1
|
Qiu D, Memon WA, Lai H, Wang Y, Li H, Zheng N, He F. Synergistic Design of Imidazole-Based Polymer Donors for Enhanced Organic Solar Cell Efficiency. J Phys Chem Lett 2024; 15:10858-10865. [PMID: 39436830 DOI: 10.1021/acs.jpclett.4c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Within the realm of organic solar cells (OSCs), designing new high-efficiency polymer donors remains a significant challenge. Achieving the right balance in polymer backbone planarity is crucial: excessive planarity can lead to undesirable aggregation, while insufficient planarity can hinder the charge transport efficiency. In this study, we designed and synthesized an imidazole-based acceptor (A) unit for the first time and then investigated the impact of backbone planarity on charge transport capacity and power conversion efficiency (PCE). Backbone planarity was precisely tuned by incorporating isomeric alkyl chains on the thiophene π-bridge, resulting in four distinct polymer donors: MZC8-F, MZC8-Cl, MZEH-F, and MZEH-Cl. The results showed that the steric hindrance from the EH-branched alkyl chain induced backbone distortion and caused a blue-shift in the absorption spectrum. MZEH-Cl, with its poor planarity and excessively low HOMO energy level, achieved a PCE of just 7.6%. Through careful modulation, MZC8-Cl emerged as the most efficient, with a remarkable PCE of 17.3%, setting a new benchmark for imidazole-based polymer donors. This study not only deepens the understanding of the role of polymer backbone planarity in photovoltaic performance but also lays the groundwork for developing high-efficiency polymer donors.
Collapse
Affiliation(s)
- Dongsheng Qiu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Zhou D, Wang Y, Yang S, Quan J, Deng J, Wang J, Li Y, Tong Y, Wang Q, Chen L. Recent Advances of Benzodithiophene-Based Donor Materials for Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306854. [PMID: 37828639 DOI: 10.1002/smll.202306854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yanyan Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jiawei Deng
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Qian Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
3
|
Wang CH, Busireddy MR, Huang SC, Nie H, Liu YS, Lai BY, Meng LH, Chuang WT, Scharber MC, Chen JT, Hsu CS. Phenoxy Group-Containing Asymmetric Non-Fullerene Acceptors Achieved Higher VOC over 1.0 V through Alkoxy Side-Chain Engineering for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58683-58692. [PMID: 38073043 DOI: 10.1021/acsami.3c13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Alkoxy side chain engineering on the β-position of the thienothiophene units of Y6 derivatives plays a vital role in improving photovoltaic performances with simultaneously increasing open-circuit voltage (Voc) and fill factor (FF). In this work, we prepared a series of asymmetric non-fullerene acceptors (NFAs) by introducing alkoxy side chains and phenoxy groups on the state-of-the-art Y6-derivative BTP-BO-4F. For the comparison, 2O-BO-4F with a symmetric alkoxy side chain on the outer thiophene units and BTP-PBO-4F with an asymmetric N-attached phenoxy alkyl chain on the pyrrole ring are synthesized from BTP-BO-4F. Thereafter, we construct four asymmetric NFAs by introducing different lengths of linear/branched alkoxy chains on the β-position of the thienothiophene units of BTP-PBO-4F. The resulting NFAs, named L10-PBO, L12-PBO, B12-PBO, and B16-PBO (L = linear and B = branched alkoxy side chains), are collectively called OR-PBO-series. Unexpectedly, all OR-PBO NFAs exhibit strong edge-on molecular packing and weaker π-π interactions in the film state, which diminish the charge transfer in organic solar cell (OSC) devices. As a consequence, the optimal devices of OR-PBO-based binary blends show poor photovoltaic performances [power conversion efficiency (PCE) = 6.52-9.62%] in comparison with 2O-BO-4F (PCE = 12.42%) and BTP-PBO-4F (PCE = 15.30%) reference blends. Nevertheless, the OR-PBO-based binary devices show a higher Voc and smaller Vloss. Especially, B12-PBO- and B16-PBO-based devices achieve Voc over 1.00 V, which is the highest value of Y-series OSC devices to the best of our knowledge. Therefore, by utilizing higher Voc of OR-PBO binary blends, B12-PBO and B16-PBO are incorporated into the PM6:BTP-PBO-4F-based binary blend and fabricated ternary devices. As a result, the PM6:BTP-PBO-4F:B12-PBO ternary device delivers the best PCE of 15.60% with an increasing Voc and FF concurrently.
Collapse
Affiliation(s)
- Chuan-Hsin Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Manohar Reddy Busireddy
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Sheng-Ci Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Hebing Nie
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Yu-Shuo Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Bing-Yong Lai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Ling-Huan Meng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30073, Taiwan
| | - Markus C Scharber
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, Linz 4040, Austria
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 300093, Taiwan
| |
Collapse
|
4
|
Rimmele M, Qiao Z, Panidi J, Furlan F, Lee C, Tan WL, McNeill CR, Kim Y, Gasparini N, Heeney M. A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells. MATERIALS HORIZONS 2023; 10:4202-4212. [PMID: 37599602 DOI: 10.1039/d3mh00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The dramatic improvement of the PCE (power conversion efficiency) of organic photovoltaic devices in the past few years has been driven by the development of new polymer donor materials and non-fullerene acceptors (NFAs). In the design of such materials synthetic scalability is often not considered, and hence complicated synthetic protocols are typical for high-performing materials. Here we report an approach to readily introduce a variety of solubilizing groups into a benzo[c][1,2,5]thiadiazole acceptor comonomer. This allowed for the ready preparation of a library of eleven donor polymers of varying side chains and comonomers, which facilitated a rapid screening of properties and photovoltaic device performance. Donor FO6-T emerged as the optimal material, exhibiting good solubility in chlorinated and non-chlorinated solvents and achieving 15.4% PCE with L8BO as the acceptor (15.2% with Y6) and good device stability. FO6-T was readily prepared on the gram scale, and synthetic complexity (SC) analysis highlighted FO6-T as an attractive donor polymer for potential large scale applications.
Collapse
Affiliation(s)
- Martina Rimmele
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Zhuoran Qiao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Julianna Panidi
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Francesco Furlan
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Chulyeon Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Sciences and Engineering Division (PSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
Hernández-Ortiz OJ, Castro-Monter D, Rodríguez Lugo V, Moggio I, Arias E, Reyes-Valderrama MI, Veloz-Rodríguez MA, Vázquez-García RA. Synthesis and Study of the Optical Properties of a Conjugated Polymer with Configurational Isomerism for Optoelectronics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2908. [PMID: 37049202 PMCID: PMC10096395 DOI: 10.3390/ma16072908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A π-conjugated polymer (PBQT) containing bis-(2-ethylhexyloxy)-benzo [1,2-b'] bithiophene (BDT) units alternated with a quinoline-vinylene trimer was obtained by the Stille reaction. The chemical structure of the polymer was verified by nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR), and mass spectroscopy (MALDI-TOF). The intrinsic photophysical properties of the solution were evaluated by absorption and (static and dynamic) fluorescence. The polymer PBQT exhibits photochromism with a change in absorption from blue (449 nm) to burgundy (545 nm) and a change in fluorescence emission from green (513 nm) to orange (605 nm) due to conformational photoisomerization from the trans to the cis isomer, which was supported by theoretical calculations DFT and TD-DFT. This optical response can be used in optical sensors, security elements, or optical switches. Furthermore, the polymer forms spin-coated films with absorption properties that cover the entire visible range, with a maximum near the solar emission maximum. The frontier molecular orbitals, HOMO and LUMO, were calculated by cyclic voltammetry, and values of -5.29 eV and -3.69, respectively, and a bandgap of 1.6 eV were obtained, making this material a semiconductor with a good energetic match. These properties could suggest its use in photovoltaic applications.
