1
|
Onn TM, Oh KR, Adrahtas DZ, Soeherman JK, Hopkins JA, Frisbie CD, Dauenhauer PJ. Flexible and Extensive Platinum Ion Gel Condensers for Programmable Catalysis. ACS NANO 2024; 18:983-995. [PMID: 38146996 DOI: 10.1021/acsnano.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Catalytic condensers composed of ion gels separating a metal electrode from a platinum-on-carbon active layer were fabricated and characterized to achieve more powerful, high surface area dynamic heterogeneous catalyst surfaces. Ion gels comprised of poly(vinylidene difluoride)/1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide were spin coated as a 3.8 μm film on a Au surface, after which carbon sputtering of a 1.8 nm carbon film and electron-beam evaporation of 2 nm Pt clusters created an active surface exposed to reactant gases. Electronic characterization indicated that most charge condensed within the Pt nanoclusters upon application of a potential bias, with the condenser device achieving a capacitance of ∼20 μF/cm2 at applied frequencies of up to 120 Hz. The maximum charge of ∼1014 |e-| cm-2 was condensed under stable device conditions at 200 °C on catalytic films with ∼1015 sites cm-2. Grazing incidence infrared spectroscopy measured carbon monoxide adsorption isobars, indicating a change in the CO* binding energy of ∼19 kJ mol-1 over an applied potential bias of only 1.25 V. Condensers were also fabricated on flexible, large area Kapton substrates allowing stacked or tubular form factors that facilitate high volumetric active site densities, ultimately enabling a fast and powerful catalytic condenser that can be fabricated for programmable catalysis applications.
Collapse
Affiliation(s)
- Tzia Ming Onn
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Kyung-Ryul Oh
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Demetra Z Adrahtas
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Jimmy K Soeherman
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Justin A Hopkins
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Center for Programmable Energy Catalysis (CPEC), University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
- University of Minnesota, Department of Chemical Engineering & Materials Science, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Grammatico D, Marcasuzaa P, Viterisi A, Bousquet A, Su BL, Billon L. Electrode-modified block copoly-ionic liquid boosting the CO 2 reduction toward CO in water-based media. Chem Commun (Camb) 2023; 59:2279-2282. [PMID: 36734956 DOI: 10.1039/d2cc06451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coupling polymer and ionic liquids with electrodes for catalysis is a promising tool for optimization of electrocatalytic CO2 reduction reaction (CO2RR). Here, block copolymer ionic liquids BCPILs were synthesized via controlled radical polymerization and nucleophilic post-substitution to introduce imidazole moieties. We show that, thanks to these PIL functionalities, the BCPIL/Re@HPC/GDL electrode can keep the selectivity toward CO when a higher amount of water is present in the electrolyte than the raw Re@HPC/GDL system. Our results help to understand the development of solid-state ionic liquids for enhanced CO2RR in water-based electrolyte.
Collapse
Affiliation(s)
- Domenico Grammatico
- Bio-inspired Materials Group: Functionalities & Self-assembly, E2S UPPA, Pau 64000, France. .,Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, Pau 64000, France.,Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, Namur B-5000, Belgium
| | - Pierre Marcasuzaa
- Bio-inspired Materials Group: Functionalities & Self-assembly, E2S UPPA, Pau 64000, France. .,Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, Pau 64000, France
| | - Aurelien Viterisi
- Bio-inspired Materials Group: Functionalities & Self-assembly, E2S UPPA, Pau 64000, France. .,Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, Pau 64000, France
| | - Antoine Bousquet
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, Pau 64000, France
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, Namur B-5000, Belgium
| | - Laurent Billon
- Bio-inspired Materials Group: Functionalities & Self-assembly, E2S UPPA, Pau 64000, France. .,Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, Pau 64000, France
| |
Collapse
|
3
|
Grammatico D, Bagnall AJ, Riccardi L, Fontecave M, Su BL, Billon L. Heterogenised Molecular Catalysts for Sustainable Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202206399. [PMID: 35781916 DOI: 10.1002/anie.202206399] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 12/17/2022]
Abstract
There has been a rapid rise in interest regarding the advantages of support materials to protect and immobilise molecular catalysts for the carbon dioxide reduction reaction (CO2 RR) in order to overcome the weaknesses of many well-known catalysts in terms of their stability and selectivity. In this Review, the state of the art of different catalyst-support systems for the CO2 RR is discussed with the intention of leading towards standard benchmarking for comparison of such systems across the most relevant supports and immobilisation strategies, taking into account these multiple pertinent metrics, and also enabling clearer consideration of the necessary steps for further progress. The most promising support systems are described, along with a final note on the need for developing more advanced experimental and computational techniques to aid the rational design principles that are prerequisite to prospective industrial upscaling.
