1
|
Srinivasarao DA, Shah S, Famta P, Vambhurkar G, Jain N, Pindiprolu SKSS, Sharma A, Kumar R, Padhy HP, Kumari M, Madan J, Srivastava S. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy. Drug Deliv Transl Res 2025; 15:407-435. [PMID: 39037533 DOI: 10.1007/s13346-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Design and development of efficient drug delivery technologies that impart site-specificity is the need of the hour for the effective treatment of lung cancer. The emergence of materials science and nanotechnology partially helped drug delivery scientists to achieve this objective. Various stimuli-responsive materials that undergo degradation at the pathological tumor microenvironment (TME) have been developed and explored for drug delivery applications using nanotechnological approaches. Nanoparticles (NPs), owing to their small size and high surface area to volume ratio, demonstrated enhanced cellular internalization, permeation, and retention at the tumor site. Such passive accumulation of stimuli-responsive materials helped to achieve spatiotemporally controlled and targeted drug delivery within the tumors. In this review, we discussed various stimuli-physical (interstitial pressure, temperature, and stiffness), chemical (pH, hypoxia, oxidative stress, and redox state), and biological (receptor expression, efflux transporters, immune cells, and their receptors or ligands)-that are characteristic to the TME. We mentioned an array of biomaterials-based nanoparticulate delivery systems that respond to these stimuli and control drug release at the TME. Further, we discussed nanoparticle-based combinatorial drug delivery strategies. Finally, we presented our perspectives on challenges related to scale-up, clinical translation, and regulatory approvals.
Collapse
Affiliation(s)
- Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, 533 437, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, 533 003, Andhra Pradesh, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Meenu Kumari
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), 500037, Telangana, Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
2
|
Pugazhendhi A, Alshehri MA, Kandasamy S, Sarangi PK, Sharma A. Deciphering the importance of nanoencapsulation to improve the availability of bioactive molecules in food sources to the human body. Food Chem 2025; 464:141762. [PMID: 39509889 DOI: 10.1016/j.foodchem.2024.141762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Various bodily functions are maintained, and health benefits are provided by food-derived bioactive components. Fruits and vegetables contain numerous beneficial components, including vitamins, minerals, antioxidants, enzymes, and phytonutrients. However, the body's ability to absorb these substances at a given rate and degree frequently limits their bioavailability. If food-derived bio actives are used as therapeutic or dietary interventions, this limitation can result in low efficacy and suboptimal results. Recently, nanotechnology has been a useful method for increasing the bioavailability of bioactive compounds produced from food. Active ingredients can be delivered and absorbed more efficiently with the help of nanotechnology. By altering their size or surface properties, bioactive components can be made more soluble, permeable, and bioavailable through nanotechnology. The present review will provide an overview of the various bioactive components, the application of nanotechnology to improve the availability of bioactive molecules to humans and animals, and the challenges and safety concerns associated with nanotechnology in the production of food-derived bioactive molecules.
Collapse
Affiliation(s)
- Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795004, Manipur, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
3
|
Kanp T, Dhuri A, M B, Rode K, Aalhate M, Paul P, Nair R, Singh PK. Exploring the Potential of Nanocarriers for Cancer Immunotherapy: Insights into Mechanism, Nanocarriers, and Regulatory Perspectives. ACS APPLIED BIO MATERIALS 2025. [PMID: 39791993 DOI: 10.1021/acsabm.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects. To surmount this challenge, nanoparticle systems have emerged as a potential strategy for transporting immunotherapeutic agents to cancer cells and activating immune cells to combat tumors. Consequently, this process potentially generates an antigen-specific T cells response that effectively suppresses cancer growth. Furthermore, nanoplatforms have high specificity, efficacy, diagnostic potential, and imaging capabilities, making them promising tools for cancer treatment. However, this informative paper delves into the various available immunotherapies, including CAR T cells therapy and immune checkpoint blockade, cytokines, cancer vaccines, and monoclonal antibodies. Furthermore, the paper delves into the concept of theragnostic nanotechnology, which integrates therapy and diagnostics for a more personalized treatment approach for cancer therapy. Additionally, the paper covers the potential benefits of different nanocarrier systems, including marketed immunotherapy products, clinical trials, regulatory considerations, and future prospects for cancer immunotherapy.
Collapse
Affiliation(s)
- Tanmoy Kanp
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Bharath M
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Khushi Rode
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| |
Collapse
|
4
|
Chatterjee S, Das A, Datta P, Thomas S, Ghosal K. Medium molecular weight chitosan and magnetite based bead as a nanocomposite for delivery of anticancer drug: Development, evaluation and biocompatibility study. Int J Biol Macromol 2024; 293:139246. [PMID: 39743088 DOI: 10.1016/j.ijbiomac.2024.139246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
AIM & BACKGROUND Increased efficacy with reduced side effects in cancer treatment is achieved through targeted distribution of anti-cancer medications. Because of their biocompatibility, biodegradability, low toxicity, and target ability under magnetic field, magnetic nanoparticles (MNP) based chitosan nanocomposite have attracted attention among other delivery technologies. METHODOLOGY MNPs were synthesised using the co-precipitation method. After the successful synthesis of MNPs, it was successfully encapsulated with 5-fluorouracil (5-FU) within chitosan beads, making it ideal for targeted drug delivery to treat breast cancer cells. The properties of MNP-based drug-loaded chitosan nanocomposite were characterised by various characterization techniques like scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), vibrating sample magnetometry (VSM), atomic force microscopy (AFM). Entrapment efficiency and cytotoxicity studies of MNP-based drug-loaded chitosan nanocomposites by MTT were also conducted. The release study of the drug from MNP-based drug-loaded chitosan nanocomposite under different pH conditions was also investigated. RESULTS Instrumental analysis showed successful preparation of MNP-based drug-loaded chitosan nanocomposite. The entrapment efficiency of MNP-based drug-loaded chitosan nanocomposite was 85 % to 90 %. MTT study also proved its toxicity against breast cancer cells, and with increased concentration percentage, cell viability decreases. The release study showed that the release of the drug from MNP-based drug-loaded chitosan nanocomposite varied under different pH conditions. CONCLUSION Hence, MNP-based drug-loaded chitosan nanocomposite has the potential to be utilised as a targeted drug delivery vehicle for the treatment of breast cancer cells.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Amrita Das
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Pallab Datta
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
5
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
6
|
Aza MK, Suberu A, Balogun M, Adegbola G, Sankoh MA, Oyediran T, Aderinto N, Olatunji G, Kokori E, Agbo CE. Nanotheranostics for gynecological cancers: a path forward for Africa. Med Oncol 2024; 42:34. [PMID: 39704911 DOI: 10.1007/s12032-024-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle-based therapies represent a transformative approach to managing gynecological cancers, offering targeted treatment strategies that minimize harm to healthy tissues while maximizing therapeutic efficacy. Despite their potential, implementing these advanced treatments in Africa is needed by a complex interplay of technological, economic, regulatory, and ethical challenges. This paper examines the current landscape of nanoparticle-based therapies, identifying critical barriers to their adoption, including inadequate infrastructure, high costs, and insufficient regulatory frameworks. Technological deficiencies manifest as a need for advanced nanoparticle synthesis, delivery, and diagnostics equipment, impeding research and clinical applications. Economically, the high production costs of nanoparticles, compounded by limited access to advanced diagnostic and treatment facilities, create significant financial barriers for healthcare systems and patients alike. Additionally, the regulatory environment needs to be more cohesive, characterized by a lack of established protocols and expertise to evaluate the unique properties of nanomedicines. However, opportunities for advancement exist through focused research and development initiatives. Targeted drug delivery systems, early detection methods, and immunotherapy integration are promising avenues to enhance treatment outcomes. Collaborative partnerships between African institutions and international research entities, alongside public-private collaborations, could bolster local capabilities in nanomedicine. To facilitate the integration of nanoparticle-based therapies, African governments must prioritize funding for nanomedicine research, create robust regulatory frameworks, and ensure equitable access to these innovative treatments. A concerted effort involving policy reforms, investment, and collaboration is essential for overcoming existing barriers and realizing the full potential of nanoparticle-based therapies in improving health outcomes for gynecological cancer patients across Africa.