Collapse
Affiliation(s)
- Oscar Javier Hernández-Ortiz
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México 07340, Ciudad de México, Mexico
| | - Damaris Castro-Monter
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Ventura Rodríguez Lugo
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Saltillo 25294, Coahuila, Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Saltillo 25294, Coahuila, Mexico
| | - María Isabel Reyes-Valderrama
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - María Aurora Veloz-Rodríguez
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Rosa Angeles Vázquez-García
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| |
Collapse
|
6
|
Yoon SJ, Choi KS, Zhong L, Jeong S, Cho Y, Jung S, Yoon SE, Kim JH, Yang C. Dithieno[3,2-f:2',3'-h]quinoxaline-Based Photovoltaic-Thermoelectric Dual-Functional Energy-Harvesting Wide-Bandgap Polymer and its Backbone Isomer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300507. [PMID: 37010009 DOI: 10.1002/smll.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Both organic solar cells (OSCs) and organic thermoelectrics (OTEs) are promising energy-harvesting technologies for future renewable and sustainable energy sources. Among various material systems, organic conjugated polymers are an emerging material class for the active layers of both OSCs and OTEs. However, organic conjugated polymers showing both OSC and OTE properties are rarely reported because of the different requirements toward the OSCs and OTEs. In this study, the first simultaneous investigation of the OSC and OTE properties of a wide-bandgap polymer PBQx-TF and its backbone isomer iso-PBQx-TF are reported. All wide-bandgap polymers form face-on orientations in a thin-film state, but PBQx-TF has more of a crystalline character than iso-PBQx-TF, originating from the backbone isomeric structures of α,α '/β,β '-connection between two thiophene rings. Additionally, iso-PBQx-TF shows inactive OSC and poor OTE properties, probably because of the absorption mismatch and unfavorable molecular orientations. At the same time, PBQx-TF exhibits both decent OSC and OTE performances, indicating that it satisfies the requirements for both OSCs and OTEs. This study presents the OSC and OTE dual-functional energy-harvesting wide-bandgap polymer and the future research directions for hybrid energy-harvesting materials.
Collapse
Affiliation(s)
- Seong-Jun Yoon
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Kang Suh Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Lian Zhong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Yongjoon Cho
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sungwoo Jung
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Sang Eun Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
7
|
Fureraj I, Budkina DS, Vauthey E. Torsional disorder and planarization dynamics: 9,10-bis(phenylethynyl)anthracene as a case study. Phys Chem Chem Phys 2022; 24:25979-25989. [PMID: 36263805 PMCID: PMC9627944 DOI: 10.1039/d2cp03909e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 06/14/2023]
Abstract
Conjugated molecules with phenylethynyl building blocks are usually characterised by torsional disorder at room temperature. They are much more rigid in the electronic excited state due to conjugation. As a consequence, the electronic absorption and emission spectra do not present a mirror-image relationship. Here, we investigate how torsional disorder affects the excited state dynamics of 9,10-bis(phenylethynyl)anthracene in solvents of different viscosities and in polymers, using both stationary and ultrafast electronic spectroscopies. Temperature-dependent measurements reveal inhomogeneous broadening of the absorption spectrum at room temperature. This is confirmed by ultrafast spectroscopic measurements at different excitation wavelengths. Red-edge irradiation excites planar molecules that return to the ground state without significant structural dynamics. In this case, however, re-equilibration of the torsional disorder in the ground state can be observed. Higher-energy irradiation excites torsionally disordered molecules, which then planarise, leading to important spectral dynamics. The latter is found to occur partially via viscosity-independent inertial motion, whereas it is purely diffusive in the ground state. This dissimilarity is explained in terms of the steepness of the potential along the torsional coordinate.
Collapse
Affiliation(s)
- Ina Fureraj
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Darya S Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
8
|
Bulut U, Öykü Sayın V, Altin Y, Can Cevher Ş, Cirpan A, Celik Bedeloglu A, Soylemez S. A Flexible Carbon Nanofiber and Conjugated Polymer-Based Electrode for Glucose Sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Jessop IA, Cutipa J, Perez Y, Saldías C, Fuentealba D, Tundidor-Camba A, Terraza CA, Camarada MB, Angel FA. New Benzotriazole and Benzodithiophene-Based Conjugated Terpolymer Bearing a Fluorescein Derivative as Side-Group: In-Ternal Förster Resonance Energy Transfer to Improve Organic Solar Cells. Int J Mol Sci 2022; 23:ijms232112901. [PMID: 36361692 PMCID: PMC9657233 DOI: 10.3390/ijms232112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
A new benzodithiophene and benzotriazole-based terpolymer bearing a fluorescein derivative as a side group was synthesized and studied for organic solar cell (OSC) applications. This side group was covalently bounded to the backbone through an n-hexyl chain to induce the intramolecular Förster Resonance Energy Transfer (FRET) process and thus improve the photovoltaic performance of the polymeric material. The polymer exhibited good solubility in common organic chlorinated solvents as well as thermal stability (TDT10% > 360 °C). Photophysical measurements demonstrated the occurrence of the FRET phenomenon between the lateral group and the terpolymer. The terpolymer exhibited an absorption band centered at 501 nm, an optical bandgap of 2.02 eV, and HOMO and LUMO energy levels of −5.30 eV and −3.28 eV, respectively. A preliminary study on terpolymer-based OSC devices showed a low power-conversion efficiency (PCE) but a higher performance than devices based on an analogous polymer without the fluorescein derivative. These results mean that the design presented here is a promising strategy to improve the performance of polymers used in OSCs.
Collapse
Affiliation(s)
- Ignacio A. Jessop
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá, P.O. Box 7-D, Arica 1000007, Chile
- Correspondence: (I.A.J.); (F.A.A.)
| | - Josefa Cutipa
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá, P.O. Box 7-D, Arica 1000007, Chile
| | - Yasmín Perez
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá, P.O. Box 7-D, Arica 1000007, Chile
| | - Cesar Saldías
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Denis Fuentealba
- Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alain Tundidor-Camba
- Research Laboratory for Organic Polymers (RLOP), Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, P.O. Box 306, Post 22, Santiago 7820436, Chile
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María B. Camarada
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Felipe A. Angel
- UC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Química Inorgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (I.A.J.); (F.A.A.)
