu H, Wei Q. Surface-enhanced Raman spectroscopy combined with stable isotope probing to assess the metabolic activity of Escherichia coli cells in chicken carcass wash water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121549. [PMID: 35792480 DOI: 10.1016/j.saa.2022.121549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Rapid evaluation of the metabolic activity of microorganisms is crucial in the assessment of the disinfection ability of various antimicrobial agents in the food industry. In this study, surface-enhanced Raman spectroscopy combined with isotope probing was employed for the analysis of the disinfection of single bacterial cells in the chicken carcass wash water. The Raman signals from single Escherichia coli O157:H7 cells were enhanced by in situ synthesis of silver nanoparticles. The ΔCD of the cells grown in presence of 0.5% hydrogen peroxide and 50 ppm chlorine was 5.86 ± 1.86% and 5.1 ± 2.3%, respectively, which showed significant reduction compared with cells grown in the absence of disinfecting agents (19.86 ± 2.51%) after 2 h of incubation. The study proved that the proposed method had the potential to assess the metabolic activity of microorganisms in other food products and optimize the disinfection process.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
11
|
Andrew R, Stimson RH. Mapping endocrine networks by stable isotope tracing. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100381. [PMID: 39185272 PMCID: PMC11344083 DOI: 10.1016/j.coemr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hormones regulate metabolic homeostasis through interlinked dynamic networks of proteins and small molecular weight metabolites, and state-of-the-art chemical technologies have been developed to decipher these complex pathways. Stable-isotope tracers have largely replaced radiotracers to measure flux in humans, building on advances in nuclear magnetic resonance spectroscopy and mass spectrometry. These technologies are now being applied to localise molecules within tissues. Radiotracers are still highly valuable both preclinically and in 3D imaging by positron emission tomography. The coming of age of vibrational spectroscopy in conjunction with stable-isotope tracing offers detailed cellular insights to map complex biological processes. Together with computational modelling, these approaches are poised to coalesce into multi-modal platforms to provide hitherto inaccessible dynamic and spatial insights into endocrine signalling.
Collapse
Affiliation(s)
- Ruth Andrew
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Roland H Stimson
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
12
|
Jayan H, Pu H, Sun DW. Analyzing macromolecular composition of E. Coli O157:H7 using Raman-stable isotope probing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121217. [PMID: 35427921 DOI: 10.1016/j.saa.2022.121217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Metabolic dynamics of bacterial cells is needed for understanding the correlation between changes in environmental conditions and cell metabolic activity. In this study, Raman spectroscopy combined with deuterium labelling was used to analyze the metabolic activity of a single Escherichia coli O157:H7 cell. The incorporation of deuterium from heavy water into cellular biomolecules resulted in the formation of carbon-deuterium (CD) peaks in the Raman spectra, indicating the cell metabolic activity. The broad vibrational peaks corresponding to CD and CH peaks encompassed different specific shifts of macromolecules such as protein, lipids, and nucleic acid. The utilization of tryptophan and oleic acid by the cell as the sole carbon source led to changes in cell lipid composition, as indicated by new peaks in the second derivative spectra. Thus, the proposed method could semi-quantitatively determine total metabolic activity, macromolecule specific identification, and lipid and protein metabolism in a single cell.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Lima C, Ahmed S, Xu Y, Muhamadali H, Parry C, McGalliard RJ, Carrol ED, Goodacre R. Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Chem Sci 2022; 13:8171-8179. [PMID: 35919437 PMCID: PMC9278432 DOI: 10.1039/d2sc02493d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections. Despite numerous reports using both methods to analyse bacterial samples, there is to date no study collecting both Raman and infrared signatures from clinical samples simultaneously due to instrument incompatibilities. Here, we report for the first time the use of an emerging technology that provides infrared signatures via optical photothermal infrared (O-PTIR) spectroscopy and Raman spectra simultaneously. We use this approach to analyse 12 bacterial clinical isolates including six isolates of Gram-negative and six Gram-positive bacteria commonly associated with bloodstream infection in humans. To benchmark the single cell spectra obtained by O-PTIR spectroscopy, infrared signatures were also collected from bulk samples via both FTIR and O-PTIR spectroscopies. Our findings showed significant similarity and high reproducibility in the infrared signatures obtained by all three approaches, including similar discrimination patterns when subjected to clustering algorithms. Principal component analysis (PCA) showed that O-PTIR and Raman data acquired simultaneously from bulk bacterial isolates displayed different clustering patterns due to the ability of both methods to probe metabolites produced by bacteria. By contrast, signatures of microbial pigments were identified in Raman spectra, providing complementary and orthogonal information compared to infrared, which may be advantageous as it has been demonstrated that certain pigments play an important role in bacterial virulence. We found that infrared spectroscopy showed higher sensitivity than Raman for the analysis of individual cells. Despite the different patterns obtained by using Raman and infrared spectral data as input for clustering algorithms, our findings showed high data reproducibility in both approaches as the biological replicates from each bacterial strain clustered together. Overall, we show that Raman and infrared spectroscopy offer both advantages and disadvantages and, therefore, having both techniques combined in one single technology is a powerful tool with promising applications in clinical microbiology. O-PTIR was used for simultaneous collection of infrared and Raman spectra from clinical pathogens associated with bloodstream infections.![]()
Collapse
Affiliation(s)
- Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Christopher Parry
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rachel J. McGalliard
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Enitan D. Carrol
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|