Collapse
Affiliation(s)
- Mutia Kehwalla Aza
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | | | | | | | | | | - Gbolahan Olatunji
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | |
Collapse
|
7
|
Mahaling B, Baruah N, Dinabandhu A. Nanomedicine in Ophthalmology: From Bench to Bedside. J Clin Med 2024; 13:7651. [PMID: 39768574 PMCID: PMC11678589 DOI: 10.3390/jcm13247651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Ocular diseases such as cataract, refractive error, age-related macular degeneration, glaucoma, and diabetic retinopathy significantly impact vision and quality of life worldwide. Despite advances in conventional treatments, challenges like limited bioavailability, poor patient compliance, and invasive administration methods hinder their effectiveness. Nanomedicine offers a promising solution by enhancing drug delivery to targeted ocular tissues, enabling sustained release, and improving therapeutic outcomes. This review explores the journey of nanomedicine from bench to bedside, focusing on key nanotechnology platforms, preclinical models, and case studies of successful clinical translation. It addresses critical challenges, including pharmacokinetics, regulatory hurdles, and manufacturing scalability, which must be overcome for successful market entry. Additionally, this review highlights safety considerations, current marketed and FDA-approved nanomedicine products, and emerging trends such as gene therapy and personalized approaches. By providing a comprehensive overview of the current landscape and future directions, this article aims to guide researchers, clinicians, and industry stakeholders in advancing the clinical application of nanomedicine in ophthalmology.
Collapse
Affiliation(s)
- Binapani Mahaling
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Namrata Baruah
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
8
|
Nagpal S, Palaniappan T, Wang JW, Wacker MG. Revisiting nanomedicine design strategies for follow-on products: A model-informed approach to optimize performance. J Control Release 2024; 376:1251-1270. [PMID: 39510258 DOI: 10.1016/j.jconrel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
The field of nanomedicine is undergoing a seismic transformations with the rise of nanosimilars, reshaping the pharmaceutical landscape and expanding beyond traditional innovators and generic manufacturers. Nanodrugs are increasingly replacing conventional therapies, offering improved efficacy and safety, while the demand for follow-on products drives market diversification. However, the transition from preclinical to clinical stages presents challenges due to the complex biopharmaceutical behavior of nanodrugs. This review highlights the integration of Quality-by-Design (QbD), in vitro-in vivo correlations (IVIVCs), machine learning, and Model-Informed Drug Development (MIDD) as key strategies to address these complexities. Additionally, it discusses the role of high-throughput processes in the optimization of the nanodrug development pipelines. Covering generations of delivery systems from liposomes to RNA-loaded nanoparticles, this review underscores the evolving market dynamics driven by recent advances in nanomedicine.
Collapse
Affiliation(s)
- Shakti Nagpal
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore
| | | | - Jiong-Wei Wang
- National University of Singapore, Department of Surgery, Yong Loo Lin School of Medicine, Singapore 119228, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Matthias G Wacker
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore.
| |
Collapse
|
9
|
Glader C, Jeitler R, Wang Y, Tetyczka C, Zettl M, Schlömer M, Caisse P, Mesite S, Stephan S, Bourgeaux V, Roblegg E. Establishment of a semi-continuous nano-production line using the Microfluidizer® technology for the fabrication of lipid-based nanoparticles part 1: Screening of critical parameters and design of experiment optimization studies. Eur J Pharm Sci 2024; 203:106928. [PMID: 39378960 DOI: 10.1016/j.ejps.2024.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
A variety of strategies for producing high-quality nanoparticles have been reported in recent years. Batch-based bottom-up and top-down technologies are generally the most efficient methods, but present a number of challenges, particularly in terms of variability, safety, sustainability and large-scale production. In this study, a scalable, semi-continuous production line was built by connecting individual processing units, including a high shear mixing device, the Microfluidizer® technology and a cooling system. Each unit was equipped with an adequate temperature control to allow solvent-free production of solid lipid nanoparticles (consisting of Precirol® ATO 5 or Gelucire® 43/01) and nanostructured lipid carriers (additionally comprising Labrafac™ lipophile WL 1349). Subsequently, critical formulation parameters and critical process parameters (CPPs) of the individual processing units and their effects on particle size (i.e., critical quality attribute (CQA)) were investigated to identify appropriate input parameters for the subsequent Design of Experiment (DoE) studies conducted after linking the process units to a semi-continuous production line. For particle size monitoring, spatially resolved dynamic light scattering (SR-DLS) measurements were conducted and compared to standard DLS measurements to evaluate the applicability of SR-DLS as an inline monitoring tool. It was found that matrix composition, emulsifier concentration, pressure and number of cycles when processing through Microfluidizer® processor were the most influencing parameters. By optimizing these parameters, five-times higher throughputs could be achieved by the semi-continuous manufacturing line. In addition, the particle size measurements with SR-DLS confirmed the feasibility of implementing this technology for real-time particle size monitoring as an important safety factor in quality control.