| |
Collapse
|
10
|
Liu BW, Li ZR, Yan LP, Guo JB, Luo Q, Ma CQ. ZnO Surface Passivation with Glucose Enables Simultaneously Improving Efficiency and Stability of Inverted Polymer: Non-fullerene Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Busireddy MR, Chen TW, Huang SC, Su YJ, Wang YM, Chuang WT, Chen JT, Hsu CS. PBDB-T-Based Binary-OSCs Achieving over 15.83% Efficiency via End-Group Functionalization and Alkyl-Chain Engineering of Quinoxaline-Containing Non-Fullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41264-41274. [PMID: 36041037 DOI: 10.1021/acsami.2c09614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular backbone modification, alkyl-chain engineering, and end-group functionalization are promising strategies for developing efficient high-performance non-fullerene acceptors (NFAs). Herein, two new NFAs, named TPQ-eC7-4F and TPQ-eC7-4Cl, are designed and synthesized. Both molecules have linear octyl chains on fused quinoxaline-containing heterocyclics as the central backbone and difluorinated (2F)/dichlorinated (2Cl) 1,1-dicyanomethylene-3-indanone (IC) as the end-group units. The influences of alkyl-chains on fused quinoxaline backbone and different halogenated end-groups on optical, electrochemical, and photovoltaic performances of organic solar cells (OSCs) are studied. In comparison with TPQ-eC7-4Cl, TPQ-eC7-4F exhibits blue-shifted absorptions with higher molar extinction coefficients in the film state as well as in the donor/acceptor (D/A) blend film state and up-shifting lowest unoccupied molecular orbital (LUMO) energy level. As a result, the OSC devices based on the PBDB-T:TPQ-eC7-4F display an outstanding power conversion efficiency (PCE) of 15.83% with a simultaneously increased open-circuit voltage (Voc) of 0.85 V, a short-circuit current-density (Jsc) of 25.89 mA cm-2, and a fill factor (FF) of 72.20%, whereas the PBDB-T:TPQ-eC7-4Cl-based OSC device shows a decent PCE of 14.48% with a Voc of 0.84 V, a Jsc of 24.56 mA/cm2, and an FF of 69.77%. To the best of our knowledge, this is the highest photovoltaic performance of PBDB-T-based single-junction binary-OSCs. In comparison, ascribed to the high crystallinity and low solubility of BTP-eC7-4Cl, the corresponding PBDB-T:BTP-eC7-4Cl-based OSC device shows poor photovoltaic performance (PCE of 11.87%). The experimental results demonstrate that fine-tuning the fused quinoxaline backbone with alkyl-chain and end-group functionalization are promising strategies to construct high-performance NFAs for PBDB-T-based single-junction binary-OSCs.
Collapse
Affiliation(s)
- Manohar Reddy Busireddy
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Tsung-Wei Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Sheng-Ci Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yi-Jia Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yu-Min Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
12
|
Ye Q, Ge J, Li D, Chen Z, Shi J, Zhang X, Zhou E, Yang D, Ge Z. Modulation of the Fluorination Site on Side-Chain Thiophene Improved Efficiency in All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33234-33241. [PMID: 35834357 DOI: 10.1021/acsami.2c07791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine-tuning the phase-separated morphology is of great importance to achieve efficient all-small-molecule organic solar cells (ASM-OSCs). In this work, a pair of isomers are designed and synthesized, namely, BDT-UF and BDT-DF, in which the fluorine atom in BDT-UF is close to the alkyl chain of side-chain thiophene, while that in BDT-DF is close to the center core. Owing to the noncovalent interaction between fluorine and hydrogen, BDT-DF shows a smaller dihedral angle between the thiophene side chain and the BDT core, which causes better molecular planarity. When mixed with N3, BDT-UF shows better miscibility, higher crystallinity, and more ordered molecule stacking in the blend film. Finally, the device of BDT-DF:N3 gains a power conversion efficiency (PCE) of 14.5%, while that of BDT-UF:N3 shows an increase in Voc, Jsc, and FF and gains a PCE of 15.1%. Our work exhibits a way of adjusting the substitution site of fluorine atoms to improve the PCE of ASM-OSCs.
Collapse
Affiliation(s)
- Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Li
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Shi
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Busireddy MR, Chen TW, Huang SC, Nie H, Su YJ, Chuang CT, Kuo PJ, Chen JT, Hsu CS. Fine Tuning Alkyl Substituents on Dithienoquinoxaline-Based Wide-Bandgap Polymer Donors for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22353-22362. [PMID: 35511580 DOI: 10.1021/acsami.2c04104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The molecular design of wide-bandgap conjugated polymer donors (WB-CPDs) is a promising strategy for tuning the bulk heterojunction blend film morphologies to achieve high-performance organic photovoltaic (OPV) devices. Herein, we synthesize two WB-CPDs, namely, PBQ-H and PBQ-M, with and without methyl groups on the fused-dithieno[3,2-f:2',3'-h]quinoxaline (DTQx) moiety. We systematically investigate their structure-property relationship and OPV performances. The AFM and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) studies reveal that the PBQ-H:BO-4Cl BHJ blend shows strengthened aggregation behavior and stronger π-π stacking on face-on orientation compared with the PBQ-M:BO-4Cl BHJ blend, enhancing the phase separation, charge transport, and fill factor (FF). Blend film absorption spectra, however, show that the PBQ-H:BO-4Cl BHJ blend exhibits a lower absorption coefficient than that of the PBQ-M:BO-4Cl BHJ blend, which decreases the short-circuit current density (JSC). As a consequence, the optimized PBQ-H:BO-4Cl BHJ blend delivers a higher power conversion efficiency (PCE) of 12.88% with a JSC of 23.97 mA/cm2, an open-circuit voltage (VOC) of 0.86 V, and an FF of 62.46%, compared with the PBQ-M:BO-4Cl BHJ blend (PCE of 11.81% with a JSC of 24.78 mA/cm2, a VOC of 0.85 V, and an FF of 56.11%). Overall, this work demonstrates that alkyl group substitution on the DTQx moiety on the basis of WB-CPDs is critical for controlling the film morphology and thus obtaining high OPV performances.
Collapse
Affiliation(s)
- Manohar Reddy Busireddy
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Tsung-Wei Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Sheng-Ci Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Hebing Nie
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Yi-Jia Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Chih-Ting Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Pei-Jung Kuo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Mori H, Yamada Y, Minagawa Y, Hasegawa N, Nishihara Y. Effects of Acyloxy Groups in Anthrabisthiadiazole-Based Semiconducting Polymers on Electronic Properties, Thin-Film Structure, and Solar Cell Performances. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Yamada
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yukiya Minagawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Natsuki Hasegawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
15
|
Greenstein BL, Hiener DC, Hutchison GR. Computational Evolution of High-Performing Unfused Non-Fullerene Acceptors for Organic Solar Cells. J Chem Phys 2022; 156:174107. [DOI: 10.1063/5.0087299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Materials optimization for organic solar cells (OSCs) is a highly active field, with many approaches using empirical experimental synthesis, computational brute-force approaches to screen candidates in a given subset of chemical space, or generative machine learning methods which often require significant training sets. While these methods may find high-performing materials, they can be inefficient and time-consuming. Genetic algorithms (GAs) are an alternative approach, allowing for the "virtual synthesis" of molecules and a prediction of their ``fitness' for some property, with new candidates suggested based on good characteristics of previously generated molecules. In this work, a GA is used to discover high-performing unfused non-fullerene acceptors (NFAs) based on an empirical prediction of power conversion efficiency (PCE) and provides design rules for future work. The electron withdrawing/donating strength, as well as the sequence and symmetry of those units are examined. The utilization of a GA over a brute force approach resulted in speedups up to $1.8 \times 10^{12}$. New types of units not frequently seen in OSCs are suggested, and in total 5,426 NFAs are discovered with the GA. Of these, 1,087 NFAs are predicted to have a PCE greater than 18\%, which is roughly the current record efficiency. While the symmetry of the sequence showed no correlation with PCE, analysis of the sequence arrangement revealed that higher performance can be achieved with a donor core and acceptor end groups. Future NFA designs should consider this strategy as an alternative to the current A-D-A$'$-D-A architecture.
