1
|
Bor G, Jin W, Douka D, Borthwick NJ, Liu X, Jansman MMT, Hosta-Rigau L. In vitro and in vivo investigations of hemoglobin-loaded PEGylated ZIF-8 nanoparticles as oxygen carriers for emergency transfusion. BIOMATERIALS ADVANCES 2025; 168:214118. [PMID: 39580988 DOI: 10.1016/j.bioadv.2024.214118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
The limitations of traditional blood supply systems, particularly where ideal storage is unfeasible, challenge the efficacy of transfusion medicine, especially in emergencies and battlefield scenarios. This study investigates a novel hemoglobin-based oxygen carrier (HBOC) using a dual-coating approach with metal phenolic networks (MPNs) and polyethylene glycol (PEG). Utilizing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for their porosity and biocompatibility, the addition of MPN and PEG coatings enhances biocompatibility and stabilizes encapsulated hemoglobin (Hb). This reduces Hb release and minimizes interactions with the coagulation cascade, as evidenced by stable prothrombin and activated partial thromboplastin times. Complement activation studies showed slight increases in C5a levels, indicating low potential for severe immune reactions. In vivo evaluations demonstrated that both MPN-coated and PEGylated Hb-loaded ZIF-8 NPs have enhanced circulation times, with significantly longer half-lives than free Hb. However, PEGylation did not offer additional benefits over MPN coating alone, possibly due to suboptimal PEG density or shielding. Biodistribution studies indicated similar accumulation patterns in the liver and kidneys for both NP types, suggesting common clearance pathways. These findings suggest our PEGylated Hb-loaded ZIF-8 NPs as promising alternatives to traditional transfusions. Future research will assess their efficacy in resuscitation from hemorrhagic shock to validate their clinical application.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Neil Jean Borthwick
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Leticia Hosta-Rigau
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
2
|
Bozzer S, Grimaldi MC, De Maso L, Manfredi M, Toffoli G, Dal Bo M, Sblattero D, Macor P. Stealth-Engineered Albumin-Coated Nanoparticles for Targeted Therapy: Effective Drug Delivery and Tumor Suppression in Xenograft-Zebrafish Model. Int J Nanomedicine 2024; 19:13267-13286. [PMID: 39679253 PMCID: PMC11645898 DOI: 10.2147/ijn.s476241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose In the bloodstream, nanoparticles (NPs) interact with serum proteins to form the protein corona, which includes both opsonins, promoting NP recognition and elimination, and dysopsonins, which can inhibit opsonin activity. Albumin, the most abundant serum protein, is part of this corona and can act as a dysopsonin, potentially hiding NPs from the immune system. This study aims to investigate how a covalently bound layer of human serum albumin (HSA) on polymeric NPs affects the protein corona and their behavior in the immune system. Methods We covalently attached HSA to the surface of polymeric NPs to modify the protein corona composition. These HSA-covered nanostructures were then decorated with an anti-CD19 recombinant antibody fragment to target malignant B cells, specifically acute lymphoblastic leukemia (ALL) cells. The safety profile and bioavailability of these targeted HSA-nanoparticles were evaluated in vitro and in vivo using a human-zebrafish xenograft model of ALL. The efficacy of the nanostructures in delivering encapsulated doxorubicin and suppressing tumor growth was also assessed. Results The HSA coating on polymeric NPs effectively modified the protein corona, preventing opsonization and subsequent macrophage-mediated elimination. The targeted HSA-nanoparticles maintained a safe profile with reduced macrophage interaction and specifically targeted tumor cells in the xenograft model. This resulted in the successful delivery of doxorubicin, tumor growth suppression, and increased survival of the model organisms. Conclusion The study demonstrates that HSA-coated nanoparticles can be used as a therapeutic nanoplatform with a safe profile and enhanced bioavailability. The ability to decorate these nanostructures with specific targeting agents, such as anti-CD19 antibodies, opens up the potential for developing versatile therapeutic platforms that can be tailored to target various clinical conditions.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | | | - Luca De Maso