Collapse
Affiliation(s)
- Christina Glader
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria.
| | - Ramona Jeitler
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, Graz 8010, Austria.
| | - Yan Wang
- InProcess-LSP, Kloosterstraat 9, Oss 5349 AB, The Netherlands.
| | - Carolin Tetyczka
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria.
| | - Manuel Zettl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria.
| | - Matthias Schlömer
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria.
| | - Philippe Caisse
- Gattefossé SAS, 36 chemin de Genas, Saint-Priest 69800, France.
| | - Steve Mesite
- Microfluidics International Corporation, 90 Glacier Drive, Suite 1000 Westwood, Massachusetts, United States.
| | - Svea Stephan
- Knauer Wissenschaftliche Geräte GmbH, Hegauer Weg 38, Berlin 14163, Germany.
| | - Vanessa Bourgeaux
- Skyepharma Production SAS., 55 Rue du Montmurier, Saint-Quentin-Fallavier 38070, France.
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, Graz 8010, Austria.
| |
Collapse
|
10
|
Zamyatina EA, Goryacheva OA, Popov AL, Popova NR. Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation. Antioxidants (Basel) 2024; 13:1445. [PMID: 39765774 PMCID: PMC11672564 DOI: 10.3390/antiox13121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Ionizing radiation leads to the development of oxidative stress and damage to biologically important macromolecules (DNA, mitochondria, etc.), which in turn lead to cell death. In the case of radiotherapy, both cancer cells and normal cells are damaged. In this regard, the development of new selective antioxidants is relevant. In this study, we first investigated the redox activity of cerium oxide-pyrroloquinoline quinone nanoparticles (CeO2@PQQ NPs) and their cytotoxic effects on normal (mouse fibroblasts, L929) and cancer (mouse adenocarcinoma, EMT6/P) cell cultures. Furthermore, the biological activity of CeO2@PQQ NPs was evaluated in comparison with that of CeO2 NPs and PQQ. The nanoparticles demonstrated pH-dependent reductions in the content of hydrogen peroxide after X-ray exposure. Our findings indicate that viability of EMT6/P cells was more adversely affected by CeO2@PQQ NPs at lower concentrations (0.1 μM) compared to L929. Following X-ray irradiation at a dose of 5 Gy, significant changes in mitochondrial potential (by 29%) and decreased glutathione levels (by 32%) were also observed in EMT6/P culture following irradiation and incubation with CeO2@PQQ NPs. Furthermore, EMT6/P exhibited a 2.5-fold increase in micronuclei and a 2-fold reduction in survival fraction compared to L929. It is hypothesized that CeO2@PQQ NPs may exhibit selective cytotoxicity and radiosensitizing properties against EMT6/P cancer cells. The findings suggest that CeO2@PQQ NPs may have potential as a selective redox-active antioxidant/pro-oxidant in response to X-ray radiation.
Collapse
Affiliation(s)
- Elizaveta A. Zamyatina
- Isotope Research Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Olga A. Goryacheva
- Chemistry Institute, Saratov State University Named after N.G. Chernyshevsky, Saratov 410012, Russia;
| | - Anton L. Popov
- Theranostics and Nuclear Medicine Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Nelli R. Popova
- Isotope Research Laboratory, Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia;
| |
Collapse
|
11
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
12
|
Gharatape A, Amanzadi B, Mohamadi F, Rafieian M, Faridi-Majidi R. Recent advances in polymeric and lipid stimuli-responsive nanocarriers for cell-based cancer immunotherapy. Nanomedicine (Lond) 2024; 19:2655-2678. [PMID: 39540464 DOI: 10.1080/17435889.2024.2416377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer therapy has major limitations, including non-specificity, unavoidable side effects, low specific tumor accumulation and systemic toxicity. In recent years, more effective and precise treatment methods have been developed, including cell-based immunotherapy. Carriers that can accurately and specifically target cells and equip them to combat cancer cells are particularly important for developing this therapy. As a result, attention has been drawn to smart nanocarriers that can react to specific stimuli. Thus, stimuli-responsive nanocarriers have attracted increasing attention because they can change their physicochemical properties in response to stimulus conditions, such as pH, enzymes, redox agents, hypoxia, light and temperature. This review highlights recent advances in various stimuli-responsive nanocarriers, discussing loading, targeted delivery, cellular uptake, biocompatibility and immunomodulation in cell-based immunotherapy. Finally, future challenges and perspectives regarding the possible clinical translation of nanocarriers are discussed.
Collapse
Affiliation(s)
- Alireza Gharatape
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Bentolhoda Amanzadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Faranak Mohamadi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Mahdieh Rafieian
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Reza Faridi-Majidi
- Advanced Laboratory of Nanocarriers Synthesis, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Pharmaceutical Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Joyce P, Allen CJ, Alonso MJ, Ashford M, Bradbury MS, Germain M, Kavallaris M, Langer R, Lammers T, Peracchia MT, Popat A, Prestidge CA, Rijcken CJF, Sarmento B, Schmid RB, Schroeder A, Subramaniam S, Thorn CR, Whitehead KA, Zhao CX, Santos HA. A translational framework to DELIVER nanomedicines to the clinic. NATURE NANOTECHNOLOGY 2024; 19:1597-1611. [PMID: 39242807 DOI: 10.1038/s41565-024-01754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 09/09/2024]
Abstract
Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines' physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines.
