1
|
Wittwer B, Heim F, Wurst K, Hohloch S. A bridging bis-phosphanido-phosphinidene complex of lanthanum supported by a sterically encumbering PN ligand. Chem Commun (Camb) 2024; 60:7299-7302. [PMID: 38842222 DOI: 10.1039/d4cc02244k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Synthesis of a bulky anilidophosphine ligand (short PNTerph) and its lanthanum complexes 1 and 3 is reported. When exposed to KPHMes, both complexes form the first example of a bis-phosphanido-phosphinidene complex 2. This complex undergoes Phospha-Wittig type reactions and its reactivity towards strong bases is further investigated.
Collapse
Affiliation(s)
- B Wittwer
- University of Innsbruck, Center for Chemistry and Biomedicine, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - F Heim
- University of Innsbruck, Center for Chemistry and Biomedicine, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - K Wurst
- University of Innsbruck, Center for Chemistry and Biomedicine, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - S Hohloch
- University of Innsbruck, Center for Chemistry and Biomedicine, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Keener M, Maria L, Mazzanti M. Progress in the chemistry of molecular actinide-nitride compounds. Chem Sci 2023; 14:6493-6521. [PMID: 37350843 PMCID: PMC10283502 DOI: 10.1039/d3sc01435e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
The chemistry of actinide-nitrides has witnessed significant advances in the last ten years with a large focus on uranium and a few breakthroughs with thorium. Following the early discovery of the first terminal and bridging nitride complexes, various synthetic routes to uranium nitrides have since been identified, although the range of ligands capable of stabilizing uranium nitrides still remains scarce. In particular, both terminal- and bridging-nitrides possess attractive advantages for potential reactivity, especially in light of the recent development of uranium complexes for dinitrogen reduction and functionalization. The first molecular thorium bridged-nitride complexes have also been recently identified, anticipating the possibility of expanding nitride chemistry not only to low-valent thorium, but also to the transuranic elements.
Collapse
Affiliation(s)
- Megan Keener
- Group of Coordination Chemistry, Institute of Chemical Sciences and Engineering - ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Leonor Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela Portugal
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institute of Chemical Sciences and Engineering - ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
3
|
Su W, Rajeshkumar T, Xiang L, Maron L, Ye Q. Facile Synthesis of Uranium Complexes with a Pendant Borane Lewis Acid and 1,2-Insertion of CO into a U-N Bond. Angew Chem Int Ed Engl 2022; 61:e202212823. [PMID: 36256540 PMCID: PMC10099876 DOI: 10.1002/anie.202212823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/18/2022]
Abstract
In this contribution, we illustrate uranium complexes bearing a pendant borate (i.e. 1 and 2) or a pendant borane (i.e. 3 and 4) moiety via reaction of the highly strained uranacycle I with various 3-coordinate boranes. Complexes 3 and 4 represent the first examples of uranium complexes with a pendant borane Lewis acid. Moreover, complex 3 was capable of activation of CO, delivering a new CO activation mode, and an abnormal CO 1,2-insertion pathway into a U-N bond. The importance of the pendant borane moiety was confirmed by the controlled experiments.
Collapse
Affiliation(s)
- Wei Su
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, China.,Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, China
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nanoobjets, INSA, CNRS, UPS, Université de Toulouse, 31077, Toulouse, France
| | - Libo Xiang
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, China.,Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nanoobjets, INSA, CNRS, UPS, Université de Toulouse, 31077, Toulouse, France
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, China.,Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Meng Q, Abella L, Yao YR, Sergentu DC, Yang W, Liu X, Zhuang J, Echegoyen L, Autschbach J, Chen N. A charged diatomic triple-bonded U≡N species trapped in C 82 fullerene cages. Nat Commun 2022; 13:7192. [PMID: 36418311 PMCID: PMC9684569 DOI: 10.1038/s41467-022-34651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022] Open
Abstract
Actinide diatomic molecules are ideal models to study elusive actinide multiple bonds, but most of these diatomic molecules have so far only been studied in solid inert gas matrices. Herein, we report a charged U≡N diatomic species captured in fullerene cages and stabilized by the U-fullerene coordination interaction. Two diatomic clusterfullerenes, viz. UN@Cs(6)-C82 and UN@C2(5)-C82, were successfully synthesized and characterized. Crystallographic analysis reveals U-N bond lengths of 1.760(7) and 1.760(20) Å in UN@Cs(6)-C82 and UN@C2(5)-C82. Moreover, U≡N was found to be immobilized and coordinated to the fullerene cages at 100 K but it rotates inside the cage at 273 K. Quantum-chemical calculations show a (UN)2+@(C82)2- electronic structure with formal +5 oxidation state (f1) of U and unambiguously demonstrate the presence of a U≡N bond in the clusterfullerenes. This study constitutes an approach to stabilize fundamentally important actinide multiply bonded species.