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, C.R.O.-IRCCS, Aviano, 33081, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, C.R.O.-IRCCS, Aviano, 33081, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| |
Collapse
|
3
|
Wang R, Xiao Y, Zhang Z, Huang X, Zhu W, Ma X, Feng F, Liu W, Han L, Qu W. Simplified Gambogic Acid Prodrug Nanoparticles to Improve Efficiency and Reduce Toxicity for Clinical Translation Potential. Adv Healthc Mater 2024; 13:e2401950. [PMID: 39276002 DOI: 10.1002/adhm.202401950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Indexed: 09/16/2024]
Abstract
Poor in vivo characteristics of gambogic acid (GA) and difficulties in industrial manufacturing of its nanocarriers have hindered its clinical translation. Therefore, a reproducible nano-drug delivery system must be developed to realize simpler manufacture and address inherent defects of GA, such as short circulation and severe side effects, in order to facilitate its clinical application. Herein, a drug self-assembled nanoparticles (NPs) consisting of a hydrophobic prodrug based on GA and oleyl alcohol (OA), as well as vitamin E-polyethylene glycol succinate (TPGS) as a shield to improve the stability of the NPs is reported. The preparation method is simple enough to stably facilitate large-scale manufacturing. The self-assembled NPs exhibit a remarkably high drug-loading capacity, and their prolonged circulation enables the NPs to demonstrate superior antitumor efficacy in both cellular and animal models. The flexible hydrophobic long chain wraps GA groups, which mitigates vascular irritation and reduces hemolysis rates. Consequently, the prodrug nano-system addresses GA-related concerns regarding stability, efficacy, and safety, offering a simple, stable, and secure nano-platform for similar candidate drugs.
Collapse
Affiliation(s)
- Ruyi Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxiao Xiao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Ma
- State Drug Administration-Key laboratory of Quality control of Chinese Medicinal Materials and Decoction Pieces, Gansu Institute for Drug Control, Lanzhou, 730070, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Zhejiang Center for Safety Study of Drug Substances, Industrial Technology Innovation Platform, Hangzhou, 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
4
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401172. [PMID: 39361948 PMCID: PMC11600209 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Xuebo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fuguo Liu
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
5
|
Cao Z, Liu C, Wen J, Lu Y. Innovative Formulation Platform: Paving the Way for Superior Protein Therapeutics with Enhanced Efficacy and Broadened Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403116. [PMID: 38819929 PMCID: PMC11571700 DOI: 10.1002/adma.202403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Protein therapeutics offer high therapeutic potency and specificity; the broader adoptions and development of protein therapeutics, however, have been constricted by their intrinsic limitations such as inadequate stability, immunogenicity, suboptimal pharmacokinetics and biodistribution, and off-target effects. This review describes a platform technology that formulates individual protein molecules with a thin formulation layer of crosslinked polymers, which confers the protein therapeutics with high activity, enhanced stability, controlled release capability, reduced immunogenicity, improved pharmacokinetics and biodistribution, and ability to cross the blood brain barriers. Based on currently approved protein therapeutics, this formulating platform affords the development of a vast family of superior protein therapeutics with improved efficacy and broadened indications at significantly reduced cost.