Collapse
Affiliation(s)
- Domenico Grammatico
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France.,Present address: Energy Conversion and Hydrogen Center for Energy, Austrian Institute of Technology GmbH, Giefinggasse 2, 1210, Vienna, Austria
| | - Andrew J Bagnall
- Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France.,Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 751 20, Uppsala, Sweden.,Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 Rue des Martyrs, 38054, Grenoble Cedex, France
| | - Ludovico Riccardi
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 751 20, Uppsala, Sweden.,Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Laurent Billon
- Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France
| |
Collapse
|
4
|
Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022; 61:e202205301. [DOI: 10.1002/anie.202205301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/03/2023]
|
5
|
Yang ZW, Chen JM, Qiu LQ, Xie WJ, He LN. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi-Wen Yang
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Jin-Mei Chen
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Li-Qi Qiu
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Wen-Jun Xie
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Liang-Nian He
- Nankai University College of Chemistry Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
6
|
Grammatico D, Bagnall AJ, Riccardi L, Fontecave M, Su BL, Billlon L. Heterogenised molecular catalysts for sustainable electrochemical CO2 reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Domenico Grammatico
- University of Namur: Universite de Namur Chemistry-CMI 61 rue de Bruxelles 5000 Namur BELGIUM
| | - Andrew J. Bagnall
- Uppsala University: Uppsala Universitet Ångström Laboratories SWEDEN
| | - Ludovico Riccardi
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems NETHERLANDS
| | | | - Bao-Lian Su
- University of Namur: Universite de Namur Chemistry 61 rue de Bruxelles 5000 Namur BELGIUM
| | - Laurent Billlon
- Université de Pau et des Pays de l'Adour: Universite de Pau et des Pays de l'Adour Physical Chemistry FRANCE
| |
Collapse
|
7
|
Fujita E, Grills DC, Manbeck GF, Polyansky DE. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO 2 Reduction Using Mn, Re, and Ru Catalysts. Acc Chem Res 2022; 55:616-628. [PMID: 35133133 DOI: 10.1021/acs.accounts.1c00616] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recycling of carbon dioxide to fuels and chemicals is a promising strategy for renewable energy storage. Carbon dioxide conversion can be achieved by (i) artificial photosynthesis using photoinduced electrons; (ii) electrolysis using electricity produced by photovoltaics; and (iii) thermal CO2 hydrogenation using renewable H2. The focus of our group's research is on molecular catalysts, in particular coordination complexes of transition metals (e.g., Mn, Re, and Ru), which offer versatile platforms for mechanistic studies of photo- and electrochemical CO2 reduction. The interactions of catalytic intermediates with Lewis or Brønsted acids, hydrogen-bonding moieties, solvents, cations, etc., that function as promoters or cofactors have become increasingly important for efficient catalysis. These interactions may have dramatic effects on selectivity and rates by stabilizing intermediates or lowering transition state barriers, but they are difficult to elucidate and challenging to predict. We have been carrying out experimental and theoretical studies of CO2 reduction using molecular catalysts toward addressing mechanisms of efficient CO2 reduction systems with emphasis on those containing intramolecular (or pendent) and intermolecular (solution phase) additives. This Account describes the identification of reaction intermediates produced during CO2 reduction in the presence of triethanolamine or ionic liquids, the benefits of hydrogen-bonding interactions among intermediates or cofactors, and the complications of pendent phenolic donors/phenoxide bases under electrochemical conditions.Triethanolamine (TEOA) is a common sacrificial electron donor for photosensitizer excited state reductive quenching and has a long history of use in photocatalytic CO2 reduction. It also functions as a Brønsted base in conjunction with more potent sacrificial electron donors, such as 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH). Deprotonation of the BIH•+ cation radical promotes irreversible photoinduced electron transfer by preventing charge recombination. Despite its wide use, most research to date has not considered the broader reactions of TEOA, including its direct interaction with CO2 or its influence on catalytic intermediates. We found that in acetonitrile, TEOA captures CO2 in the form of a zwitterionic adduct without any metal catalyst. In the presence of ruthenium carbonyl catalysts bearing α-diimine ligands, it participates in metal hydride formation, accelerates hydride transfer to CO2 to form the bound formate intermediate, and