1
|
Das D, Chen HA, Weng CL, Lee YC, Hsu SM, Kwon JS, Chuang HS. Rapid tear screening of diabetic retinopathy by a detachable surface acoustic wave enabled immunosensor. Anal Chim Acta 2024; 1325:343117. [PMID: 39244304 DOI: 10.1016/j.aca.2024.343117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR), a chronic and progressive microvascular complication of diabetes mellitus, substantially threatens vision and is a leading cause of blindness among working-age individuals worldwide. Traditional diagnostic methods, such as ophthalmoscopy and fluorescein angiography are nonquantitative, invasive, and time consuming. Analysis of protein biomarkers in tear fluid offers noninvasive insights into ocular and systemic health, aiding in early DR detection. This study introduces a surface acoustic wave (SAW) microchip that rapidly enhances fluorescence in bead-based immunoassays for the sensitive and noninvasive DR detection from human tear samples. RESULTS The device facilitated particle mixing for immunoassay formation and particle concentration in the droplet, resulting in an enhanced immunofluorescence signal. This detachable SAW microchip allows the disposal of the cover glass after every use, thereby improving the reusability of the interdigital transducer and minimizing potential cross-contamination. A preliminary clinical test was conducted on a cohort of 10 volunteers, including DR patients and healthy individuals. The results demonstrated strong agreement with ELISA studies, validating the high accuracy rate of the SAW microchip. SIGNIFICANCE This comprehensive study offers significant insights into the potential application of a novel SAW microchip for the early detection of DR in individuals with diabetes. By utilizing protein biomarkers found in tear fluid, the device facilitates noninvasive, rapid, and sensitive detection, potentially revolutionizing DR diagnostics and improving patient outcomes through timely intervention and management of this vision-threatening condition.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsuan-An Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Li Weng
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yung-Chun Lee
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan, 701, Taiwan
| | - Jae-Sung Kwon
- Department of Mechanical Engineering, Incheon National University, Incheon, 22012, South Korea; Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, Incheon, 22012, South Korea; Nuclear Safety Research Institute, Incheon National University, Incheon, 22012, South Korea.
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Deng Q, Du T, Gomaa H, Cheng Y, An C. Methods of Manipulation of Acoustic Radiation Using Metamaterials with a Focus on Polymers: Design and Mechanism Insights. Polymers (Basel) 2024; 16:2405. [PMID: 39274037 PMCID: PMC11396993 DOI: 10.3390/polym16172405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The manipulation of acoustic waves is becoming increasingly crucial in research and practical applications. The coordinate transformation methods and acoustic metamaterials represent two significant areas of study that offer innovative strategies for precise acoustic wave control. This review highlights the applications of these methods in acoustic wave manipulation and examines their synergistic effects. We present the fundamental concepts of the coordinate transformation methods and their primary techniques for modulating electromagnetic and acoustic waves. Following this, we deeply study the principle of acoustic metamaterials, with particular emphasis on the superior acoustic properties of polymers. Moreover, the polymers have the characteristics of design flexibility and a light weight, which shows significant advantages in the preparation of acoustic metamaterials. The current research on the manipulation of various acoustic characteristics is reviewed. Furthermore, the paper discusses the combined use of the coordinate transformation methods and polymer acoustic metamaterials, emphasizing their complementary nature. Finally, this article envisions future research directions and challenges in acoustic wave manipulation, considering further technological progress and polymers' application potential. These efforts aim to unlock new possibilities and foster innovative ideas in the field.
Collapse
Affiliation(s)
- Qibo Deng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Tianying Du
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hassanien Gomaa
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yong Cheng
- Hebei Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures, Yanshan University, Qinhuangdao 066004, China
| | - Cuihua An
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Yang Y, Wang Z, Xie H, Hu Y, Liu H. A SAW-Based Programmable Controlled RNA Detecting Device: Rapid In Situ Cytolysis-RNA Capture-RNA Release-PCR in One Mini Chamber. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309744. [PMID: 38773709 PMCID: PMC11304306 DOI: 10.1002/advs.202309744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Indexed: 05/24/2024]
Abstract
Viral RNA detection is crucial in preventing and treating early infectious diseases. Traditional methods of RNA detection require a large amount of equipment and technical personnel. In this study, proposed a programmable controlled surface acoustic wave (SAW)-based RNA detecting device has been proposed. The proposed device can perform the entire viral RNA detection process, including cell lysis by cell-microparticle collision through SAW-induced liquid whirling, RNA capture by SAW-suspended magnetic beads, RNA elution through SAW-induced high streaming force, and PCR thermal cycling through SAW-generated heat. The device has completed all RNA detection steps in one mini chamber, requiring only 489 µl reagents for RNA extraction, much smaller than the amount used in manual RNA extraction (2065 µl). The experimental results have shown that PCR results from the device are comparable to those achieved via commercial qPCR instrumental detection. This work has demonstrated the potential of SAW-based lab-on-a-chip devices for point-of-care testing and provided a novel approach for rapidly detecting infectious diseases.