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA AIDS Institute, University of California, Los Angeles, CA, 90066, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Changping Laboratory, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Chen C, Zhang W, Wang P, Zhang Y, Zhu Y, Li Y, Wang R, Ren F. Thermo-responsive composite nanoparticles based on hydroxybutyl chitosan oligosaccharide: Fabrication, stimulus release and cancer therapy. Int J Biol Macromol 2024; 276:133842. [PMID: 39004251 DOI: 10.1016/j.ijbiomac.2024.133842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Designing thermo-responsive nanocarriers based on biopolymers is fascinating and challenging for cancer therapy. In this study, thermo-responsive composite nanoparticles (CNPs) were prepared using hydroxybutyl chitosan oligosaccharide (HBCOS) and sodium caseinate (SC) via electrostatic interactions and covalent crosslinking. The temperature-responsive behaviors of CNPs were induced by the breakage of hydrogen bonds and the shrinkage of chains in nanoparticles. The CNPs exhibited concentration-independent thermo-responsive behavior, non-adsorption aggregation, and non-hemolysis, suggesting excellent stability and thermo-sensitivity. The initial release rate and final amount of DOX released from CNPs at 42 °C were higher than that at 37 °C, showing a thermo-responsive release, which was also more prominent at lower pH. The release of DOX from CNPs followed first order kinetics based on Fickian diffusion. In vitro cytotoxicity assays confirmed the thermo-responsive antitumor activity of DOX-loaded CNPs as the HT-29 cell viability incubated with DOX-loaded CNPs at 42 °C was significantly lower than that at 37 °C. Cellular uptake experiments proved that DOX-loaded CNPs accumulated in the cytoplasm after being endocytosed and promoted DOX release by increasing environment temperature. This study generated stable thermo-sensitive CNPs based on biopolymers, which can be used as potential nanocarriers for the controlled release of anticancer drugs for cancer therapy.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yinhua Zhu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
7
|
Imperlini E, Di Marzio L, Cevenini A, Costanzo M, Nicola d'Avanzo, Fresta M, Orrù S, Celia C, Salvatore F. Unraveling the impact of different liposomal formulations on the plasma protein corona composition might give hints on the targeting capability of nanoparticles. NANOSCALE ADVANCES 2024; 6:4434-4449. [PMID: 39170967 PMCID: PMC11334990 DOI: 10.1039/d4na00345d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Nanoparticles (NPs) interact with biological fluids after being injected into the bloodstream. The interactions between NPs and plasma proteins at the nano-bio interface affect their biopharmaceutical properties and distribution in the organ and tissues due to protein corona (PrC) composition, and in turn, modification of the resulting targeting capability. Moreover, lipid and polymer NPs, at their interface, affect the composition of PrC and the relative adsorption and abundance of specific proteins. To investigate this latter aspect, we synthesized and characterized different liposomal formulations (LFs) with lipids and polymer-conjugated lipids at different molar ratios, having different sizes, size distributions and surface charges. The PrC composition of various designed LFs was evaluated ex vivo in human plasma by label-free quantitative proteomics. We also correlated the relative abundance of identified specific proteins in the coronas of the different LFs with their physicochemical properties (size, PDI, zeta potential). The evaluation of outputs from different bioinformatic tools discovered protein clusters allowing to highlight: (i) common as well as the unique species for the various formulations; (ii) correlation between each identified PrC and the physicochemical properties of LFs; (iii) some preferential binding determined by physicochemical properties of LFs; (iv) occurrence of formulation-specific protein patterns in PrC. Investigating specific clusters in PrC will help decode the multivalent roles of the protein pattern components in the drug delivery process, taking advantage of the bio-nanoscale recognition and identification for significant advances in nanomedicine.