assists in the dissociation of formate anion from the catalyst ( J. Am. Chem. Soc. 2020, 142, 2413-2428).Hydrogen bonding and acid/base promoters are understood to interact with key catalytic intermediates, such as the metallocarboxylate or metallocarboxylic acid during CO2 reduction. The former is a high energy species, and hydrogen-bonding or Lewis acid-stabilization are beneficial. We have found that imidazolium-based ionic liquid cations can stabilize the doubly reduced form of the [ReCl(bpy)(CO)3] (bpy = 2,2'-bipyridine) electrocatalyst through both hydrogen-bonding and π-π interactions, resulting in CO2 reduction occurring at a more positive potential with a higher catalytic current ( J. Phys. Chem. Lett. 2014, 5, 2033-2038). Hydrogen bonding interactions between Lewis basic methoxy groups in the second coordination sphere of a Mn-based catalyst and the OH group of the Mn-COOH intermediate in the presence of a Brønsted acid were also found to promote C-(OH) bond cleavage, enabling access to a low-energy protonation-first pathway for CO2 reduction ( J. Am. Chem. Soc. 2017, 139, 2604-2618).The kinetics of forming the metallocarboxylic acid can be enhanced by internal acids, and its proton-induced C-OH bond cleavage to the metallocarbonyl and H2O is often the rate-limiting step. Therefore, proton movement organized by pendent hydrogen-bonding networks may also accelerate this step. In contrast, during electrolysis, OH groups in the second coordination sphere are deprotonated to the oxyanions, which deter catalytic CO2 reduction by directly binding CO2 to form the carbonate or by making an M-O bond in competition with CO2 binding ( Inorg. Chem. 2016, 55, 4582-4594). Our results emphasize that detailed mechanistic research is critical in discovering the design principles for improved catalysts.
Collapse
Affiliation(s)
- Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
8
|
Soucy TL, Dean WS, Zhou J, Rivera Cruz KE, McCrory CCL. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO 2 Reduction Reaction. Acc Chem Res 2022; 55:252-261. [PMID: 35044745 DOI: 10.1021/acs.accounts.1c00633] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is an attractive method for capturing intermittent renewable energy sources in chemical bonds, and converting waste CO2 into value-added products with a goal of carbon neutrality. Our group has focused on developing polymer-encapsulated molecular catalysts, specifically cobalt phthalocyanine (CoPc), as active and selective electrocatalysts for the CO2RR. When CoPc is adsorbed onto a carbon electrode and encapsulated in poly(4-vinylpyridine) (P4VP), its activity and reaction selectivity over the competitive hydrogen evolution reaction (HER) are enhanced by three synergistic effects: a primary axial coordination effect, a secondary reaction intermediate stabilization effect, and an outer-coordination proton transport effect. We have studied multiple aspects of this system using electrochemical, spectroscopic, and computational tools. Specifically, we have used X-ray absorption spectroscopy measurements to confirm that the pyridyl residues from the polymer are axially coordinated to the CoPc metal center, and we have shown that increasing the σ-donor ability of nitrogen-containing axial ligands results in increased activity for the CO2RR. Using proton inventory studies, we showed that proton delivery in the CoPc-P4VP system is controlled via a proton relay through the polymer matrix. Additionally, we studied the effect of catalyst, polymer, and graphite powder loading on CO2RR activity and determined best practices for incorporating carbon supports into catalyst-polymer composite films.In this Account, we describe these studies in detail, organizing our discussion by three types of microenvironmental interactions that affect the catalyst performance: ligand effects of the primary and secondary sphere, substrate transport of protons and CO2, and charge transport from the electrode surface to the catalyst sites. Our work demonstrates that careful electroanalytical study and interpretation can be valuable in developing a robust and comprehensive understanding of catalyst performance. In addition to our work with polymer encapsulated CoPc, we provide examples of similar surface-adsorbed molecular and solid-state systems that benefit from interactions between active catalytic sites and a polymer system. We also compare the activity results from our systems to other results in the CoPc literature, and other examples of molecular CO2RR catalysts on modified electrode surfaces. Finally, we speculate how the insights gained from studying CoPc could guide the field in designing other polymer-electrocatalyst systems. As CO2RR technologies become commercially viable and expand into the space of flow cells and gas-diffusion electrodes, we propose that overall device efficiency may benefit from understanding and promoting synergistic polymer-encapsulation effects in the microenvironment of these catalyst systems.