Collapse
Affiliation(s)
- Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Christine J Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Michelle S Bradbury
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, Faculty of Medicine and Health UNSW, Sydney, New South Wales, Australia
- UNSW Australian Centre for Nanomedicine, Faculty of Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, Aachen, Germany
| | | | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Bruno Sarmento
- IiS - Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, Porto, Portugal
| | - Ruth B Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Santhni Subramaniam
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Chelsea R Thorn
- BioTherapeutics Pharmaceutical Sciences, Pfizer, Andover, MA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, South Australia, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, Groningen, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
15
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
16
|
Balasubramanian S, Perumal E. Integrated in silico analysis of transcriptomic alterations in nanoparticle toxicity across human and mouse models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174897. [PMID: 39053559 DOI: 10.1016/j.scitotenv.2024.174897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles, due to their exceptional physicochemical properties are used in our day-to-day environment. They are currently not regulated which might lead to increased levels in the biological systems causing adverse effects. However, the overall mechanism behind nanotoxicity remains elusive. Previously, we analysed the transcriptome datasets of copper oxide nanoparticles using in silico tools and identified IL-17, chemokine signaling pathway, and cytokine-cytokine receptor interaction as the key pathways altered. Based on the findings, we hypothesized a common pathway could be involved in transition metal oxide nanoparticles toxicity irrespective of the variables. Further, there could be unique transcriptome changes between metal oxide nanoparticles and other nanoparticles. To accomplish this, the overall transcriptome datasets of nanoparticles consisting of microarray and RNA-Seq were obtained. >90 studies for 17 different nanoparticles, performed in humans, rats, and mice were assessed. After initial screening, 24 mouse studies (with 196 datasets) and 34 human studies (with 200 datasets) were used for further analyses. The common genes that are dysregulated upon NPs exposure were identified for human and mouse datasets separately. Further, an overrepresentation functional enrichment analysis was performed. The common genes, their gene ontology, gene-gene, and protein-protein interactions were assessed. The overall results suggest that IL-17 and its related pathways might be commonly altered in nanoparticle exposure with lung as one of the major organs affected.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
17
|
Owji N, Kohli N, Frost OG, Sawadkar P, Snow M, Knowles JC, García-Gareta E. Ex Ovo Chorioallantoic Membrane Assay as a Model of Bone Formation by Biomaterials. ACS Macro Lett 2024; 13:1362-1368. [PMID: 39325943 PMCID: PMC11483936 DOI: 10.1021/acsmacrolett.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Biomaterials play an increasingly critical role in bone tissue engineering. However, achieving effective clinical translation requires a careful choice of biomimetic materials and thorough assessment of their efficacy and safety. Existing in vitro and in vivo models have drawbacks including time and cost constraints, invasive procedures, and discordance between animal models and clinical outcomes. Therefore, there is a demand for an alternative model. We hypothesized that the chick embryo chorioallantoic membrane can serve as a bioreactor to evaluate the initial sign of bone formation on scaffolds. In parallel, we investigated the osteogenic potential of a previously fabricated fibrin-alginate-calcium phosphate biomaterial (FACaP). Blood vessels were observed to infiltrate the scaffolds with early signs of bone formation, confirmed via RUNX-2 and alpha smooth muscle actin markers. The scaffolds' chemical composition was evaluated by Fourier-transform infrared spectroscopy, and ion chromatography was used to assess calcium ion release. Finally, the topography was examined by atomic force microscopy. In conclusion, this system offers simple refinement for in vivo models in bone tissue engineering and highlights the great potential of FACaP as an angiogenic and osteogenic biomaterial for non-load-bearing applications.
Collapse
Affiliation(s)
- Nazanin Owji
- Regenerative
Biomaterials Research Group, The RAFT Institute
and The Griffin Institute, Northwick Park and Saint Mark’s
Hospitals, Harrow HA1 3UJ, United Kingdom
- Division
of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2QG, United Kingdom
- Department
of Biochemical Engineering, University College
London, London WC1E 6BT, United Kingdom
| | - Nupur Kohli
- Regenerative
Biomaterials Research Group, The RAFT Institute
and The Griffin Institute, Northwick Park and Saint Mark’s
Hospitals, Harrow HA1 3UJ, United Kingdom
- Department
of Biomedical Engineering, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Healthcare
Engineering Innovation Center, Khalifa University
of Science and Technology, Abu
Dhabi 127788, United Arab Emirates
| | - Oliver G Frost
- Regenerative
Biomaterials Research Group, The RAFT Institute
and The Griffin Institute, Northwick Park and Saint Mark’s
Hospitals, Harrow HA1 3UJ, United Kingdom
| | - Prasad Sawadkar
- Regenerative
Biomaterials Research Group, The RAFT Institute
and The Griffin Institute, Northwick Park and Saint Mark’s
Hospitals, Harrow HA1 3UJ, United Kingdom
| | - Martyn Snow
- Royal Orthopaedic
Hospital NHS Foundation Trust, Birmingham B31 2AP, United Kingdom
| | - Jonathan C Knowles
- Division
of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2QG, United Kingdom
| | - Elena García-Gareta
- Regenerative
Biomaterials Research Group, The RAFT Institute
and The Griffin Institute, Northwick Park and Saint Mark’s
Hospitals, Harrow HA1 3UJ, United Kingdom
- Division
of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London NW3 2QG, United Kingdom
- Multiscale
in Mechanical and Biological Engineering Research Group, Aragon Institute
of Engineering Research (I3A), University
of Zaragoza, Zaragoza 50018, Aragon, Spain
- Aragon
Institute of Healthcare Research (IIS Aragon), Miguel Servet University
Hospital, Zaragoza 50009, Aragon, Spain
| |
Collapse
|
18
|
Liu Y, Wang J, Yang J, Xia J, Yu J, Chen D, Huang Y, Yang F, Ruan Y, Xu JF, Pi J. Nanomaterial-mediated host directed therapy of tuberculosis by manipulating macrophage autophagy. J Nanobiotechnology 2024; 22:608. [PMID: 39379986 PMCID: PMC11462893 DOI: 10.1186/s12951-024-02875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Tuberculosis (TB), induced by Mycobacterium tuberculosis (Mtb) infection, remains a major public health issue worldwide. Mtb has developed complicated strategies to inhibit the immunological clearance of host cells, which significantly promote TB epidemic and weaken the anti-TB treatments. Host-directed therapy (HDT) is a novel approach in the field of anti-infection for overcoming antimicrobial resistance by enhancing the antimicrobial activities of phagocytes through phagosomal maturation, autophagy and antimicrobial peptides. Autophagy, a highly conserved cellular event within eukaryotic cells that is effective against a variety of bacterial infections, has been shown to play a protective role in host defense against Mtb. In recent decades, the introduction of nanomaterials into medical fields open up a new scene for novel therapeutics with enhanced efficiency and safety against different diseases. The active modification of nanomaterials not only allows their attractive targeting effects against the host cells, but also introduce the potential to regulate the host anti-TB immunological mechanisms, such as apoptosis, autophagy or macrophage polarization. In this review, we introduced the mechanisms of host cell autophagy for intracellular Mtb clearance, and how functional nanomaterials regulate autophagy for disease treatment. Moreover, we summarized the recent advances of nanomaterials for autophagy regulations as novel HDT strategies for anti-TB treatment, which may benefit the development of more effective anti-TB treatments.
Collapse
Affiliation(s)
- Yilin Liu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiayi Yang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jiaqi Yu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| | - Jun-Fa Xu
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| | - Jiang Pi
- Research Center of Nano Technology and Application Engineering, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
19
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
20
|
Brito GS, Dutra RP, Fernandes Pereira AL, Ferreira AGN, Neto MS, Holanda CA, Fidelis QC. Nanoemulsions of essential oils against multi-resistant microorganisms: An integrative review. Microb Pathog 2024; 195:106837. [PMID: 39103128 DOI: 10.1016/j.micpath.2024.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.