Collapse
Affiliation(s)
- Esther Imperlini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia Viterbo 01100 Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio" Via dei Vestini 31 66100 Chieti Italy +39 0871 3554711
| | - Armando Cevenini
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II Naples 80131 Italy +39 3356069177
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II Naples 80131 Italy +39 3356069177
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia" Viale "S. Venuta" 88100 Catanzaro Italy
- Department of Experimental and Clinical Medicine, Research Center "ProHealth Translational Hub", "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences Viale S. Venuta 88100 Catanzaro Italy
| | - Massimo Fresta
- Department of Experimental and Clinical Medicine, Research Center "ProHealth Translational Hub", "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta"-Building of BioSciences Viale S. Venuta 88100 Catanzaro Italy
- Department of Health Sciences, University of Catanzaro "Magna Graecia" Viale "S. Venuta" 88100 Catanzaro Italy
| | - Stefania Orrù
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
- Department of Medical, Movement and Wellness Sciences, University of Naples Parthenope Naples 80133 Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio" Via dei Vestini 31 66100 Chieti Italy +39 0871 3554711
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology A. Mickeviciaus g. 9 LT-44307 Kaunas Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. D'Annunzio" 66100 Chieti Italy
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II Naples 80131 Italy +39 3356069177
- CEINGE-Biotecnologie Avanzate Franco Salvatore Naples 80145 Italy +39 081 3737880
| |
Collapse
|
8
|
Abdallah M, Lin L, Styles IK, Mörsdorf A, Grace JL, Gracia G, Nowell C, Quinn JF, Landersdorfer CB, Whittaker MR, Trevaskis NL. Functionalisation of brush polyethylene glycol polymers with specific lipids extends their elimination half-life through association with natural lipid trafficking pathways. Acta Biomater 2024; 174:191-205. [PMID: 38086497 DOI: 10.1016/j.actbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Polymeric prodrugs have been applied to control the delivery of various types of therapeutics. Similarly, conjugation of peptide therapeutics to lipids has been used to prolong systemic exposure. Here, we extend on these two approaches by conjugating brush polyethylene glycol (PEG) polymers with different lipid components including short-chain (1C2) or medium-chain (1C12) monoalkyl hydrocarbon tails, cholesterol (Cho), and diacylglycerols composed of two medium-chain (2C12) or long-chain (2C18) fatty acids. We uniquely evaluate the integration of these lipid-polymers into endogenous lipid trafficking pathways (albumin and lipoproteins) and the impact of lipid conjugation on plasma pharmacokinetics after intravenous (IV) and subcutaneous (SC) dosing to cannulated rats. The IV and SC elimination half-lives of Cho-PEG (13 and 22 h, respectively), 2C12-PEG (11 and 17 h, respectively) and 2C18-PEG (12 h for both) were prolonged compared to 1C2-PEG (3 h for both) and 1C12-PEG (4 h for both). Interestingly, 1C2-PEG and 1C12-PEG had higher SC bioavailability (40 % and 52 %, respectively) compared to Cho-PEG, 2C12-PEG and 2C18-PEG (25 %, 24 % and 23 %, respectively). These differences in pharmacokinetics may be explained by the different association patterns of the polymers with rat serum albumin (RSA), bovine serum albumin (BSA) and lipoproteins. For example, in pooled plasma (from IV pharmacokinetic studies), 2C18-PEG had the highest recovery in the high-density lipoprotein (HDL) fraction. In conclusion, the pharmacokinetics of brush PEG polymers can be tuned via conjugation with different lipids, which can be utilised to tune the elimination half-life, biodistribution and effect of therapeutics for a range of medical applications. STATEMENT OF SIGNIFICANCE: Lipidation of therapeutics such as peptides has been employed to extend their plasma half-life by promoting binding to serum albumin, providing protection against rapid clearance. Here we design and evaluate innovative biomaterials consisting of brush polyethylene glycol polymers conjugated with different lipids. Importantly, we show for the first time that lipidated polymeric materials associate with endogenous lipoprotein trafficking pathways and this, in addition to albumin binding, controls their plasma pharmacokinetics. We find that conjugation to dialkyl lipids and cholesterol leads to higher association with lipid trafficking pathways, and more sustained plasma exposure, compared to conjugation to short and monoalkyl lipids. Our lipidated polymers can thus be utilised as delivery platforms to tune the plasma half-life of various pharmaceuticals.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lihuan Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
10
|
Hasan N, Imran M, Jain D, Jha SK, Nadaf A, Chaudhary A, Rafiya K, Jha LA, Almalki WH, Mohammed Y, Kesharwani P, Ahmad FJ. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. ENVIRONMENTAL RESEARCH 2023; 238:117007. [PMID: 37689337 DOI: 10.1016/j.envres.2023.117007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Targeted drug delivery has emerged as a pivotal approach within precision medicine, aiming to optimize therapeutic efficacy while minimizing systemic side effects. Leukocyte membrane coated nanoparticles (NPs) have attracted a lot of interest as an effective approach for delivering targeted drugs, capitalizing on the natural attributes of leukocytes to achieve site-specific accumulation, and heightened therapeutic outcomes. An overview of the present state of the targeted medication delivery research is given in this review. Notably, Leukocyte membrane-coated NPs offer inherent advantages such as immune evasion, extended circulation half-life, and precise homing to inflamed or diseased tissues through specific interactions with adhesion molecules. leukocyte membrane-coated NPs hold significant promise in advancing targeted drug delivery for precision medicine. As research progresses, they are anticipated to contribute to improved therapeutic outcomes, enabling personalized and effective treatments for a wide range of diseases and conditions. The review covers the method of preparation, characterization, and biological applications of leucocytic membrane coated NPs. Further, patents related factors, gap of translation from laboratory to clinic, and future prospective were discussed in detail. Overall, the review covers extensive literature to establish leucocytic membrane NPs for targeted drug delivery.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arshi Chaudhary