Collapse
Affiliation(s)
- Yupeng Yang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
- University of JinanJinan250022P. R. China
| | - Zenan Wang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Hetao Xie
- University of JinanJinan250022P. R. China
| | - Ying Hu
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518000P. R. China
| | - Hong Liu
- University of JinanJinan250022P. R. China
| |
Collapse
|
4
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
5
|
Nam H, Park JE, Waheed W, Alazzam A, Sung HJ, Jeon JS. Acoustofluidic lysis of cancer cells and Raman spectrum profiling. LAB ON A CHIP 2023; 23:4117-4125. [PMID: 37655531 DOI: 10.1039/d3lc00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The lysis of cancer cells inside a sessile droplet was performed using traveling surface acoustic waves (SAWs) without any chemical reagents. Raman spectrum profiling was then carried out to explore detailed cell-derived data. The Rayleigh waves formed by an interdigital transducer were made to propagate along the surface of an LiNbO3 substrate. Polystyrene microparticles (PSMPs) were used to establish mechanical cell lysis effectively, and gold nanoparticles (AuNPs) were added to enhance the Raman signals from the lysed cells by SAWs. The lysis efficiency was evaluated according to the size and concentration of the PSMPs in experiments where the frequency was varied. Lysis occurred mainly by mechanical collision using PSMPs in a high-frequency domain, and the lysis efficiency was improved by increasing the application time and the energy density of the SAWs. Raman signals from the lysed cells were greatly enhanced by nanogaps formed by the AuNPs, which were evenly distributed irrespective of the SAWs through the frequency-independent behavior of the AuNPs. Finally, detailed Raman spectra of MDA-MB-231, malignant breast cancer cells, were acquired, and various organic matter-derived peaks were observed. The 95% confidence region for cells subjected to lysis was more widely distributed than that of cells not subjected to lysis. The proposed SAW platform is expected to facilitate the detection of small quantities and to be applied in biomedical applications.
Collapse
Affiliation(s)
- Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Jong-Eun Park
- Department of Mechanical Engineering, The State University of New York Korea, Incheon 21985, Republic of Korea
| | - Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hyung Jin Sung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Bhadra J, Sridhar N, Fajrial AK, Hammond N, Xue D, Ding X. Acoustic streaming enabled moderate swimming exercise reduces neurodegeneration in C. elegans. SCIENCE ADVANCES 2023; 9:eadf5056. [PMID: 36812319 PMCID: PMC9946341 DOI: 10.1126/sciadv.adf5056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Regular physical exercise has been shown to delay and alleviate neurodegenerative diseases. Yet, optimum physical exercise conditions that provide neuronal protection and exercise-related factors remain poorly understood. Here, we create an Acoustic Gym on a chip through the surface acoustic wave (SAW) microfluidic technology to precisely control the duration and intensity of swimming exercise of model organisms. We find that precisely dosed swimming exercise enabled by acoustic streaming decreases neuronal loss in two different neurodegenerative disease models of Caenorhabditis elegans, a Parkinson's disease model and a tauopathy model. These findings highlight the importance of optimum exercise conditions for effective neuronal protection, a key characteristic of healthy aging in the elderly population. This SAW device also paves avenues for screening for compounds that can enhance or replace the beneficial effects of exercise and for identifying drug targets for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Joyita Bhadra
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Nakul Sridhar
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Apresio Kefin Fajrial
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Nia Hammond
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Baumgartner K, Westerhausen C. Recent advances of surface acoustic wave-based sensors for noninvasive cell analysis. Curr Opin Biotechnol 2023; 79:102879. [PMID: 36634534 DOI: 10.1016/j.copbio.2022.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023]
Abstract
In the past years, the application of surface acoustic waves (SAWs) as sensors for biological applications has reached high relevance in the field of biotechnology. From rapid advances in designs and materials, new opportunities have emerged, especially for sensing of living cells. Additionally, the combination of SAW sensors with microfluidics and optical microscopy has expanded the market of possible applications. Differentiation of infected and healthy red blood cells or aggressive and nonaggressive tumor cells, and monitoring of wound healing, bacteria, or viral antigen concentrations via SAW-based sensors are only a few examples of recent achievements in cell biology. The rapid growth of this field requires frequent reviewing of the recent progress to maintain high research standards and promote future developments.