Collapse
Affiliation(s)
- Gabriel Sousa Brito
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Richard Pereira Dutra
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Ana Lúcia Fernandes Pereira
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | | | - Marcelino Santos Neto
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Carlos Alexandre Holanda
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Queli Cristina Fidelis
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil.
| |
Collapse
|
21
|
Pilkington CP, Gispert I, Chui SY, Seddon JM, Elani Y. Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release. Nat Chem 2024; 16:1612-1620. [PMID: 39009794 PMCID: PMC11446840 DOI: 10.1038/s41557-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Soft-matter nanoscale assemblies such as liposomes and lipid nanoparticles have the potential to deliver and release multiple cargos in an externally stimulated and site-specific manner. Such assemblies are currently structurally simplistic, comprising spherical capsules or lipid clusters. Given that form and function are intertwined, this lack of architectural complexity restricts the development of more sophisticated properties. To address this, we have devised an engineering strategy combining microfluidics and conjugation chemistry to synthesize nanosized liposomes with two discrete compartments, one within another, which we term concentrisomes. We can control the composition of each bilayer and tune both particle size and the dimensions between inner and outer membranes. We can specify the identity of encapsulated cargo within each compartment, and the biophysical features of inner and outer bilayers, allowing us to imbue each bilayer with different stimuli-responsive properties. We use these particles for multi-stage release of two payloads at defined time points, and as attolitre reactors for triggered in situ biochemical synthesis.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Suet Y Chui
- Department of Chemical Engineering, Imperial College London, London, UK
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
22
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Savitri CMA, Fauzia KA, Alfaray RI, Aftab H, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. Opportunities for Helicobacter pylori Eradication beyond Conventional Antibiotics. Microorganisms 2024; 12:1986. [PMID: 39458296 PMCID: PMC11509656 DOI: 10.3390/microorganisms12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to be associated with a significant risk of gastric cancer in addition to chronic gastritis, peptic ulcer, and MALT lymphoma. Although only a small percentage of patients infected with H. pylori develop gastric cancer, Gastric cancer causes more than 750,000 deaths worldwide, with 90% of cases being caused by H. pylori. The eradication of this bacterium rests on multiple drug regimens as guided by various consensus. However, the efficacy of empirical therapy is decreasing due to antimicrobial resistance. In addition, biofilm formation complicates eradication. As the search for new antibiotics lags behind the bacterium's ability to mutate, studies have been directed toward finding new anti-H. pylori agents while also optimizing current drug functions. Targeting biofilm, repurposing outer membrane vesicles that were initially a virulence factor of the bacteria, phage therapy, probiotics, and the construction of nanoparticles might be able to complement or even be alternatives for H. pylori treatment. This review aims to present reports on various compounds, either new or combined with current antibiotics, and their pathways to counteract H. pylori resistance.
Collapse
Affiliation(s)
- Camilia Metadea Aji Savitri
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Kartika Afrida Fauzia
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Research Centre for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong Science Center, Bogor 16915, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka 1000, Bangladesh;
| | - Ari Fahrial Syam
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Masrul Lubis
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Genome-Wide Microbiology, Research Center for Global and Local Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Oita, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Miftahussurur
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| |
Collapse
|
24
|
López-Espinosa J, Park P, Holcomb M, Godin B, Villapol S. Nanotechnology-driven therapies for neurodegenerative diseases: a comprehensive review. Ther Deliv 2024; 15:997-1024. [PMID: 39297726 PMCID: PMC11583628 DOI: 10.1080/20415990.2024.2401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 11/22/2024] Open
Abstract
Neurological diseases, characterized by neuroinflammation and neurodegeneration, impose a significant global burden, contributing to substantial morbidity, disability and mortality. A common feature of these disorders, including stroke, traumatic brain injury and Alzheimer's disease, is the impairment of the blood-brain barrier (BBB), a critical structure for maintaining brain homeostasis. The compromised BBB in neurodegenerative conditions poses a significant challenge for effective treatment, as it allows harmful substances to accumulate in the brain. Nanomedicine offers a promising approach to overcoming this barrier, with nanoparticles (NPs) engineered to deliver therapeutic agents directly to affected brain regions. This review explores the classification and design of NPs, divided into organic and inorganic categories and further categorized based on their chemical and physical properties. These characteristics influence the ability of NPs to carry and release therapeutic agents, target specific tissues and ensure appropriate clearance from the body. The review emphasizes the potential of NPs to enhance the diagnosis and treatment of neurodegenerative diseases through targeted delivery, improved drug bioavailability and real-time therapeutic efficacy monitoring. By addressing the challenges of the compromised BBB and targeting inflammatory biomarkers, NPs represent a cutting-edge strategy in managing neurological disorders, promising better patient outcomes.
Collapse
Affiliation(s)
- Jessica López-Espinosa
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- School of Medicine and Health Sciences of Tecnológico de Monterrey, Guadalajara, México
| | - Peter Park
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Morgan Holcomb
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TXUSA
- Department of Obstetrics & Gynecology, Houston Methodist Hospital, Houston, TXUSA
- Department of Obstetrics & Gynecology, Weill Cornell Medicine College, New York, NYUSA
- Department of Biomedical Engineering, Texas A&M University, College Station, TXUSA
| | - Sonia Villapol
- Department of Neurosurgery & Center for Neuroregeneration, Houston, TX USA
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
25
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
26
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
27
|
Lu D, Fan X. Insights into the prospects of nanobiomaterials in the treatment of cardiac arrhythmia. J Nanobiotechnology 2024; 22:523. [PMID: 39215361 PMCID: PMC11363662 DOI: 10.1186/s12951-024-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiac arrhythmia, a disorder of abnormal electrical activity of the heart that disturbs the rhythm of the heart, thereby affecting its normal function, is one of the leading causes of death from heart disease worldwide and causes millions of deaths each year. Currently, treatments for arrhythmia include drug therapy, radiofrequency ablation, cardiovascular implantable electronic devices (CIEDs), including pacemakers, defibrillators, and cardiac resynchronization therapy (CRT). However, these traditional treatments have several limitations, such as the side effects of medication, the risks of device implantation, and the complications of invasive surgery. Nanotechnology and nanomaterials provide safer, effective and crucial treatments to improve the quality of life of patients with cardiac arrhythmia. The large specific surface area, controlled physical and chemical properties, and good biocompatibility of nanobiomaterials make them promising for a wide range of applications, such as cardiovascular drug delivery, tissue engineering, and the diagnosis and therapeutic treatment of diseases. However, issues related to the genotoxicity, cytotoxicity and immunogenicity of nanomaterials remain and require careful consideration. In this review, we first provide a brief overview of cardiac electrophysiology, arrhythmia and current treatments for arrhythmia and discuss the potential applications of nanobiomaterials before focusing on the promising applications of nanobiomaterials in drug delivery and cardiac tissue repair. An in-depth study of the application of nanobiomaterials is expected to provide safer and more effective therapeutic options for patients with cardiac arrhythmia, thereby improving their quality of life.