Collapse
|
16
|
Liu B, Su X, Lin Y, Li Z, Yan L, Han Y, Luo Q, Fang J, Yang S, Tan H, Ma C. Simultaneously Achieving Highly Efficient and Stable Polymer:Non-Fullerene Solar Cells Enabled By Molecular Structure Optimization and Surface Passivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104588. [PMID: 35032362 PMCID: PMC8895120 DOI: 10.1002/advs.202104588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Indexed: 05/15/2023]
Abstract
Despite the tremendous efforts in developing non-fullerene acceptor (NFA) for polymer solar cells (PSCs), only few researches are done on studying the NFA molecular structure dependent stability of PSCs, and long-term stable PSCs are only reported for the cells with low efficiency. Herein, the authors compare the stability of inverted PM6:NFA solar cells using ITIC, IT-4F, Y6, and N3 as the NFA, and a decay rate order of IT-4F > Y6 ≈ N3 > ITIC is measured. Quantum chemical calculations reveal that fluorine substitution weakens the C═C bond and enhances the interaction between NFA and ZnO, whereas the β-alkyl chains on the thiophene unit next to the C═C linker blocks the attacking of hydroxyl radicals onto the C═C bonds. Knowing this, the authors choose a bulky alkyl side chain containing molecule (named L8-BO) as the acceptor, which shows slower photo bleaching and performance decay rates. A combination of ZnO surface passivation with phenylethanethiol (PET) yields a high efficiency of 17% and an estimated long T80 and Ts80 of 5140 and 6170 h, respectively. The results indicate functionalization of the β-position of the thiophene unit is an effective way to improve device stability of the NFA.
Collapse
Affiliation(s)
- Bowen Liu
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026P. R. China
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| | - Xiao Su
- College of ChemistryBeijing Normal UniversityXinjiekouwai St.Beijing100875P. R. China
| | - Yi Lin
- Department of ChemistryXi'an Jiaotong Liverpool UniversityRenai Road 11, SEID, SIPSuzhou215123P. R. China
| | - Zerui Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026P. R. China
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| | - Lingpeng Yan
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| | - Yunfei Han
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026P. R. China
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| | - Qun Luo
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026P. R. China
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| | - Jin Fang
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| | - Shangfeng Yang
- CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Hongwei Tan
- College of ChemistryBeijing Normal UniversityXinjiekouwai St.Beijing100875P. R. China
| | - Chang‐Qi Ma
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026P. R. China
- i‐Lab & Printable Electronics Research CenterSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesRuoshui Road 398, SEID, SIPSuzhou215123P. R. China
| |
Collapse
|
17
|
Keshtov ML, Khokhlov AR, Godovsky DY, Ostapov ILE, Alekseev VG, Xie Z, Chayal G, Sharma GD. Novel Pyrrolo [3,4-b] dithieno [3, 2-f:2",3"-h] quinoxaline-8,10 (9H)-dione Based Wide Bandgap Conjugated Copolymers for Bulk Heterojunction Polymer Solar Cells. Macromol Rapid Commun 2022; 43:e2200060. [PMID: 35218257 DOI: 10.1002/marc.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Indexed: 11/11/2022]
Abstract
Two D-A copolymers consisted of fused ring pyrrolo-dithieno-quinoxaline acceptor are synthesized with different donor units, i.e., benzodithiophene (BDT) with alkylthienyl (P134) and 2-ethylhexyloxy (P117) side chains. These copolymers are used as donor and a narrow bandgap acceptor Y6 to fabricate bulk heterojunction polymer solar cell devices. Owing to the strong electron-deficient fused ring pyrrolo-bithieno-quinoxaline and weak alkyl thienyl side chains in BDT, the polymer solar cells based on P134:Y6 attained the power conversion efficiency of 15.42%, which is higher than P117:Y6 counterpart (12.14%). The superior value of PCE for P134:Y6 could be associated with more well-adjusted charge transport, weak charge recombination, proficient exciton generation and dissociation into free charge carriers and their subsequent charge collection owing to the dense π-π stacking distance and more considerable crystal coherence length for the P134:Y6 thin films. This investigation confirms the great potential of a strong acceptor-weak donor tactic for developing efficient D-A copolymers consists of quinoxaline acceptor for polymer solar cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mukhamed L Keshtov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, Moscow, 119991, Russian Federation
| | - Alexei R Khokhlov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, Moscow, 119991, Russian Federation.,Department of Physics of Polymers and Crystals, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russain Federation
| | - Dimitry Y Godovsky
- Department of Physics of Polymers and Crystals, Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russain Federation
| | - ILya E Ostapov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Vavilova St., 28, Moscow, 119991, Russian Federation
| | - Vladimir G Alekseev
- Inorganic and Analytical Chemistry Department, Tver State University, Sadovyi per. 35, Tver, 170002, Russian Federation
| | - Zhiyuan Xie
- Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, State Key Laboratory of Polymer Physics and Chemistry, Changchun, China
| | - Giriraj Chayal
- Department of Physics, Jai Narayan Vyas University, Jodhpur, 342011, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute for Information Technology, Jamdoli, Jaipur, 302031, India
| |
Collapse
|
18
|
Thickness Dependence of Electronic Structure and Optical Properties of F8BT Thin Films. Polymers (Basel) 2022; 14:polym14030641. [PMID: 35160630 PMCID: PMC8838540 DOI: 10.3390/polym14030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Electronic devices based on polymer thin films have experienced a tremendous increase in their efficiency in the last two decades. One of the critical factors that affects the efficiency of polymer solar cells or light emitting devices is the presence of structural defects that controls non-radiative recombination. The purpose of this report is to demonstrate a non-trivial thickness dependence of optoelectronic properties and structure (dis)order in thin conductive poly(9,9-dioctyfluorene-alt-benzothiadiazole), F8BT, polymer films. The UV-Vis absorption spectra exhibited blue shift and peak broadening; significant changes in 0–0 and 0–1 radiative transition intensity was found in photoluminescence emission spectra. The density of state (DOS) was directly mapped by energy resolved-electrochemical impedance spectroscopy (ER-EIS). Satellite states 0.5 eV below the lowest unoccupied molecular orbital (LUMO) band were revealed for the thinner polymer films. Moreover, the decreasing of the deep states density in the band gap manifested an increment in the material structural ordering with increasing thickness. Changes in the ratio between crystalline phases with face-on and edge-on orientation of F8BT chains were identified in the films by grazing-incidence wide angle X-ray scattering technique. A thickness threshold in all investigated aspects of the films at a thickness of about 100 nm was observed that can be attributed to the development of J-H aggregation in the film structure and mutual interplay between these two modes. Although a specific structure–property relationship thickness threshold value may be expected for thin films prepared from various polymers, solvents and under different process conditions, the value of about 100 nm can be generally considered as the characteristic length scale of this phenomenon.