Collapse
Affiliation(s)
- Taylor L. Soucy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - William S. Dean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jukai Zhou
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kevin E. Rivera Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
9
|
Carr CR, Koenig JDB, Grant MJ, Piers WE, Welch GC. Boosting CO 2-to-CO evolution using a bimetallic diketopyrrolopyrrole tethered rhenium bipyridine catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of homogeneous electro- and photo-catalysis involving molecular catalysts offers valuable insight into reaction mechanisms as it relates to the structure–function of these tunable systems.
Collapse
Affiliation(s)
- Cody R. Carr
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Josh D. B. Koenig
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Michael J. Grant
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Warren E. Piers
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| | - Gregory C. Welch
- University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Nishi T, Sato S, Morikawa T. Electrochemical CO2 Reduction to HCOOH Catalyzed by Agn(NO3)n+1 Clusters Prepared by Laser Ablation at the Air-Liquid Interface. CHEM LETT 2021. [DOI: 10.1246/cl.210483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teppei Nishi
- TOYOTA CENTRAL R&D LABS., INC., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Shunsuke Sato
- TOYOTA CENTRAL R&D LABS., INC., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Takeshi Morikawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
11
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
12
|
Barrett JA, Miller CJ, Kubiak CP. Electrochemical Reduction of CO2 Using Group VII Metal Catalysts. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
14
|
Willkomm J, Bouzidi S, Bertin E, Birss VI, Piers WE. Aqueous CO 2 Reduction by a Re(bipyridine)-polypyrrole Film Deposited on Colloid-Imprinted Carbon. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Janina Willkomm
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Sara Bouzidi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Erwan Bertin
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Physical Sciences Center, Department of Chemistry, St. Francis University, 5009 Chapel Square, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Viola I. Birss
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Arevalo R, López R, Falvello LR, Riera L, Perez J. Building C(sp 3 ) Molecular Complexity on 2,2'-Bipyridine and 1,10-Phenanthroline in Rhenium Tricarbonyl Complexes. Chemistry 2021; 27:379-389. [PMID: 33001533 DOI: 10.1002/chem.202003814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Indexed: 12/21/2022]
Abstract
The reactions of [Re(N-N)(CO)3 (PMe3 )]OTf (N-N=2,2'-bipyridine, bipy; 1,10-phenanthroline, phen) compounds with tBuLi and with LiHBEt3 have been explored. Addition to the N-N chelate took place with different site-selectivity depending on both chelate and nucleophile. Thus, with tBuLi, an unprecedented addition to C5 of bipy, a regiochemistry not accessible for free bipy, was obtained, whereas coordinated phen underwent tBuLi addition to C2 and C4. Remarkably, when LiHBEt3 reacted with [Re(bipy)(CO)3 (PMe3 )]OTf, hydride addition to the 4 and 6 positions of bipy triggered an intermolecular cyclodimerization of two dearomatized pyridyl rings. In contrast, hydride addition to the phen analog resulted in partial reduction of one pyridine ring. The resulting neutral ReI products showed a varied reactivity with HOTf and with MeOTf to yield cationic complexes. These strategies rendered access to ReI complexes containing bipy- and phen-derived chelates with several C(sp3 ) centers.