Collapse
Affiliation(s)
- Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York. Natural Sciences Complex, Buffalo, NY, 14260-3000, USA
| | - Yang-Rong Yao
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | | | - Wei Yang
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xinye Liu
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 W University Avenue, El Paso, Texas, 79968, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York. Natural Sciences Complex, Buffalo, NY, 14260-3000, USA.
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
5
|
Wedal JC, Ziller JW, Evans WJ. Identification of the U(V) complex (C 5Me 5) 2U VI(NSiMe 3) in the reaction of (C 5Me 5) 2U IIII(THF) with N 3SiMe 3. Dalton Trans 2022; 51:12804-12807. [PMID: 35980149 DOI: 10.1039/d2dt01926d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The U(V) imido complex (C5Me5)2UVI(NSiMe3), 1, was crystallographically characterized from the reaction of (C5Me5)2UIIII(THF) with N3SiMe3 which demonstrates that it can be an intermediate in the reaction which ultimately forms (C5Me5)2UVI(NSiMe3)2 and (C5Me5)2UIVI2. U(V) intermediates have been proposed in such reactions, but have not been previously observed. The direct observation of 1 provides insight into the reaction mechanisms of U(III) compounds with azide reagents.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
6
|
Wang P, Zhao Y, Zhu C. Photolysis, Thermolysis, and Reduction of a Uranium Azide Complex Supported by a Double-Layer N–P Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Keener M, Fadaei-Tirani F, Scopelliti R, Zivkovic I, Mazzanti M. Nitrogen activation and cleavage by a multimetallic uranium complex. Chem Sci 2022; 13:8025-8035. [PMID: 35919442 PMCID: PMC9278153 DOI: 10.1039/d2sc02997a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Multimetallic-multielectron cooperativity plays a key role in the metal-mediated cleavage of N2 to nitrides (N3-). In particular, low-valent uranium complexes coupled with strong alkali metal reducing agents can lead to N2 cleavage, but often, it is ambiguous how many electrons are transferred from the uranium centers to cleave N2. Herein, we designed new dinuclear uranium nitride complexes presenting a combination of electronically diverse ancillary ligands to promote the multielectron transformation of N2. Two heteroleptic diuranium nitride complexes, [K{UIV(OSi(O t Bu)3)(N(SiMe3)2)2}2(μ-N)] (1) and [Cs{UIV(OSi(O t Bu)3)2(N(SiMe3)2)}2(μ-N)] (3-Cs), containing different combinations of OSi(O t Bu)3 and N(SiMe3)2 ancillary ligands, were synthesized. We found that both complexes could be reduced to their U(iii)/U(iv) analogues, and the complex, [K2{UIV/III(OSi(O t Bu)3)2(N(SiMe3)2)}2(μ-N)] (6-K), could be further reduced to a putative U(iii)/U(iii) species that is capable of promoting the 4e- reduction of N2, yielding the N2 4-complex [K3{UV(OSi(O t Bu)3)2(N(SiMe3)2)}2(μ-N)(μ-η2:η2-N2)], 7. Parallel N2 reduction pathways were also identified, leading to the isolation of N2 cleavage products, [K3{UVI(OSi(O t Bu)3)2(N(SiMe3)2)([triple bond, length as m-dash]N)}(μ-N)2{UV(OSi(O t Bu)3)2(N(SiMe3)2)}]2, 8, and [K4{(OSi(O t Bu)3)2UV)([triple bond, length as m-dash]N)}(μ-NH)(μ-κ2:C,N-CH2SiMe2NSiMe3)-{UV(OSi(O t Bu)3)2][K(N(SiMe3)2]2, 9. These complexes provide the first example of N2 cleavage to nitride by a uranium complex in the absence of reducing alkali metals.
Collapse
Affiliation(s)
- Megan Keener
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
8
|
Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes. Nat Commun 2022; 13:3809. [PMID: 35778419 PMCID: PMC9249861 DOI: 10.1038/s41467-022-31582-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022] Open
Abstract
Uranium nitrides play important roles in dinitrogen activation and functionalization and in chemistry for nuclear fuels, but the synthesis and isolation of the highly reactive uranium(VI) nitrides remains challenging. Here, we report an example of transition metal (TM) stabilized U(VI) nitride complexes, which are generated by the photolysis of azide-bridged U(IV)-TM (TM = Rh, Ir) precursors. The U(V) nitride intermediates with bridged azide ligands are isolated successfully by careful control of the irradiation time, suggesting that the photolysis of azide-bridged U(IV)-TM precursors is a stepwise process. The presence of two U(VI) nitrides stabilized by three TMs is clearly demonstrated by an X-ray crystallographic study. These TM stabilized U(V) nitride intermediates and U(VI) nitride products exhibit excellent stability both in the solid-state and in THF solution under ambient light. Density functional theory calculations show that the photolysis necessary to break the N-N bond of the azide ligands implies excitation from uranium f-orbital to the lowest unoccupied molecular orbital (LUMO), as suggested by the strong antibonding N-(N2) character present in the latter.