Collapse
Affiliation(s)
- Dingkun Lu
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Fan
- Cardiac Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Balcorta HV, Contreras Guerrero VG, Bisht D, Poon W. Nucleic Acid Delivery Nanotechnologies for In Vivo Cell Programming. ACS APPLIED BIO MATERIALS 2024; 7:5020-5036. [PMID: 38288693 DOI: 10.1021/acsabm.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In medicine, it is desirable for clinicians to be able to restore function and imbue novel function into selected cells for therapy and disease prevention. Cells damaged by disease, injury, or aging could be programmed to restore normal or lost functions, such as retinal cells in inherited blindness and neuronal cells in Alzheimer's disease. Cells could also be genetically programmed with novel functions such as immune cells expressing synthetic chimeric antigen receptors for immunotherapy. Furthermore, knockdown or modification of risk factor proteins can mitigate disease development. Currently, nucleic acids are emerging as a versatile and potent therapeutic modality for achieving this cellular programming. In this review, we highlight the latest developments in nanobiomaterials-based nucleic acid therapeutics for cellular programming from a biomaterial design and delivery perspective and how to overcome barriers to their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Hannia V Balcorta
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Veronica G Contreras Guerrero
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Deepali Bisht
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| |
Collapse
|
29
|
Movahedi F, Nirmal N, Wang P, Jin H, Grøndahl L, Li L. Recent advances in essential oils and their nanoformulations for poultry feed. J Anim Sci Biotechnol 2024; 15:110. [PMID: 39123220 PMCID: PMC11316336 DOI: 10.1186/s40104-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development. Essential oils (EOs), as natural, plant-derived compounds, have demonstrated antimicrobial and antioxidant properties. EOs may potentially improve poultry health and growth performance when included in poultry feed. Nevertheless, the incorporation of EOs as nutritional additives is hindered by their high volatility, low water solubility, poor intestinal absorption, and sensitivity to environmental conditions. Recently, nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges, improving the stability and bioavailability of EOs, and enabling targeted delivery in poultry feed. This review provides an overview of the antioxidant and antibacterial properties of EOs, the current limitations of their applications in poultry feed, and the recent advancements in nano-engineering to overcome these limitations. Furthermore, we outline the potential future research direction on EO nanoformulations, emphasizing their promising role in advancing sustainable poultry nutrition.Highlights• Essential oils (EOs) are known as powerful antioxidants and antibacterial agents.• EOs have a high potential to replace antibiotics as feed additives.• Nanoformulations of EOs have shown improved bioactivity and storage stability of EOs.• Nanoformulation promotes the bioavailability and gut adsorption of EOs as feed additives.
Collapse
Affiliation(s)
- Fatemeh Movahedi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pengyuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hongping Jin
- JECHO Biopharmaceuticals Co., Ltd., No. 2633, Zhongbin Avenue, Sino-Singapore Tianjin Eco-city, Binhai New Area, Tianjin, China
| | - Lisbeth Grøndahl
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
31
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
32
|
Karahmet Sher E, Alebić M, Marković Boras M, Boškailo E, Karahmet Farhat E, Karahmet A, Pavlović B, Sher F, Lekić L. Nanotechnology in medicine revolutionizing drug delivery for cancer and viral infection treatments. Int J Pharm 2024; 660:124345. [PMID: 38885775 DOI: 10.1016/j.ijpharm.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Advancements in nanotechnology were vastly applied in medicine and pharmacy, especially in the field of nano-delivery systems. It took a long time for these systems to ensure precise delivery of very delicate molecules, such as RNA, to cells at concentrations that yield remarkable efficiency, with success rates reaching 95.0% and 94.5%. These days, there are several advantages of using nanotechnological solutions in the prevention and treatment of cancer and viral infections. Its interventions improve treatment outcomes both due to increased effectiveness of the drug at target location and by reducing adverse reactions, thereby increasing patient adherence to the therapy. Based on the current knowledge an updated review was made, and perspective, opportunities and challenges in nanomedicine were discussed. The methods employed include comprehensive examination of existing literature and studies on nanoparticles and nano-delivery systems including both in vitro tests performed on cell cultures and in vivo assessments carried out on appropriate animal models, with a specific emphasis on their applications in oncology and virology. This brings together various aspects including both structure and formation as well as its association with characteristic behaviour in organisms, providing a novel perspective. Furthermore, the practical application of these systems in medicine and pharmacy with a focus on viral diseases and malignancies was explored. This review can serve as a valuable guide for fellow researchers, helping them navigate the abundance of findings in this field. The results indicate that applications of nanotechnological solutions for the delivery of medicinal products improving therapeutic outcomes will continue to expand.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Mirna Alebić
- Department of Pharmacy, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Marijana Marković Boras
- Department of Laboratory Diagnostic, University Clinical Hospital Mostar, Mostar 88000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Emina Boškailo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Esma Karahmet Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Department of Food and Nutrition, Faculty of Food Technology, Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Alma Karahmet
- International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Bojan Pavlović
- Faculty of Physical Education and Sports, University of East Sarajevo, Lukavica, Republika Srpska 75327, Bosnia and Herzegovina
| | - Farooq Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Lana Lekić
- Faculty of Health Studies, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
| |
Collapse
|
33
|