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Km Rafiya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
11
|
Zhou Z, Zhang S, Xue N. Research progress of cancer cell membrane coated nanoparticles for the diagnosis and therapy of breast cancer. Front Oncol 2023; 13:1270407. [PMID: 37781205 PMCID: PMC10539574 DOI: 10.3389/fonc.2023.1270407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Nanoparticles (NPs) disguised in the cell membrane are a new type of biomimetic platform. Due to their ability to simulate the unique biological functions of membrane-derived cells, they have become one of the hotspots of research at home and abroad. The tumor-specific antigen antibody carried by breast cancer cell membranes can modify nanoparticles to have homologous tumor targeting. Therefore, nanoparticles wrapped in cancer cell membranes have been widely used in research on the diagnosis and treatment of breast cancer. This article reviews the current situation, prospects, advantages and limitations of nanoparticles modified by cancer cell membranes in the treatment and diagnosis of breast cancer.
Collapse
Affiliation(s)
| | - Shengmin Zhang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Nianyu Xue
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Zhu W, Wang R, Liu F, Zhang Z, Huang X, Zhu J, Feng F, Liu W, Qu W. Construction of long circulating and deep tumor penetrating gambogic acid-hydroxyethyl starch nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
14
|
Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022; 14:1965. [PMID: 36145713 PMCID: PMC9502742 DOI: 10.3390/pharmaceutics14091965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle-based therapies have been proposed in oncology research using various delivery methods to increase selectivity toward tumor tissues. Enhanced drug delivery through nanoparticle-based therapies could improve anti-tumor efficacy and also prevent drug resistance. However, there are still problems to overcome, such as the main biological interactions of nanocarriers. Among the various nanostructures for drug delivery, drug delivery based on polymeric nanoparticles has numerous advantages for controlling the release of biological factors, such as the ability to add a selective targeting mechanism, controlled release, protection of administered drugs, and prolonging the circulation time in the body. In addition, the functionalization of nanoparticles helps to achieve the best possible outcome. One of the most promising applications for nanoparticle-based drug delivery is in the field of onco-hematology, where there are many already approved targeted therapies, such as immunotherapies with monoclonal antibodies targeting specific tumor-associated antigens; however, several patients have experienced relapsed or refractory disease. This review describes the major nanocarriers proposed as new treatments for hematologic cancer, describing the main biological interactions of these nanocarriers and the related limitations of their use as drug delivery strategies.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | | | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
15
|
Jing G, Yang L, Wang H, Niu J, Li Y, Wang S. Interference of layered double hydroxide nanoparticles with pathways for biomedical applications. Adv Drug Deliv Rev 2022; 188:114451. [PMID: 35843506 DOI: 10.1016/j.addr.2022.114451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/18/2022] [Accepted: 07/09/2022] [Indexed: 11/01/2022]
Abstract
Recent decades have witnessed a surge of explorations into the application of multifarious materials, especially biomedical applications. Among them, layered double hydroxides (LDHs) have been widely developed as typical inorganic layer materials to achieve remarkable advancements. Multiple physicochemical properties endow LDHs with excellent merits in biomedical applications. Moreover, LDH nanoplatforms could serve as "molecular switches", which are capable of the controlled release of payloads under specific physiological pH conditions but are stable during circulation in the bloodstream. In addition, LDHs themselves are composed of several specific cations and possess favorable biological effects or regulatory roles in various cellular functions. These advantages have caused LDHs to become increasingly of interest in the area of nanomedicine. Recent efforts have been devoted to revealing the potential factors that interfere with the biological pathways of LDH-based nanoparticles, such as their applications in shaping the functions of immune cells and in determining the fate of stem cells and tumor treatments, which are comprehensively described herein. In addition, several intracellular signaling pathways interfering with by LDHs in the above applications were also systematically expatiated. Finally, the future development and challenges of LDH-based nanomedicine are discussed in the context of the ultimate goal of practical clinical application.