Collapse
|
19
|
Vauthey E. Elucidating the Mechanism of Bimolecular Photoinduced Electron Transfer Reactions. J Phys Chem B 2022; 126:778-788. [DOI: 10.1021/acs.jpcb.1c10050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Zhang T, An C, Cui Y, Zhang J, Bi P, Yang C, Zhang S, Hou J. A Universal Nonhalogenated Polymer Donor for High-Performance Organic Photovoltaic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105803. [PMID: 34647376 DOI: 10.1002/adma.202105803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Nonhalogenated polymers have great potential in the commercialization of organic photovoltaic (OPV) cells due to their advantage in low-cost preparation. However, non-halogenated polymers usually have high highest occupied molecular orbital (HOMO) energy levels and inferior self-aggregation properties in solution, thus resulting in low power conversion efficiencies (PCEs). Herein, two nonhalogenated polymers, PB1 and PB2, are prepared. When the polymers are used to fabricate OPV cells with BTP-eC9, the PB1-based device only gives a PCE of 5.3%, while the PB2-based device shows an outstanding PCE of 17.7%. After the introduction of PBDB-TF as the third component, the PB2:PBDB-TF:BTP-eC9-based device with an optimal weight ratio of 0.5:0.5:1 achieves a PCE up to 18.4%. More importantly, PB2 exhibits good compatibility with various nonfullerene acceptors to achieve better PCEs than those of classical polymer (PBDB-T and PBDB-TF)-based devices. When PB2 is combined with a wide-bandgap electron acceptor (F-BTA3), this device shows excellent PCE of 27.1% and 24.6% for 1 and 10 cm2 devices, respectively, under light intensity of 1000 lux light-emitting diode illumination. These results provide new insight in the rational design of novel nonhalogenated polymer donors for further development of low-cost materials and broadening the application of OPV cells.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinses Academy of Sciences, Beijing, 100049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianqi Zhang
- CAS key laboratory of nanosystem and hierarchical fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenyi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinses Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
|
23
|
Lee SW, Hussain MDW, Shome S, Ha SR, Oh JT, Whang DR, Kim Y, Kim DY, Choi H, Chang DW. Effect of electron-withdrawing fluorine and cyano substituents on photovoltaic properties of two-dimensional quinoxaline-based polymers. Sci Rep 2021; 11:24381. [PMID: 34934136 PMCID: PMC8692587 DOI: 10.1038/s41598-021-03763-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, strong electron-withdrawing fluorine (F) and cyano (CN) substituents are selectively incorporated into the quinoxaline unit of two-dimensional (2D) D-A-type polymers to investigate their effects on the photovoltaic properties of the polymers. To construct the 2D polymeric structure, electron-donating benzodithiophene and methoxy-substituted triphenylamine are directly linked to the horizontal and vertical directions of the quinoxaline acceptor, respectively. After analyzing the structural, optical, and electrochemical properties of the resultant F- and CN-substituted polymers, labeled as PBCl-MTQF and PBCl-MTQCN, respectively, inverted-type polymer solar cells with a non-fullerene Y6 acceptor are fabricated to investigate the photovoltaic performances of the polymers. It is discovered that the maximum power conversion efficiency of PBCl-MTQF is 7.48%, whereas that of PBCl-MTQCN is limited to 3.52%. This significantly reduced PCE of the device based on PBCl-MTQCN is ascribed to the formation of irregular, large aggregates in the active layer, which can readily aggravate the charge recombination and charge transport kinetics of the device. Therefore, the photovoltaic performance of 2D quinoxaline-based D-A-type polymers is significantly affected by the type of electron-withdrawing substituent.
Collapse
Affiliation(s)
- Seok Woo Lee
- Department of Industrial Chemistry, Pukyong National University, 48513, Busan, Republic of Korea
| | - M D Waseem Hussain
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730, Seoul, Republic of Korea
| | - Sanchari Shome
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730, Seoul, Republic of Korea
| | - Su Ryong Ha
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730, Seoul, Republic of Korea
| | - Jae Taek Oh
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730, Seoul, Republic of Korea
| | - Dong Ryeol Whang
- Department of Advanced Materials, Hannam University, Daejeon, 34054, Republic of Korea
| | - Yunseul Kim
- School of Materials Science and Engineering (SMSE), Research Institute of Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering (SMSE), Research Institute of Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyosung Choi
- Department of Chemistry, Research Institute for Natural Science and Institute of Nano Science and Technology, Hanyang University, 04730, Seoul, Republic of Korea.
| | - Dong Wook Chang
- Department of Industrial Chemistry, Pukyong National University, 48513, Busan, Republic of Korea.
| |
Collapse
|
24
|
Chen F, Nakano K, Kaji Y, Adachi K, Hashizume D, Tajima K. Triphenyleno[1,2- c:7,8- c']bis([1,2,5]thiadiazole) as a V-Shaped Electron-Deficient Unit to Construct Wide-Bandgap Amorphous Polymers for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57743-57749. [PMID: 34813278 DOI: 10.1021/acsami.1c19708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The backbone shape of semiconducting polymers strongly affects their electronic properties and morphologies in films, yet the conventional design principle for building blocks focuses on using linear main chains to maintain high crystallinity. Here, we developed a V-shaped unit, triphenyleno[1,2-c:7,8-c']bis([1,2,5]thiadiazole) (TPTz), featuring two 1,2,5-thiadiazole rings fused to a triphenylene core with strong electron-withdrawing properties and an extended conjugation plane. We used TPTz to prepare a highly soluble copolymer, PTPTz-indacenodithiophene (IDT), which exhibited a wide bandgap of 1.94 eV and energy levels suitable for the donor polymer in organic solar cells (OSCs) in combination with non-fullerene acceptors. Despite the amorphous nature of the polymer film, single-junction OSCs with PTPTz-IDT:Y6 as the active layer achieved a power conversion efficiency of 10.4% (JSC = 19.8 mA cm-2; VOC = 0.80 V; fill factor = 0.66), which is the highest value reported for a single-junction OSC with IDT-based donor polymers. This work demonstrates that TPTz is a promising electron-acceptor unit for developing functional polymers with zigzag structures.
Collapse
Affiliation(s)
- Fengkun Chen
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yumiko Kaji
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side‐Chain‐Dependent Ordering Transition of Highly Crystalline Double‐Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Amelia C. Y. Liu
- School of Physics and Astronomy Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy Monash University Clayton Victoria 3800 Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300350 P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
26
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side-Chain-Dependent Ordering Transition of Highly Crystalline Double-Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021; 60:25499-25507. [PMID: 34546627 DOI: 10.1002/anie.202111192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/06/2022]
Abstract
We developed a series of highly crystalline double-cable conjugated polymers for application in single-component organic solar cells (SCOSCs). These polymers contain conjugated backbones as electron donor and pendant perylene bisimide units (PBIs) as electron acceptor. PBIs are connected to the backbone via alkyl units varying from hexyl (C6 H12 ) to eicosyl (C20 H40 ) as flexible linkers. For double-cable polymers with short linkers, the PBIs tend to stack in a head-to-head fashion, resulting in large d-spacings (e.g. 64 Å for the polymer P12 with C12 H24 linker) along the lamellar stacking direction. When the length of the linker groups is longer than a certain length, the PBIs instead adopt a more ordered packing likely via H-aggregation, resulting in short d-spacings (e.g. 50 Å for the polymer P16 with C16 H32 linker). This work highlights the importance of linker length on the molecular packing of the acceptor units and the influences on the photovoltaic performance of SCOSCs.