Collapse
Affiliation(s)
- Rebeca Arevalo
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.,Current address: Department of Chemistry and Chemical Biology, University of California, Merced, 5200 N. Lake Road, 95343, Merced, CA, USA
| | - Ramón López
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Larry R Falvello
- Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Lucía Riera
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.,Centro de Investigación en Nanomateriales y Nanotecnología-CINN, CSIC- Universidad de Oviedo-Principado de Asturias, Avda. de la Vega 4-6, 33940, El Entrego, Spain
| | - Julio Perez
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.,Centro de Investigación en Nanomateriales y Nanotecnología-CINN, CSIC- Universidad de Oviedo-Principado de Asturias, Avda. de la Vega 4-6, 33940, El Entrego, Spain
| |
Collapse
|
16
|
An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts 2020. [DOI: 10.3390/catal10111226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The chemistry and electrochemistry basic fields have been active for the last two decades of the past century studying how the modification of the electrodes’ surface by coating with conductive thin films enhances their electrocatalytic activity and sensitivity. In light of the development of alternative sustainable ways of energy storage and carbon dioxide conversion by electrochemical reduction, these research studies are starting to jump into the 21st century to more applied fields such as chemical engineering, energy and environmental science, and engineering. The huge amount of literature on experimental works dealing with the development of CO2 electroreduction processes addresses electrocatalyst development and reactor configurations. Membranes can help with understanding and controlling the mass transport limitations of current electrodes as well as leading to novel reactor designs. The present work makes use of a bibliometric analysis directed to the papers published in the 21st century on membrane-coated electrodes and electrocatalysts to enhance the electrochemical reactor performance and their potential in the urgent issue of carbon dioxide capture and utilization.
Collapse
|
17
|
Álvarez D, López-Castro E, Guerrero A, Riera L, Pérez J, Díaz J, Menéndez MI, López R. Influence of the Nucleophilic Ligand on the Reactivity of Carbonyl Rhenium(I) Complexes towards Methyl Propiolate: A Computational Chemistry Perspective. Molecules 2020; 25:molecules25184134. [PMID: 32927650 PMCID: PMC7571231 DOI: 10.3390/molecules25184134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022] Open
Abstract
A comparative theoretical study on the reactivity of the complexes [ReY(CO)3(bipy)] (Y = NH2, NHMe, NHpTol, OH, OMe, OPh, PH2, PHMe, PMe2, PHPh, PPh2, PMePh, SH, SMe, SPh; bipy = 2,2′-bipyridine) towards methyl propiolate was carried out to analyze the influence of both the heteroatom (N, O, P, S) and the alkyl and/or aryl substituents of the Y ligand on the nature of the product obtained. The methyl substituent tends to accelerate the reactions. However, an aromatic ring bonded to N and O makes the reaction more difficult, whereas its linkage to P and S favour it. On the whole, ligands with O and S heteroatoms seem to disfavour these processes more than ligands with N and P heteroatoms, respectively. Phosphido and thiolato ligands tend to yield a coupling product with the bipy ligand, which is not the general case for hydroxo, alcoxo or amido ligands. When the Y ligand has an O/N and an H atom the most likely product is the one containing a coupling with the carbonyl ligand, which is not always obtained when Y contains P/S. Only for OMe and OPh, the product resulting from formal insertion into the Re-Y bond is the preferred.
Collapse
Affiliation(s)
- Daniel Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Asturias, Spain; (D.Á.); (E.L.-C.); (A.G.); (M.I.M.)
| | - Elena López-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Asturias, Spain; (D.Á.); (E.L.-C.); (A.G.); (M.I.M.)
| | - Arturo Guerrero
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Asturias, Spain; (D.Á.); (E.L.-C.); (A.G.); (M.I.M.)
| | - Lucía Riera
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-Universidad de Oviedo-Principado de Asturias, Avenida de la Vega 4-6, 33940 El Entrego, Spain; (L.R.); (J.P.)
| | - Julio Pérez
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-Universidad de Oviedo-Principado de Asturias, Avenida de la Vega 4-6, 33940 El Entrego, Spain; (L.R.); (J.P.)
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Jesús Díaz
- Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Avenida de la Universidad s/n, 10071 Cáceres, Extremadura, Spain;
| | - M. Isabel Menéndez
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Asturias, Spain; (D.Á.); (E.L.-C.); (A.G.); (M.I.M.)
| | - Ramón López
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Asturias, Spain; (D.Á.); (E.L.-C.); (A.G.); (M.I.M.)
- Correspondence: ; Tel.: +34-985-102-967
| |
Collapse
|