1
|
Liao J, Tong J, Liu L, Ouyang L, Luo R. Construction of N-Aryl-Substituted Pyrrolidines by Successive Reductive Amination of Diketones via Transfer Hydrogenation. Molecules 2024; 29:2565. [PMID: 38893441 PMCID: PMC11173526 DOI: 10.3390/molecules29112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
N-aryl-substituted pyrrolidines are important moieties widely found in bioactive substances and drugs. Herein, we present a practical reductive amination of diketones with anilines for the synthesis of N-aryl-substituted pyrrolidines in good to excellent yields. In this process, the N-aryl-substituted pyrrolidines were furnished via successive reductive amination of diketones via iridium-catalyzed transfer hydrogenation. The scale-up performance, water as a solvent, simple operation, as well as derivation of drug molecules showcased the potential application in organic synthesis.
Collapse
Affiliation(s)
- Jianhua Liao
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; (J.L.); (J.T.); (L.L.); (L.O.)
| | - Jinghui Tong
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; (J.L.); (J.T.); (L.L.); (L.O.)
| | - Liang Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; (J.L.); (J.T.); (L.L.); (L.O.)
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; (J.L.); (J.T.); (L.L.); (L.O.)
| | - Renshi Luo
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; (J.L.); (J.T.); (L.L.); (L.O.)
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
2
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Gao Y, Hong G, Yang BM, Zhao Y. Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chem Soc Rev 2023; 52:5541-5562. [PMID: 37519093 DOI: 10.1039/d3cs00424d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Direct substitution of readily available alcohols is recognized as a key research area in green chemical synthesis. Starting from simple racemic secondary alcohols, the achievement of catalytic enantioconvergent transformations of the substrates will be highly desirable for efficient access to valuable enantiopure compounds. To accomplish such attractive yet challenging transformations, the strategy of the enantioconvergent borrowing hydrogen methodology has proven to be uniquely effective and versatile. This review aims to provide an overview of the impressive progress made on this topic of research that has only thrived in the past decade. In particular, the conversion of racemic secondary alcohols to enantioenriched chiral amines, N-heterocycles, higher-order alcohols and ketones will be discussed in detail.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Republic of Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
| |
Collapse
|
4
|
Larduinat M, François J, Jacolot M, Popowycz F. Ir-Catalyzed Synthesis of Functionalized Pyrrolidines and Piperidines Using the Borrowing Hydrogen Methodology. J Org Chem 2023. [PMID: 37134228 DOI: 10.1021/acs.joc.3c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Ir(III)-catalyzed synthesis of 3-pyrrolidinols and 4-piperidinols combining 1,2,4-butanetriol or 1,3,5-pentanetriol with primary amines was carried out. This borrowing hydrogen methodology was further extended to the sequential diamination of triols leading to amino-pyrrolidines and amino-piperidines.
Collapse
Affiliation(s)
- Malvina Larduinat
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Jordan François
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 rue Victor Grignard, 69621 Villeurbanne Cedex, France
| |
Collapse
|
5
|
Recent Advances in Synthetic Routes to Azacycles. Molecules 2023; 28:molecules28062737. [PMID: 36985708 PMCID: PMC10054516 DOI: 10.3390/molecules28062737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
A heterocycle is an important structural scaffold of many organic compounds found in pharmaceuticals, materials, agrochemicals, and biological processes. Azacycles are one of the most common motifs of a heterocycle and have a variety of applications, including in pharmaceuticals. Therefore, azacycles have received significant attention from scientists and a variety of methods of synthesizing azacycles have been developed because their efficient synthesis plays a vital role in the production of many useful compounds. In this review, we summarize recent approaches to preparing azacycles via different methods as well as describe plausible reaction mechanisms.
Collapse
|
6
|
Liu Y, Diao H, Hong G, Edward J, Zhang T, Yang G, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. J Am Chem Soc 2023; 145:5007-5016. [PMID: 36802615 DOI: 10.1021/jacs.2c09958] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present an enantioconvergent access to chiral N-heterocycles directly from simple racemic diols and primary amines, through a highly economical borrowing hydrogen annulation. The identification of a chiral amine-derived iridacycle catalyst was the key for achieving high efficiency and enantioselectivity in the one-step construction of two C-N bonds. This catalytic method enabled a rapid access to a wide range of diversely substituted enantioenriched pyrrolidines including key precursors to valuable drugs such as aticaprant and MSC 2530818.