Collapse
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Wang R, Lüer L, Langner S, Heumueller T, Forberich K, Zhang H, Hauch J, Li N, Brabec CJ. Understanding the Microstructure Formation of Polymer Films by Spontaneous Solution Spreading Coating with a High-Throughput Engineering Platform. CHEMSUSCHEM 2021; 14:3590-3598. [PMID: 34236142 PMCID: PMC8518985 DOI: 10.1002/cssc.202100927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Indexed: 05/26/2023]
Abstract
An important step of the great achievement of organic solar cells in power conversion efficiency is the development of low-band gap polymer donors, PBDB-T derivatives, which present interesting aggregation effects dominating the device performance. The aggregation of polymers can be manipulated by a series of variables from a materials design and processing conditions perspective; however, optimization of film quality is a time- and energy-consuming work. Here, we introduce a robot-based high-throughput platform (HTP) that is offering automated film preparation and optical spectroscopy thin-film characterization in combination with an analysis algorithm. PM6 films are prepared by the so-called spontaneous film spreading (SFS) process, where a polymer solution is coated on a water surface. Automated acquisition of UV/Vis and photoluminescence (PL) spectra and automated extraction of morphological features is coupled to Gaussian Process Regression to exploit available experimental evidence for morphology optimization but also for hypothesis formulation and testing with respect to the underlying physical principles. The integrated spectral modeling workflow yields quantitative microstructure information by distinguishing amorphous from ordered phases and assesses the extension of amorphous versus the ordered domains. This research provides an easy to use methodology to analyze the exciton coherence length in conjugated semiconductors and will allow to optimize exciton splitting in thin film organic semiconductor layers as a function of processing.
Collapse
Affiliation(s)
- Rong Wang
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT)Paul-Gordan-Straße 691052ErlangenGermany
| | - Larry Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
| | - Stefan Langner
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Immerwahrstrasse 291058ErlangenGermany
| | - Thomas Heumueller
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Immerwahrstrasse 291058ErlangenGermany
| | - Karen Forberich
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Immerwahrstrasse 291058ErlangenGermany
| | - Heyi Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT)Paul-Gordan-Straße 691052ErlangenGermany
| | - Jens Hauch
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Immerwahrstrasse 291058ErlangenGermany
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Immerwahrstrasse 291058ErlangenGermany
- National Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou University450002ZhengzhouP. R. China
| | - Christoph J. Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstrasse 791058ErlangenGermany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Immerwahrstrasse 291058ErlangenGermany
| |
Collapse
|
28
|
Keshtov ML, Konstantinov IO, Kuklin SA, Khokhlov AR, Ostapov IE, Xie Z, Komarov PV, Alekseev VG, Dahiya H, Sharma GD. High‐Performance Fullerene Free Polymer Solar Cells Based on New Thiazole ‐Functionalized Benzo[1,2‐b:4,5‐b′]dithiophene D‐A Copolymer Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukhamed. L. Keshtov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Igor O. Konstantinov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Sergei A. Kuklin
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Aleksei R. Khokhlov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Department of Physics of Polymers and Crystals Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Ilya E. Ostapov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Department of Physics of Polymers and Crystals Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Zhiyuan Xie
- Changchun Institute of Applied Chemistry of Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry Changchun China
| | - Pavel V. Komarov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Tver State University Sadovyi per. 35 Tver 170002 Russia
| | | | - Hemraj Dahiya
- Department of Physics The LNM Institute for Information Technology, Jamdoli Jaipur (Raj.) 302031 India
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute for Information Technology, Jamdoli Jaipur (Raj.) 302031 India
| |
Collapse
|
29
|
Mullin WJ, Sharber SA, Thomas SW. Optimizing the
self‐assembly
of conjugated polymers and small molecules through structurally programmed
non‐covalent
control. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Seth A. Sharber
- Department of Chemistry Tufts University Medford Massachusetts USA
- Aramco Services Company, Aramco Research Center Boston Massachusetts USA
| | - Samuel W. Thomas
- Department of Chemistry Tufts University Medford Massachusetts USA
| |
Collapse
|
30
|
Effect of Fused Thiophene Bridges on the Efficiency of Non-Fullerene Polymer Solar Cells made with Conjugated Donor Copolymers Containing Alkyl Thiophene-3-Carboxylate. Macromol Res 2021. [DOI: 10.1007/s13233-021-9053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Lv Q, An C, Zhang T, Zhang J, Zhang S, Zhou P, He C, Hou J. Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1026-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
He B, Chen Y, Chen J, Chen S, Xiao M, Chen G, Dai C. Wide-bandgap donor polymers based on a dicyanodivinyl indacenodithiophene unit for non-fullerene polymer solar cells. RSC Adv 2021; 11:21397-21404. [PMID: 35478821 PMCID: PMC9034166 DOI: 10.1039/d1ra03233j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
A wide-bandgap polymer donor with improved efficiency plays an important role in improving the photovoltaic performance of polymer solar cells (PSCs). In this study, two novel wide-bandgap polymer donors, PBDT and PBDT-S, were designed and synthesized based on a dicyanodivinyl indacenodithiophene (IDT-CN) moiety, in which benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks and IDT-CN are used as electron-sufficient and -deficient units, respectively. In our study, the PBDT and PBDT-S polymer donors exhibited similar frontier-molecular-orbital energy levels and optical properties, and both copolymers showed good miscibility with the widely used narrow-bandgap small molecular acceptor Y6. Non-fullerene polymer solar cells (NF-PSCs) based on PBDT:Y6 exhibited an impressive power conversion efficiency of 10.04% with an open circuit voltage of 0.88 V, a short-circuit current density of 22.16 mA cm-2 and a fill factor of 51.31%, where the NF-PSCs based on PBDT-S:Y6 exhibited a moderate power conversion efficiency of 6.90%. The enhanced photovoltaic performance, realized by virtue of the improved short-circuit current density, can be attributed to the slightly enhanced electron mobility, higher exciton dissociation rates, more efficient charge collection and better nanoscale phase separation of the PBDT-based device. The results of this work indicate that the IDT-CN unit is a promising building block for constructing donor polymers for high-performance organic photovoltaic cells.
Collapse
Affiliation(s)
- Baitian He
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Yulin Chen
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Jinglong Chen
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University Xiangtan 411105 P. R. China
| | - Songxi Chen
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Manjun Xiao
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University Xiangtan 411105 P. R. China
| | - Guiting Chen
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| | - Chuanbo Dai
- School of Chemistry and Environment, Jiaying University, Guangdong Engineering Technology Developing Center of High-Performance CCL Meizhou 514015 P. R. China
| |
Collapse
|
33
|
Li P, Fang J, Wang Y, Manzhos S, Cai L, Song Z, Li Y, Song T, Wang X, Guo X, Zhang M, Ma D, Sun B. Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Non-Fullerene-Based Solar Cells. Angew Chem Int Ed Engl 2021; 60:15054-15062. [PMID: 33872454 DOI: 10.1002/anie.202103357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Indexed: 11/07/2022]
Abstract
In non-fullerene-based photovoltaic devices, it is unclear how excitons efficiently dissociate into charge carriers under small driving force. Here, we developed a modified method to estimate dielectric constants of PM6 donor and non-fullerene acceptors. Surprisingly, most non-fullerene acceptors and blend films showed higher dielectric constants. Moreover, they exhibited larger dielectric constants differences at the optical frequency. These results are likely bound to reduced exciton binding energy and bimolecular recombination. Besides, the overlap between the emission spectrum of donor and absorption spectra of non-fullerene acceptors allowed the energy transfer from donor to acceptors. Hence, based on the synergistic effect of dielectric property and energy transfer resulting in efficient charge separation, our finding paves an alternative path to elucidate the physical working mechanism in non-fullerene-based photovoltaic devices.