Jin SE, Sung JH. Delivery Strategies of siRNA Therapeutics for Hair Loss Therapy. Int J Mol Sci 2024; 25:7612. [PMID: 39062852 PMCID: PMC11277092 DOI: 10.3390/ijms25147612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic needs for hair loss are intended to find small interfering ribonucleic acid (siRNA) therapeutics for breakthrough. Since naked siRNA is restricted to meet a druggable target in clinic,, delivery systems are indispensable to overcome intrinsic and pathophysiological barriers, enhancing targetability and persistency to ensure safety, efficacy, and effectiveness. Diverse carriers repurposed from small molecules to siRNA can be systematically or locally employed in hair loss therapy, followed by the adoption of new compositions associated with structural and environmental modification. The siRNA delivery systems have been extensively studied via conjugation or nanoparticle formulation to improve their fate in vitro and in vivo. In this review, we introduce clinically tunable siRNA delivery systems for hair loss based on design principles, after analyzing clinical trials in hair loss and currently approved siRNA therapeutics. We further discuss a strategic research framework for optimized siRNA delivery in hair loss from the scientific perspective of clinical translation.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon 21984, Republic of Korea
| | | |
Collapse
|
34
|
Bhusare N, Gade A, Kumar MS. Using nanotechnology to progress the utilization of marine natural products in combating multidrug resistance in cancer: A prospective strategy. J Biochem Mol Toxicol 2024; 38:e23732. [PMID: 38769657 DOI: 10.1002/jbt.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| |
Collapse
|
35
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
36
|
Sardar MS, Kashinath KP, Gupta U, Roy S, Kaity S. Polymeric nanotheranostics for solid tumor management: Recent developments and global regulatory landscape. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractPolymeric nanotheranostics have emerged as promising vehicles for diagnosis‐cum‐targeted therapy in solid tumors, offering precise delivery of therapeutic agents at the site of solid tumors and minimizing systemic side effects. This article summarizes the latest developments in using polymeric nanoparticles for specific treatment strategies in solid tumors. It explores the various methods these nanoparticles utilize for targeted medication delivery. This includes passive targeting through the amplified permeability and retention effect, active targeting via interactions between ligands and receptors, and stimuli‐responsive release mechanisms such as pH, temperature, and enzymatic triggers. Furthermore, we highlight recent developments in stimuli‐responsive polymeric nanoparticles, which enable controlled drug release in response to specific cues in the tumor microenvironment, thus enhancing therapeutic efficacy. Also, we focus on the theranostic polymeric nanoparticles, which are used for diagnosing and treating solid tumors. We discuss critical regulatory considerations and the regulatory bodies of different countries that regulate nanomedicines' safety, efficacy, quality, and manufacturing processes. Overall, this review provides insights into the latest innovations in polymeric nanoparticles for targeted therapy in solid tumors, elucidating their mechanisms of action, stimuli‐responsive properties, and regulatory pathways, which collectively contribute to developing effective and safe nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Md Samim Sardar
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Kardile Punam Kashinath
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Ujjwal Gupta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research Kolkata West Bengal India
| | - Santanu Kaity
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| |
Collapse
|
37
|
Parajuli D. MXenes-polymer nanocomposites for biomedical applications: fundamentals and future perspectives. Front Chem 2024; 12:1400375. [PMID: 38863676 PMCID: PMC11165207 DOI: 10.3389/fchem.2024.1400375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 06/13/2024] Open
Abstract
The article discusses the promising synergy between MXenes and polymers in developing advanced nanocomposites with diverse applications in biomedicine domains. MXenes, possessing exceptional properties, are integrated into polymer matrices through various synthesis and fabrication methods. These nanocomposites find applications in drug delivery, imaging, diagnostics, and environmental remediation. They offer improved therapeutic efficacy and reduced side effects in drug delivery, enhanced sensitivity and specificity in imaging and diagnostics, and effectiveness in water purification and pollutant removal. The perspective also addresses challenges like biocompatibility and toxicity, while suggesting future research directions. In totality, it highlights the transformative potential of MXenes-polymer nanocomposites in addressing critical issues across various fields.
Collapse
Affiliation(s)
- D. Parajuli
- Research Center for Applied Science and Technology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
38
|
Sozarukova MM, Kozlova TO, Beshkareva TS, Popov AL, Kolmanovich DD, Vinnik DA, Ivanova OS, Lukashin AV, Baranchikov AE, Ivanov VK. Gadolinium Doping Modulates the Enzyme-like Activity and Radical-Scavenging Properties of CeO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:769. [PMID: 38727363 PMCID: PMC11085435 DOI: 10.3390/nano14090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Their unique physicochemical properties and multi-enzymatic activity make CeO2 nanoparticles (CeO2 NPs) the most promising active component of the next generation of theranostic drugs. When doped with gadolinium ions, CeO2 NPs constitute a new type of contrast agent for magnetic resonance imaging, possessing improved biocatalytic properties and a high level of biocompatibility. The present study is focused on an in-depth analysis of the enzyme-like properties of gadolinium-doped CeO2 NPs (CeO2:Gd NPs) and their antioxidant activity against superoxide anion radicals, hydrogen peroxide, and alkylperoxyl radicals. Using an anion-exchange method, CeO2:Gd NPs (~5 nm) with various Gd-doping levels (10 mol.% or 20 mol.%) were synthesized. The radical-scavenging properties and biomimetic activities (namely SOD- and peroxidase-like activities) of CeO2:Gd NPs were assessed using a chemiluminescent method with selective chemical probes: luminol, lucigenin, and L-012 (a highly sensitive luminol analogue). In particular, gadolinium doping has been shown to enhance the radical-scavenging properties of CeO2 NPs. Unexpectedly, both bare CeO2 NPs and CeO2:Gd NPs did not exhibit SOD-like activity, acting as pro-oxidants and contributing to the generation of reactive oxygen species. Gadolinium doping caused an increase in the pro-oxidant properties of nanoscale CeO2. At the same time, CeO2:Gd NPs did not significantly inhibit the intrinsic activity of the natural enzyme superoxide dismutase, and CeO2:Gd NPs conjugated with SOD demonstrated SOD-like activity. In contrast to SOD-like properties, peroxidase-like activity was observed for both bare CeO2 NPs and CeO2:Gd NPs. This type of enzyme-like activity was found to be pH-dependent. In a neutral medium (pH = 7.4), nanoscale CeO2 acted as a prooxidant enzyme (peroxidase), while in an alkaline medium (pH = 8.6), it lost its catalytic properties; thus, it cannot be regarded as a nanozyme. Both gadolinium doping and conjugation with a natural enzyme were shown to modulate the interaction of CeO2 NPs with the key components of redox homeostasis.
