1
|
Mitxelena-Iribarren O, Bujanda X, Zabalza L, Alkorta J, Lopez-Elorza A, Gracia R, Dupin D, Arana S, Ruiz-Cabello J, Mujika M. Design and fabrication of a microfluidic system with embedded circular channels for rotary cell culture. Biotechnol J 2023:e2300004. [PMID: 37100765 DOI: 10.1002/biot.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
The development of functional blood vessels is today a fundamental pillar in the evaluation of new therapies and diagnostic agents. This article describes the manufacture and subsequent functionalization, by means of cell culture, of a microfluidic device with a circular section. Its purpose is to simulate a blood vessel in order to test new treatments for pulmonary arterial hypertension. The manufacture was carried out using a process in which a wire with a circular section determines the dimensions of the channel. To fabricate the blood vessel, cells were seeded under rotary cell culture to obtain a homogeneous cell seeding in the inner wall of the devices. This is a simple and reproducible method that allows the generation of blood vessel models in vitro.
Collapse
Affiliation(s)
- Oihane Mitxelena-Iribarren
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Xabier Bujanda
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Laura Zabalza
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Janire Alkorta
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Aitziber Lopez-Elorza
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain
| | - Sergio Arana
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE-Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Maite Mujika
- CEIT-Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Universidad de Navarra, Tecnun, Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Bennour I, Ramos MN, Nuez-Martínez M, Xavier JAM, Buades AB, Sillanpää R, Teixidor F, Choquesillo-Lazarte D, Romero I, Martinez-Medina M, Viñas C. Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical-chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans 2022; 51:7188-7209. [PMID: 35470838 DOI: 10.1039/d2dt01015a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Na[3,3'-Fe(8-I-1,2-C2B9H10)2] and Na[2,2'-M(1,7-C2B9H11)] (M = Co3+, Fe3+) small molecules are synthesized and the X-ray structures of [(H3O)(H2O)5][2,2'-Co(1,7-C2B9H11)2] and [Cs(MeCN)][8,8'-I2-Fe(1,2 C2B9H10)2], both displaying a transoid conformation of the [M(C2B9)2]- framework, are reported. Importantly, the supramolecular structure of [(H3O)(H2O)5][2,2'-Co(1,7-C2B9H11)2] presents 2D layers leading to a lamellar arrangement of the anions while the cation layers form polymeric water rings made of six- and four-membered rings of water molecules connected via OH⋯H hydrogen bonds; B-H⋯O contacts connect the cationic and anionic layers. Herein, we highlight the influence of the ligand isomers (ortho-/meta-), the metal effect (Co3+/Fe3+) on the same isomer, as well as the influence of the presence of the iodine atoms on the physical-chemical and biological properties of these molecules as antimicrobial agents to tackle antibiotic-resistant bacteria, which were tested with four Gram-positive bacteria, five Gram-negative bacteria, and three Candida albicans strains that have been responsible for human infections. We have demonstrated an antimicrobial effect against Candida species (MIC of 2 and 3 nM for Na[3,3'-Co(8-I-1,2-C2B9H10)2] and Na[2,2'-Co(1,7-C2B9H11)2], respectively), and against Gram-positive and Gram-negative bacteria, including multiresistant MRSA strains (MIC of 6 nM for Na[3,3'-Co(8-I-1,2-C2B9H10)2]). The selectivity index for antimicrobial activity of Na[3,3'-Co(1,2-C2B9H11)2] and Na[3,3'-Co(8-I-1,2-C2B9H10)2] compounds is very high (165 and 1180, respectively), which reveals that these small anionic metallacarborane molecules may be useful to tackle antibiotic-resistant bacteria. Moreover, we have demonstrated that the outer membrane of Gram-negative bacteria constitutes an impermeable barrier for the majority of these compounds. Nonetheless, the addition of two iodine groups in the structure of the parent Na[3,3'-Co(1,2-C2B9H11)2] had an improved effect (3-7 times) against Gram-negative bacteria. Possibly the changes in their physical-chemical properties make the meta-isomers and the ortho-di-iodinated small molecules more permeable for crossing this barrier. It should be emphasized that the most active metallabis(dicarbollide) small molecules are both transoid conformers in contrast to the ortho- [3,3'-Co(1,2-C2B9H11)2]- that is cisoid. The fact that these small molecules cross the mammalian membrane and have antimicrobial properties but low toxicity for mammalian cells (high selectivity index, SI) represents a promising tool to treat infectious intracellular bacteria. Since there is an urgent need for antibiotic discovery and development, this study represents a relevant advance in the field.