Collapse
Affiliation(s)
- Pandeng Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.,Center of Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Jin Fang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Yusheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Sergei Manzhos
- Center of Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Lei Cai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Yajuan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Tao Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Xuechun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Xia Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Maojie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Dongling Ma
- Center of Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boul. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Baoquan Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| |
Collapse
|
34
|
Li P, Fang J, Wang Y, Manzhos S, Cai L, Song Z, Li Y, Song T, Wang X, Guo X, Zhang M, Ma D, Sun B. Synergistic Effect of Dielectric Property and Energy Transfer on Charge Separation in Non‐Fullerene‐Based Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pandeng Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
- Center of Energy, Materials and Telecommunications Institut National de la Recherche Scientifique (INRS) 1650 Boul. Lionel-Boulet Varennes Québec J3X 1S2 Canada
| | - Jin Fang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Yusheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Sergei Manzhos
- Center of Energy, Materials and Telecommunications Institut National de la Recherche Scientifique (INRS) 1650 Boul. Lionel-Boulet Varennes Québec J3X 1S2 Canada
| | - Lei Cai
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Yajuan Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Tao Song
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Xuechun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Xia Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Maojie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Laboratory of Advanced Optoelectronic Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Dongling Ma
- Center of Energy, Materials and Telecommunications Institut National de la Recherche Scientifique (INRS) 1650 Boul. Lionel-Boulet Varennes Québec J3X 1S2 Canada
| | - Baoquan Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
| |
Collapse
|
35
|
Nakano M, Takahara A, Genda K, Shahiduzzaman M, Karakawa M, Taima T, Takahashi K. Selective Extraction of Nonfullerene Acceptors from Bulk-Heterojunction Layer in Organic Solar Cells for Detailed Analysis of Microstructure. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2107. [PMID: 33919451 PMCID: PMC8122272 DOI: 10.3390/ma14092107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/31/2023]
Abstract
Detailed analyses of the microstructures of bulk-heterojunction (BHJ) layers are important for the development of high-performance photovoltaic organic solar cells (OSCs). However, analytical methods for BHJ layer microstructures are limited because BHJ films are composed of a complex mixture of donor and acceptor materials. In our previous study on the microstructure of a BHJ film composed of donor polymers and fullerene-based acceptors, we analyzed donor polymer-only films after selectively extracting fullerene-based acceptors from the film by atomic force microscopy (AFM). Not only was AFM suitable for a clear analysis of the morphology of the donor polymers in the BHJ film, but it also allowed us to approximate the acceptor morphology by analyzing the pores in the extracted films. Herein we report a method for the selective extraction of nonfullerene acceptors (NFAs) from a BHJ layer in OSCs and provide a detailed analysis of the remaining BHJ films based upon AFM. We found that butyl glycidyl ether is an effective solvent to extract NFAs from BHJ films without damaging the donor polymer films. By using the selective extraction method, the morphologies of NFA-free BHJ films fabricated under various conditions were studied in detail. The results may be useful for the optimization of BHJ film structures composed of NFAs and donor polymers.
Collapse
Affiliation(s)
- Masahiro Nakano
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan; (A.T.); (K.G.); (M.K.); (T.T.)
| | - Akira Takahara
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan; (A.T.); (K.G.); (M.K.); (T.T.)
| | - Kenji Genda
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan; (A.T.); (K.G.); (M.K.); (T.T.)
| | - Md. Shahiduzzaman
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Ishikawa 920-1192, Japan;
| | - Makoto Karakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan; (A.T.); (K.G.); (M.K.); (T.T.)
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Ishikawa 920-1192, Japan;
- Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Ishikawa 920-1192, Japan
| | - Tetsuya Taima
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan; (A.T.); (K.G.); (M.K.); (T.T.)
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Ishikawa 920-1192, Japan;
- Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Ishikawa 920-1192, Japan
| | - Kohshin Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan; (A.T.); (K.G.); (M.K.); (T.T.)
| |
Collapse
|
36
|
Kini GP, Lee EJ, Jeon SJ, Moon DK. Understanding the Critical Role of Sequential Fluorination of Phenylene Units on the Properties of Dicarboxylate Bithiophene-Based Wide-Bandgap Polymer Donors for Non-Fullerene Organic Solar Cells. Macromol Rapid Commun 2021; 42:e2000743. [PMID: 33644922 DOI: 10.1002/marc.202000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Indexed: 11/06/2022]
Abstract
Design and development of wide bandgap (WBG) polymer donors with low-lying highest occupied molecular orbitals (HOMOs) are increasingly gaining attention in non-fullerene organic photovoltaics since such donors can synergistically enhance power conversion efficiency (PCE) by simultaneously minimizing photon energy loss (Eloss ) and enhancing the spectral response. In this contribution, three new WBG polymer donors, P1, P2, and P3, are prepared by adding phenylene cores with a different number of fluorine (F) substituents (n = 0, 2, and 4, respectively) to dicarboxylate bithiophene-based acceptor units. As predicted, fluorination effectively aides in the lowering of HOMO energy levels, tailoring of the coplanarity and molecular ordering in the polymers. Thus, fluorinated P2 and P3 polymers show higher coplanarity and more intense interchain aggregation than P1, leading to higher charge carrier mobilities and superior phase-separated morphology in the optimized blend films with IT-4F. As a result, both P2:IT-4F and P3:IT-4F realize the best PCEs of 6.89% and 7.03% (vs 0.16% for P1:IT-4F) with lower Eloss values of 0.65 and 0.55 eV, respectively. These results signify the importance of using phenylene units with sequential fluorination in polymer backbone for modifying the optoelectronic properties and realizing low Eloss values by synergistically lowering the HOMO energy levels.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Eui Jin Lee
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| |
Collapse
|
37
|
Lv Q, An C, Zhang T, Zhou P, Hou J. Effect of alkyl side chains of twisted conjugated polymer donors on photovoltaic performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Keshtov ML, Kuklin SA, Khokhlov AR, Peregudov AS, Chen FC, Xie Z, Sharma GD. Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two non‐fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. NANO SELECT 2021. [DOI: 10.1002/nano.202000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mukhamed L. Keshtov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Sergei. A. Kuklin
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Alexei R. Khokhlov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Aleksander S. Peregudov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Fang C. Chen
- Department of Photonics College of Electrical and Computer Engineering National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Chiao Tung University Hsinchu Taiwan
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P.R. China
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute of Information Technology Jamdoli Jaipur Rajasthan 302031 India
| |
Collapse
|
39
|
Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2537-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Bai Y, Xue LW, Wang HQ, Zhang ZG. Research Advances on Benzotriazole-based Organic Photovoltaic Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Kirkey A, Luber EJ, Cao B, Olsen BC, Buriak JM. Optimization of the Bulk Heterojunction of All-Small-Molecule Organic Photovoltaics Using Design of Experiment and Machine Learning Approaches. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54596-54607. [PMID: 33226763 DOI: 10.1021/acsami.0c14922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-small-molecule organic photovoltaic (OPV) cells based upon the small-molecule donor, DRCN5T, and nonfullerene acceptors, ITIC, IT-M, and IT-4F, were optimized using Design of Experiments (DOE) and machine learning (ML) approaches. This combination enables rational sampling of large parameter spaces in a sparse but mathematically deliberate fashion and promises economies of precious resources and time. This work focused upon the optimization of the core layer of the OPV device, the bulk heterojunction (BHJ). Many experimental processing parameters play critical roles in the overall efficiency of a given device and are often correlated and thus are difficult to parse individually. DOE was applied to the (i) solution concentration of the donor and acceptor ink used for spin-coating, (ii) the donor fraction, (iii) the temperature, and (iv) duration of the annealing of these films. The ML-based approach was then used to derive maps of the power conversion efficiencies (PCE) landscape for the first and second rounds of optimization to be used as guides to determine the optimal values of experimental processing parameters with respect to PCE. This work shows that with little knowledge of a potential combination of components for a given BHJ, a large parameter space can be effectively screened and investigated to rapidly determine its potential for high-efficiency OPVs.