Collapse
Affiliation(s)
- Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Linnan Yang
- Central Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Youyuan Li
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| |
Collapse
|
16
|
Fan W, Peng H, Yu Z, Wang L, He H, Ma Y, Qi J, Lu Y, Wu W. The long-circulating effect of pegylated nanoparticles revisited via simultaneous monitoring of both the drug payloads and nanocarriers. Acta Pharm Sin B 2022; 12:2479-2493. [PMID: 35646531 PMCID: PMC9136618 DOI: 10.1016/j.apsb.2021.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
The long-circulating effect is revisited by simultaneous monitoring of the drug payloads and nanocarriers following intravenous administration of doxorubicin (DOX)-loaded methoxy polyethylene glycol-polycaprolactone (mPEG-PCL) nanoparticles. Comparison of the kinetic profiles of both DOX and nanocarriers verifies the long-circulating effect, though of limited degree, as a result of pegylation. The nanocarrier profiles display fast clearance from the blood despite dense PEG decoration; DOX is cleared faster than the nanocarriers. The nanocarriers circulate longer than DOX in the blood, suggesting possible leakage of DOX from the nanocarriers. Hepatic accumulation is the highest among all organs and tissues investigated, which however is reversely proportionate to blood circulation time. Pegylation and reduction in particle size prove to extend circulation of drug nanocarriers in the blood with simultaneous decrease in uptake by various organs of the mononuclear phagocytic system. It is concluded that the long-circulating effect of mPEG-PCL nanoparticles is reconfirmed by monitoring of either DOX or the nanocarriers, but the faster clearance of DOX suggests possible leakage of a fraction of the payloads. The findings of this study are of potential translational significance in design of nanocarriers towards optimization of both therapeutic and toxic effects.
Collapse
|
17
|
Nienhaus K, Xue Y, Shang L, Nienhaus GU. Protein adsorption onto nanomaterials engineered for theranostic applications. NANOTECHNOLOGY 2022; 33:262001. [PMID: 35294940 DOI: 10.1088/1361-6528/ac5e6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The key role of biomolecule adsorption onto engineered nanomaterials for therapeutic and diagnostic purposes has been well recognized by the nanobiotechnology community, and our mechanistic understanding of nano-bio interactions has greatly advanced over the past decades. Attention has recently shifted to gaining active control of nano-bio interactions, so as to enhance the efficacy of nanomaterials in biomedical applications. In this review, we summarize progress in this field and outline directions for future development. First, we briefly review fundamental knowledge about the intricate interactions between proteins and nanomaterials, as unraveled by a large number of mechanistic studies. Then, we give a systematic overview of the ways that protein-nanomaterial interactions have been exploited in biomedical applications, including the control of protein adsorption for enhancing the targeting efficiency of nanomedicines, the design of specific protein adsorption layers on the surfaces of nanomaterials for use as drug carriers, and the development of novel nanoparticle array-based sensors based on nano-bio interactions. We will focus on particularly relevant and recent examples within these areas. Finally, we conclude this topical review with an outlook on future developments in this fascinating research field.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
18
|
Chan WJ, Li H, Dehestani S. Cell-based drug-delivery systems: a possible solution to improve nanomedicine for cancer treatment? Nanomedicine (Lond) 2022; 17:349-352. [PMID: 35023371 DOI: 10.2217/nnm-2021-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sina Dehestani
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|