Collapse
Affiliation(s)
- Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Jonathan Edward
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| |
Collapse
|
7
|
Chniti S, Kollár L, Bényei A, Dörnyei Á, Takács A. Highly Chemoselective One‐Step Synthesis of Novel
N
‐Substituted‐Pyrrolo[3,4‐b]quinoline‐1,3‐diones via Palladium‐Catalyzed Aminocarbonylation/Carbonylative Cyclisation Sequence. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Sami Chniti
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
- János Szentágothai Research Centre University of Pécs Ifjúság útja 20. 7624 Pécs Hungary
- ELKH-PTE Research Group for Selective Chemical Syntheses Ifjúság útja 6. 7624 Pécs Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry University of Debrecen Egyetem tér 1. H-4032 Pécs Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
| | - Attila Takács
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
- János Szentágothai Research Centre University of Pécs Ifjúság útja 20. 7624 Pécs Hungary
| |
Collapse
|
8
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
9
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
10
|
Hall CJJ, Marriott IS, Christensen KE, Day AJ, Goundry WRF, Donohoe TJ. Extension of hydrogen borrowing alkylation reactions for the total synthesis of (-)-γ-lycorane. Chem Commun (Camb) 2022; 58:4966-4968. [PMID: 35348143 DOI: 10.1039/d2cc01248k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The total synthesis of (-)-γ-lycorane (10 steps) and synthesis of (±)-γ-lycorane (8 steps) was completed from cyclohexenone. A new two step hydrogen borrowing alkylation of an aziridinyl alcohol, coupled with a Ph* (Me5C6) deprotection/cyclisation procedure was developed for de novo formation of the fused 6,5 heterocyclic ring. This work is one of the first examples of hydrogen borrowing C-C bond formation being used as a key step in a total synthesis project.
Collapse
Affiliation(s)
- Christopher J J Hall
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Indi S Marriott
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Aaron J Day
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - William R F Goundry
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
11
|
Tran VH, Hong WP, Kim H. Facile titanium(
IV
) chloride and
TBD‐mediated
synthesis of
N
‐aryl‐substituted
azacycles from arylhydrazines. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital Jeonju Republic of Korea
| | - Wan Pyo Hong
- Department of Chemistry, Gachon University Seongnam‐si Gyeongi‐do Republic of Korea
| | - Hee‐Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital Jeonju Republic of Korea
| |
Collapse
|
12
|
Tran VH, Kim HK. Facile tin(II)-catalyzed synthesis of N-heterocycles from dicarboxylic acids and arylamines. Org Biomol Chem 2022; 20:2881-2888. [PMID: 35318478 DOI: 10.1039/d2ob00330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel efficient transformation reaction of dicarboxylic acids into N-aryl-substituted azacycles is described. In this synthetic procedure, both catalytic SnCl2 and phenylsilane were used as crucial reagents for reaction of arylamines with dicarboxylic acids to produce the desired azacycles. Using this SnCl2-catalyzed synthetic method, various N-aryl-substituted azacycles were successfully prepared from arylamines with dicarboxylic acids in high yield. This practical synthetic method using catalytic SnCl2 can provide a useful approach for preparation of the desired azacycle products from many available dicarboxylic acid starting materials.
Collapse
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| |
Collapse
|
13
|
Tomar R, Bhattacharya D, Arulananda Babu S. Direct lactamization of β‐arylated δ‐aminopentanoic acid carboxamides: En route to 4‐aryl‐ 2‐piperidones, piperidines, antituberculosis molecule Q203 (Telacebec) and its analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
14
|
Bottari G, Afanasenko A, Castillo‐Garcia AA, Feringa BL, Barta K. Synthesis of Enantioenriched Amines by Iron‐Catalysed Amination of Alcohols Employing at Least One Achiral Substrate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giovanni Bottari
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anastasiia Afanasenko
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | | | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katalin Barta
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Institute of Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
15
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
16
|
Bera S, Kabadwal LM, Banerjee D. Recent advances in transition metal-catalyzed (1, n) annulation using (de)-hydrogenative coupling with alcohols. Chem Commun (Camb) 2021; 57:9807-9819. [PMID: 34486592 DOI: 10.1039/d1cc03404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(1,n) annulation reactions using (de)-hydrogenative coupling with alcohols or diols represent a straightforward technique for the synthesis of cyclic moieties. Utilization of such renewable resources for chemical transformations in a one-pot manner is the main focus, which avoids generation of stoichiometric waste. Application of such (1,n) annulation approaches drives the catalysis research in a more sustainable way and generates dihydrogen and water as by-products. This feature article highlights the recent (from 2015 to March 2021) progress in the synthesis of stereo-selective cycloalkanes and cycloalkenes, saturated and unsaturated N-heterocycles (cyclic amine, imide, lactam, tetrahydro β-carboline, quinazoline, quinazolinone, 1,3,5-triazines etc.) and other N-heterocycles with the formation of multiple bonds in a one pot operation. Mechanistic studies, new catalytic approaches, and synthetic applications including drug synthesis and post-drug derivatization, scope, and limitations are discussed.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
17
|
Ghosh A, Dey R, Banerjee P. Relieving the stress together: annulation of two different strained rings towards the formation of biologically significant heterocyclic scaffolds. Chem Commun (Camb) 2021; 57:5359-5373. [PMID: 33969833 DOI: 10.1039/d1cc00998b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small carbo- and heterocycles have become versatile building blocks owing to their intrinsic ring strain and ease of synthesis. However, the traditional approaches of heterocycle synthesis involved the combination of one strained-carbocycle or heterocycle with one unsaturated molecule. On the contrary, there is an exciting possibility of combining two different strained rings to furnish varieties of heterocycles, where one of the strained rings can act as a valuable alternative to the unsaturated molecule. These strategies are also useful to access multi-functionalized rings. Despite these distinctive synthetic benefits, this chemistry has not drawn considerable attention of the community. In this minireview, we explicitly choose this topic to reveal the unexplored possibilities with these different strained rings. This minireview provides comprehensive details with the mechanistic rationale about the reactivity of these pairs of small rings when they are allowed to react together in the presence of different Lewis acids. Subsequently, it will also open a new avenue for heterocycle synthesis.