Collapse
Affiliation(s)
- Kathrin Baumgartner
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany; Hanns-Seidel-Stiftung e.V., 80636 Munich, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany; Institute of Physics, Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany
| | - Christoph Westerhausen
- Physiology, Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, 80799 Munich, Germany; Institute of Physics, Experimental Physics I, University of Augsburg, 86159 Augsburg, Germany; Augsburg Center for Innovative Technologies (ACIT), 86159 Augsburg, Germany.
| |
Collapse
|
9
|
Sridhar N, Fajrial AK, Doser RL, Hoerndli FJ, Ding X. Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of C. elegans. LAB ON A CHIP 2022; 22:4882-4893. [PMID: 36377422 PMCID: PMC10091851 DOI: 10.1039/d2lc00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Caenorhabditis elegans is an important genetic model for neuroscience studies, used for analyses of how genes control connectivity, neuronal function, and behavior. To date, however, most studies of neuronal function in C. elegans are incapable of obtaining microscopy imaging with subcellular resolution and behavior analysis in the same set of animals. This constraint stems from the immobilization requirement for high-resolution imaging that is incompatible with behavioral analysis using conventional immobilization techniques. Here, we present a novel microfluidic device that uses surface acoustic waves (SAW) as a non-contact method to temporarily immobilize worms for a short period (30 seconds). We optimize the SAW based protocol for rapid switching between free-swimming and immobilized states, facilitating non-invasive analysis of swimming behavior as well as high-resolution synaptic imaging in the same animal. We find that the coupling of heat and acoustic pressure play a key role in the immobilization process. We introduce a proof-of-concept longitudinal study, illustrating that the device enables repeated imaging of fluorescently tagged synaptic receptors in command interneurons and analysis of swimming behavior in the same animals for three days. This longitudinal approach provides the first correlative analysis of synaptic glutamatergic receptors and swimming behavior in aging animals. We anticipate that this device will enable further longitudinal analysis of animal motility and subcellular morphological changes during development and aging in C. elegans.
Collapse
Affiliation(s)
- Nakul Sridhar
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Apresio Kefin Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
10
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
11
|
Gao Y, Liu K, Lakerveld R, Ding X. Staged Assembly of Colloids Using DNA and Acoustofluidics. NANO LETTERS 2022; 22:6907-6915. [PMID: 35984231 DOI: 10.1021/acs.nanolett.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Assembly of DNA-coated colloids (DNACCs) provides a practical route to programming complex self-assembled materials at the micro/nanoscale. So far, the programmability of DNACC assembly has been extensively exploited internally using different DNA sequences or colloid geometry so that the assembly is mainly manipulated with single-particle spatial resolution such as in crystallization. In this Letter, we present an acoustic approach to externally programming the DNACC assembly with control of spatial resolution over larger scales. We demonstrate assembly of the DNACCs under different acoustic frequencies from stage to stage to produce hierarchical structures that are difficult to fabricate when using DNA coating alone. By programming the acoustic wave frequency, amplitude, and phase, colloidal structures with different morphologies can be assembled. The nonspecific driving force based on acoustic radiation forces at each stage allows our approach to be adopted for most colloidal systems without specific requirements on particle or medium properties.
Collapse
Affiliation(s)
- Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Martinez Villegas K, Rasouli R, Tabrizian M. Enhancing metabolic activity and differentiation potential in adipose mesenchymal stem cells via high-resolution surface-acoustic-wave contactless patterning. MICROSYSTEMS & NANOENGINEERING 2022; 8:79. [PMID: 35846175 PMCID: PMC9276743 DOI: 10.1038/s41378-022-00415-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 06/05/2023]
Abstract
Acoustofluidics has shown great potential for label-free bioparticle patterning with excellent biocompatibility. Acoustofluidic patterning enables the induction of cell-cell interactions, which play fundamental roles in organogenesis and tissue development. One of the current challenges in tissue engineering is not only the control of the spatial arrangement of cells but also the preservation of cell patterns over time. In this work, we developed a standing surface acoustic wave-based platform and demonstrated its capability for the well-controlled and rapid cell patterning of adipose-derived mesenchymal stem cells in a high-density homogenous collagen hydrogel. This biocompatible hydrogel is easily UV crosslinked and can be retrieved within 3 min. Acoustic waves successfully guided the cells toward pressure nodal lines, creating a contactless alignment of cells in <5 s in culture media and <1 min in the hydrogel. The acoustically patterned cells in the hydrogel did not show a decrease in cell viability (>90%) 48 h after acoustic induction. Moreover, 45.53% and 30.85% increases in metabolic activity were observed in growth and differentiation media, respectively, on Day 7. On Day 14, a 32.03% change in metabolic activity was observed using growth media, and no significant difference was observed using differentiation media. The alkaline phosphatase activity showed an increase of 80.89% and 24.90% on Days 7 and 14, respectively, for the acoustically patterned cells in the hydrogel. These results confirm the preservation of cellular viability and improved cellular functionality using the proposed high-resolution acoustic patterning technique and introduce unique opportunities for the application of stem cell regenerative patches for the emerging field of tissue engineering.
Collapse
Affiliation(s)
| | - Reza Rasouli
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC Canada
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC Canada
| |
Collapse
|
13
|
Sun C, Dong Y, Wei J, Cai M, Liang D, Fu Y, Zhou Y, Sui Y, Wu F, Mikhaylov R, Wang H, Fan F, Xie Z, Stringer M, Yang Z, Wu Z, Tian L, Yang X. Acoustically Accelerated Neural Differentiation of Human Embryonic Stem Cells. Acta Biomater 2022; 151:333-345. [DOI: 10.1016/j.actbio.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
14
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|