Collapse
Affiliation(s)
- Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Taisiya O. Kozlova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana S. Beshkareva
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Danil D. Kolmanovich
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Darya A. Vinnik
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey V. Lukashin
- Materials Science Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
39
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
40
|
Zuo Y, Sun R, Del Piccolo N, Stevens MM. Microneedle-mediated nanomedicine to enhance therapeutic and diagnostic efficacy. NANO CONVERGENCE 2024; 11:15. [PMID: 38634994 PMCID: PMC11026339 DOI: 10.1186/s40580-024-00421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nanomedicine has been extensively explored for therapeutic and diagnostic applications in recent years, owing to its numerous advantages such as controlled release, targeted delivery, and efficient protection of encapsulated agents. Integration of microneedle technologies with nanomedicine has the potential to address current limitations in nanomedicine for drug delivery including relatively low therapeutic efficacy and poor patient compliance and enable theragnostic uses. In this Review, we first summarize representative types of nanomedicine and describe their broad applications. We then outline the current challenges faced by nanomedicine, with a focus on issues related to physical barriers, biological barriers, and patient compliance. Next, we provide an overview of microneedle systems, including their definition, manufacturing strategies, drug release mechanisms, and current advantages and challenges. We also discuss the use of microneedle-mediated nanomedicine systems for therapeutic and diagnostic applications. Finally, we provide a perspective on the current status and future prospects for microneedle-mediated nanomedicine for biomedical applications.
Collapse
Affiliation(s)
- Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nuala Del Piccolo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
41
|
Bartkowski M, Zhou Y, Nabil Amin Mustafa M, Eustace AJ, Giordani S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry 2024; 30:e202303982. [PMID: 38205882 DOI: 10.1002/chem.202303982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Yingru Zhou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
42
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
43
|
Morilla MJ, Ghosal K, Romero EL. Nanomedicines against Chagas disease: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:333-349. [PMID: 38590427 PMCID: PMC11000002 DOI: 10.3762/bjnano.15.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
44
|
Chávez-Hernández JA, Velarde-Salcedo AJ, Navarro-Tovar G, Gonzalez C. Safe nanomaterials: from their use, application, and disposal to regulations. NANOSCALE ADVANCES 2024; 6:1583-1610. [PMID: 38482025 PMCID: PMC10929592 DOI: 10.1039/d3na01097j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 09/15/2024]
Abstract
Nanomaterials are structures with a wide range of applications in the medical, pharmaceutical, food, textile, and electronic industries, reaching more customers worldwide. As a relatively new technological field, the information about the associated risk of nanomaterials in environmental and human health must be addressed and consolidated to develop accurate legislations, frameworks, and guidelines to standardise their use in any field. This review aims to display and context the global applications of nanomaterials, their final disposal, as well as the perspective of the current efforts formulated by various countries (including Mexico and Latin American countries), international official departments and organisations directed to implement regulations on nanomaterials, nanotechnology, and nanoscience matters. In addition, the compiled information includes the tools, initiatives, and strategies to develop regulatory frameworks, such as life cycle assessments, risk assessments, technical tools, and biological models to evaluate their effects on living organisms. Finally, the authors point out the importance of implementing global regulations to promote nanotechnological research according to a precautionary principle focused on an environmental and health protection approach to ensure the use and application of nanotechnologies safely, and responsibly.
Collapse
Affiliation(s)
- Jorge Antonio Chávez-Hernández
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| | - Aída Jimena Velarde-Salcedo
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
- Consejo Nacional de Humanidades, Ciencias y Tecnologias Insurgentes Sur 1582, Credito Constructor, Benito Juarez 03940 Mexico City Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi Manuel Nava 6, Zona Universitaria 78210 San Luis Potosí SLP Mexico +5211-52-444-8262300, ext. 6459
| |
Collapse
|
45
|
Mohapatra P, Gopikrishnan M, Doss C GP, Chandrasekaran N. How Precise are Nanomedicines in Overcoming the Blood-Brain Barrier? A Comprehensive Review of the Literature. Int J Nanomedicine 2024; 19:2441-2467. [PMID: 38482521 PMCID: PMC10932758 DOI: 10.2147/ijn.s442520] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2025] Open
Abstract
New nanotechnology strategies for enhancing drug delivery in brain disorders have recently received increasing attention from drug designers. The treatment of neurological conditions, including brain tumors, stroke, Parkinson's Disease (PD), and Alzheimer's disease (AD), may be greatly influenced by nanotechnology. Numerous studies on neurodegeneration have demonstrated the effective application of nanomaterials in the treatment of brain illnesses. Nanocarriers (NCs) have made it easier to deliver drugs precisely to where they are needed. Thus, the most effective use of nanomaterials is in the treatment of various brain diseases, as this amplifies the overall impact of medication and emphasizes the significance of nanotherapeutics through gene therapy, enzyme replacement therapy, and blood-barrier mechanisms. Recent advances in nanotechnology have led to the development of multifunctional nanotherapeutic agents, a promising treatment for brain disorders. This novel method reduces the side effects and improves treatment outcomes. This review critically assesses efficient nano-based systems in light of obstacles and outstanding achievements. Nanocarriers that transfer medications across the blood-brain barrier and nano-assisted therapies, including nano-immunotherapy, nano-gene therapy, nano enzyme replacement therapy, scaffolds, and 3D to 6D printing, have been widely explored for the treatment of brain disorders. This study aimed to evaluate existing literature regarding the use of nanotechnology in the development of drug delivery systems that can penetrate the blood-brain barrier (BBB) and deliver therapeutic agents to treat various brain disorders.
Collapse
Affiliation(s)
| | - Mohanraj Gopikrishnan
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | | |
Collapse
|
46
|
Mallareddy V, Daigavane S. Nanoparticle-Mediated Cell Delivery: Advancements in Corneal Endothelial Regeneration. Cureus 2024; 16:e56958. [PMID: 38665717 PMCID: PMC11044897 DOI: 10.7759/cureus.56958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal endothelial dysfunction poses significant challenges in ophthalmology, leading to corneal edema and vision loss. Traditional treatments, including corneal transplantation, are limited by donor scarcity and potential complications. Nanoparticle-mediated cell delivery emerges as a promising approach for corneal endothelial regeneration, offering targeted and minimally invasive solutions. This comprehensive review provides insights into the role of nanoparticles in enhancing cell survival, integration, and therapeutic efficacy. We discuss the current understanding of corneal endothelial dysfunction, emphasizing the importance of regeneration. Furthermore, we explore the potential implications of nanoparticle-mediated approaches in clinical practice, highlighting opportunities for personalized treatment strategies. Future directions are also discussed, including optimization of nanoparticle design and exploration of combination therapies. Overall, this review elucidates the promising advancements in nanoparticle-mediated cell delivery for corneal endothelial regeneration and underscores the importance of continued research efforts in this evolving field.
Collapse
Affiliation(s)
- Vijaya Mallareddy
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
47
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
48
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
49
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
50
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|