Collapse
Affiliation(s)
- Asit Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Raghunath Dey
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
18
|
Lyu H, Kevlishvili I, Yu X, Liu P, Dong G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 2021; 372:175-182. [PMID: 33833121 DOI: 10.1126/science.abg5526] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Mild methods to cleave the carbon-oxygen (C-O) bond in alkyl ethers could simplify chemical syntheses through the elaboration of these robust, readily available precursors. Here we report that dibromoboranes react with alkyl ethers in the presence of a nickel catalyst and zinc reductant to insert boron into the C-O bond. Subsequent reactivity can effect oxygen-to-nitrogen substitution or one-carbon homologation of cyclic ethers and more broadly streamline preparation of bioactive compounds. Mechanistic studies reveal a cleavage-then-rebound pathway via zinc/nickel tandem catalysis.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ilia Kevlishvili
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xuan Yu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Frost JR, Cheong CB, Akhtar WM, Caputo DF, Christensen KE, Stevenson NG, Donohoe TJ. Hydrogen borrowing catalysis using 1° and 2° alcohols: Investigation and scope leading to α and β branched products. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Hall CJJ, Goundry WRF, Donohoe TJ. Hydrogen-Borrowing Alkylation of 1,2-Amino Alcohols in the Synthesis of Enantioenriched γ-Aminobutyric Acids. Angew Chem Int Ed Engl 2021; 60:6981-6985. [PMID: 33561302 PMCID: PMC8048514 DOI: 10.1002/anie.202100922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/22/2022]
Abstract
For the first time we have been able to employ enantiopure 1,2-amino alcohols derived from abundant amino acids in C-C bond-forming hydrogen-borrowing alkylation reactions. These reactions are facilitated by the use of the aryl ketone Ph*COMe. Racemisation of the amine stereocentre during alkylation can be prevented by the use of sub-stoichiometric base and protection of the nitrogen with a sterically hindered triphenylmethane (trityl) or benzyl group. The Ph* and trityl groups are readily cleaved in one pot to give γ-aminobutyric acid (GABA) products as their HCl salts without further purification. Both steps may be performed in sequence without isolation of the hydrogen-borrowing intermediate, removing the need for column chromatography.
Collapse
Affiliation(s)
- Christopher J. J. Hall
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - William R. F. Goundry
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaMacclesfieldSK10 2NAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
21
|
Hydrogen‐Borrowing Alkylation of 1,2‐Amino Alcohols in the Synthesis of Enantioenriched γ‐Aminobutyric Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Kwok T, Hoff O, Armstrong RJ, Donohoe TJ. Control of Absolute Stereochemistry in Transition-Metal-Catalysed Hydrogen-Borrowing Reactions. Chemistry 2020; 26:12912-12926. [PMID: 32297370 PMCID: PMC7589454 DOI: 10.1002/chem.202001253] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Hydrogen-borrowing catalysis represents a powerful method for the alkylation of amine or enolate nucleophiles with non-activated alcohols. This approach relies upon a catalyst that can mediate a strategic series of redox events, enabling the formation of C-C and C-N bonds and producing water as the sole by-product. In the majority of cases these reactions have been employed to target achiral or racemic products. In contrast, the focus of this Minireview is upon hydrogen-borrowing-catalysed reactions in which the absolute stereochemical outcome of the process can be controlled. Asymmetric hydrogen-borrowing catalysis is rapidly emerging as a powerful approach for the synthesis of enantioenriched amine and carbonyl containing products and examples involving both C-N and C-C bond formation are presented. A variety of different approaches are discussed including use of chiral auxiliaries, asymmetric catalysis and enantiospecific processes.
Collapse
Affiliation(s)
- Timothy Kwok
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Oskar Hoff
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | | | | |
Collapse
|