Collapse
Affiliation(s)
- Ines Bennour
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - M Núria Ramos
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain
| | - Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jewel Ann Maria Xavier
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Ana B Buades
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Reijo Sillanpää
- Dept. of Chemistry, University of Jyväskylä. FIN-40014, Jyvaskyla, Finland
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Armilla, 18100 Granada, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, C/M. Aurèlia Campmany, 69, E-17003 Girona, Spain
| | - Margarita Martinez-Medina
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Armilla, 18100 Granada, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
3
|
Nuez-Martinez M, Pinto CIG, Guerreiro JF, Mendes F, Marques F, Muñoz-Juan A, Xavier JAM, Laromaine A, Bitonto V, Protti N, Crich SG, Teixidor F, Viñas C. Cobaltabis(dicarbollide) ([ o-COSAN] -) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers (Basel) 2021; 13:6367. [PMID: 34944987 PMCID: PMC8699431 DOI: 10.3390/cancers13246367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.
Collapse
Affiliation(s)
- Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Catarina I. G. Pinto
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Joana F. Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal; (C.I.G.P.); (J.F.G.); (F.M.); (F.M.)
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Jewel Ann Maria Xavier
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (V.B.); (S.G.C.)
| | | | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (V.B.); (S.G.C.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain; (M.N.-M.); (A.M.-J.); (J.A.M.X.); (A.L.); (F.T.)
| |
Collapse
|
4
|
Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021; 16:5923-5935. [PMID: 34475757 PMCID: PMC8405882 DOI: 10.2147/ijn.s316767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Non-invasive imaging methodologies, especially nuclear imaging techniques, have undergone an extraordinary development over the last years. Interest in the development of innovative tracers has prompted the emergence of new nanomaterials with a focus on nuclear imaging and therapeutical applications. Among others, organic nanoparticles are of the highest interest due to their translational potential related to their biocompatibility and biodegradability. Our group has developed a promising new type of biocompatible nanomaterials, sphingomyelin nanoemulsions (SNs). The aim of this study is to explore the potential of SNs for nuclear imaging applications. Methods Ready-to-label SNs were prepared by a one-step method using lipid derivative chelators and characterized in terms of their physicochemical properties. Stability was assessed under storage and after incubation with human serum. Chelator-functionalized SNs were radiolabeled with 67Ga and 68Ga, and the radiochemical yield (RCY), radiochemical purity (RCP) and radiochemical stability (RCS) were determined. Finally, the biodistribution of 67/68Ga-SNs was evaluated in vivo and ex vivo. Results Here, we describe a simple and mild one-step method for fast and efficient radiolabeling of SNs with 68Ga and 67Ga radioisotopes. In vivo experiments showed that 67/68Ga-SNs can efficiently and indistinctly be followed up by PET and SPECT. Additionally, we proved that the biodistribution of the 67/68Ga-SNs can be conveniently modulated by modifying the surface properties of different hydrophilic polymers, and therefore the formulation can be further adapted to the specific requirements of different biomedical applications. Conclusion This work supports 67/68Ga-SNs as a novel probe for nuclear imaging with tunable biodistribution and with great potential for the future development of nanotheranostics.
Collapse
Affiliation(s)
- Sandra Díez-Villares
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain.,Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain.,University of Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| | - Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, 28029, Spain
| | - Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, E-08034, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, E-08034, Spain.,Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Fernando Herranz
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, 28029, Spain.,NanoMedMol Group, Instituto de Química Medica (IQM),Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28006, Spain
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, 15706, Spain.,Biomedical Research Networking Center on Oncology (CIBERONC), Madrid, 28029, Spain
| |
Collapse
|
5
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
6
|
Navascuez M, Gracia R, Marradi M, Díaz N, Rodríguez J, Loinaz I, López-Gállego F, Llop J, Dupin D. Interfacial activity of modified dextran polysaccharide to produce enzyme-responsive oil-in-water nanoemulsions. Chem Commun (Camb) 2021; 57:4540-4543. [PMID: 33956004 DOI: 10.1039/d1cc00819f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the evaluation of dextran (DXT) derivatives bearing hydrophobic or hydrophilic functional groups as stabilisers of oil-in-water (O/W) emulsions. All investigated modifications conferred interfacial activity to produce stable O/W emulsions, methacrylate(MA)-functionalised DXT being the most promising stabiliser. A minimum amount of MA was required to obtain stable O/W nanoemulsions, which could be degraded in the presence of lipases.
Collapse
Affiliation(s)
- Marcos Navascuez
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain. and CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Guipuzcoa, Spain
| | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Marco Marradi
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain. and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy
| | - Natividad Díaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Javier Rodríguez
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| | - Fernando López-Gállego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Guipuzcoa, Spain and IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Guipuzcoa, Spain and Centro de Investigación Biomédica en Red, Enfermedades Respiratorias - CIBERES, Spain
| | - Damien Dupin
- CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Miramón Pasealekua, 196, Donostia-San Sebastián 20014, Spain.
| |
Collapse
|