Collapse
Affiliation(s)
- Aaron Kirkey
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Erik J Luber
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Bing Cao
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Brian C Olsen
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| | - Jillian M Buriak
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton AB T6G 2G2, Canada
| |
Collapse
|
42
|
Zhang ZG, Bai Y, Li Y. Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2496-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
He K, Kumar P, Abd-Ellah M, Liu H, Li X, Zhang Z, Wang J, Li Y. Alkyloxime Side Chain Enabled Polythiophene Donors for Efficient Organic Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keqiang He
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pankaj Kumar
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Marwa Abd-Ellah
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Haitao Liu
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002, China
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002, China
| | - Zhifang Zhang
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jinliang Wang
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan 450002, China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
44
|
Pankow RM, Thompson BC. The development of conjugated polymers as the cornerstone of organic electronics. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Bekkar F, Bettahar F, Moreno I, Meghabar R, Hamadouche M, Hernáez E, Vilas-Vilela JL, Ruiz-Rubio L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers (Basel) 2020; 12:E2227. [PMID: 32998386 PMCID: PMC7601494 DOI: 10.3390/polym12102227] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 01/09/2023] Open
Abstract
Polycarbazole and its derivatives have been extensively used for the last three decades, although the interest in these materials briefly decreased. However, the increasing demand for conductive polymers for several applications such as light emitting diodes (OLEDs), capacitators or memory devices, among others, has renewed the interest in carbazole-based materials. In this review, the synthetic routes used for the development of carbazole-based polymers have been summarized, reviewing the main synthetic methodologies, namely chemical and electrochemical polymerization. In addition, the applications reported in the last decade for carbazole derivatives are analysed. The emergence of flexible and wearable electronic devices as a part of the internet of the things could be an important driving force to renew the interest on carbazole-based materials, being conductive polymers capable to respond adequately to requirement of these devices.
Collapse
Affiliation(s)
- Fadila Bekkar
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnaouer, BP 1524, Oran 31000, Algerie; (F.B.); (F.B.); (R.M.)
| | - Faiza Bettahar
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnaouer, BP 1524, Oran 31000, Algerie; (F.B.); (F.B.); (R.M.)
| | - Isabel Moreno
- Macromolecular Chemistry Group (LQM), Organic Chemistry II Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Rachid Meghabar
- Laboratoire de Chimie des Polymères, Université Oran1 Ahmed Ben Bella, El-Mnaouer, BP 1524, Oran 31000, Algerie; (F.B.); (F.B.); (R.M.)
| | - Mohammed Hamadouche
- Laboratoire de Chimie Fine, Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université Oran1 Ahmed Ben Bella, El-Mnaouer, BP 1524, Oran 31000, Algerie;
| | - Estibaliz Hernáez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (E.H.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (E.H.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (E.H.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
46
|
Cui Y, Hong L, Hou J. Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38815-38828. [PMID: 32805933 DOI: 10.1021/acsami.0c10444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With the growing development of the Internet of Things, organic photovoltaic (OPV) cells are highly desirable for indoor applications because of the unique features of light weight, flexibility, and coloration. Emission spectra of the commonly used indoor light sources are much narrower with lower light intensity as compared to the standard solar spectrum. High tunability in optical absorption, insensitivity to series resistance and the active layer thickness, and mild operating conditions make indoor OPV cells promising as a practically relevant technology. Currently, the OPV module has obtained a power conversion efficiency of over 20%, with excellent stability under indoor conditions. However, at the present stage, the device physics investigations and material design strategies developed in an OPV cell for indoor applications lag behind those for outdoor applications. In particular, the emerging characterizations in photovoltaic measurements have severely affected the reliability of reports. This Spotlight on Applications highlights these opportunities and challenges of OPV cells for indoor applications and reviews the recent progress in indoor OPV cells. In addition, we summarize some studies related to accurate measurement and provide some recommendations.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ling Hong
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinses Academy of Sciences, Beijing 100049, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinses Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Xu W, Zhang M, Xiao J, Zeng M, Ye L, Weng C, Zhao B, Zhang J, Tan S. Improved photovoltaic properties of PM6-based terpolymer donors containing benzothiadiazole with a siloxane-terminated side chain. Polym Chem 2020. [DOI: 10.1039/d0py00890g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new series of PM6-based terpolymers (PM10Si, PM20Si, and PM30Si) were designed and synthesized, and their photovoltaic properties based on the inverted deviced and the two-step sequential deposition (SD) were studied.
Collapse
Affiliation(s)
- Wenjing Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Min Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Jingbo Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Min Zeng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Linglong Ye
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Chao Weng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Bin Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
48
|
Xue C, Tang Y, Liu S, Feng H, Li S, Xia D. Achieving efficient polymer solar cells based on benzodithiophene–thiazole-containing wide band gap polymer donors by changing the linkage patterns of two thiazoles. NEW J CHEM 2020. [DOI: 10.1039/d0nj02483j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated polymers with different combinations of two thiazoles were synthesized to study their photovoltaic performances.
Collapse
Affiliation(s)
- Changguo Xue
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Yu Tang
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shihui Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - He Feng
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Shiqin Li
- School of Material Science and Engineering
- Anhui University of Science and Technology
- Anhui
- China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
49
|
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N, You S, Li W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb) 2020; 56:10394-10408. [DOI: 10.1039/d0cc04150e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thieno[3,4-c]pyrrole-4,6-dione (TPD) based conjugated polymers as an electron donor, acceptor and single-component for application in organic solar cells in the past ten years have been intensively reviewed in this Feature Article.
Collapse
Affiliation(s)
- Chaowei Zhao
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Fan Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhou Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- College of Chemistry and Environmental Science
| | - Yuefeng Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Nanfu Yan
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Shengyong You
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Weiwei Li
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites
| |
Collapse
|