Collapse
|
9
|
King DM, Atkinson BE, Chatelain L, Gregson M, Seed JA, Wooles AJ, Kaltsoyannis N, Liddle ST. Uranium-nitride chemistry: uranium-uranium electronic communication mediated by nitride bridges. Dalton Trans 2022; 51:8855-8864. [PMID: 35622422 PMCID: PMC9171730 DOI: 10.1039/d2dt00998f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of [UIV(N3)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-) with excess Li resulted in the isolation of [{UIV(μ-NLi2)(TrenTIPS)}2] (2), which exhibits a diuranium(IV) 'diamond-core' dinitride motif. Over-reduction of 1 produces [UIII(TrenTIPS)] (3), and together with known [{UV(μ-NLi)(TrenTIPS)}2] (4) an overall reduction sequence 1 → 4 → 2 → 3 is proposed. Attempts to produce an odd-electron nitride from 2 resulted in the formation of [{UIV(TrenTIPS)}2(μ-NH)(μ-NLi2)Li] (5). Use of heavier alkali metals did not result in the formation of analogues of 2, emphasising the role of the high charge-to-radius-ratio of lithium stabilising the charge build up at the nitride. Variable-temperature magnetic data for 2 and 5 reveal large low-temperature magnetic moments, suggesting doubly degenerate ground states, where the effective symmetry of the strong crystal field of the nitride dominates over the spin-orbit coupled nature of the ground multiplet of uranium(IV). Spin Hamiltonian modelling of the magnetic data for 2 and 5 suggest U⋯U anti-ferromagnetic coupling of -4.1 and -3.4 cm-1, respectively. The nature of the U⋯U electronic communication was probed computationally, revealing a borderline case where the prospect of direct uranium-uranium bonding was raised, but in-depth computational analysis reveals that if any uranium-uranium bonding is present it is weak, and instead the nitride centres dominate the mediation of U⋯U electronic communication. This highlights the importance of obtaining high-level ab initio insight when probing potential actinide-actinide electronic communication and bonding in weakly coupled systems. The computational analysis highlights analogies between the 'diamond-core' dinitride of 2 and matrix-isolated binary U2N2.
Collapse
Affiliation(s)
- David M King
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lucile Chatelain
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Matthew Gregson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
10
|
Hsueh FC, Barluzzi L, Keener M, Rajeshkumar T, Maron L, Scopelliti R, Mazzanti M. Reactivity of Multimetallic Thorium Nitrides Generated by Reduction of Thorium Azides. J Am Chem Soc 2022; 144:3222-3232. [PMID: 35138846 DOI: 10.1021/jacs.1c13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thorium nitrides are likely intermediates in the reported cleavage and functionalization of dinitrogen by molecular thorium complexes and are attractive compounds for the study of multiple bond formation in f-element chemistry, but only one example of thorium nitride isolable from solution was reported. Here, we show that stable multimetallic azide/nitride thorium complexes can be generated by reduction of thorium azide precursors─a route that has failed so far to produce Th nitrides. Once isolated, the thorium azide/nitride clusters, M3Th═N═Th (M = K or Cs), are stable in solutions probably due to the presence of alkali ions capping the nitride, but their synthesis requires a careful control of the reaction conditions (solvent, temperature, nature of precursor, and alkali ion). The nature of the cation plays an important role in generating a nitride product and results in large structural differences with a bent Th═N═Th moiety found in the K-bound nitride as a result of a strong K-nitride interaction and a linear arrangement in the Cs-bound nitride. Reactivity studies demonstrated the ability of Th nitrides to cleave CO in ambient conditions yielding CN-.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Luciano Barluzzi
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Megan Keener
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Cedex 4 Toulouse, France
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Jori N, Rajeshkumar T, Scopelliti R, Z̆ivković I, Sienkiewicz A, Maron L, Mazzanti M. Cation assisted binding and cleavage of dinitrogen by uranium complexes. Chem Sci 2022; 13:9232-9242. [PMID: 36093011 PMCID: PMC9384805 DOI: 10.1039/d2sc02530b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
N2 binding affinity decreases markedly in a series of isostructural U(iii)–alkali ions complexes with increasing cation size. N2 binding is undetectable in the Cs analogue, but the first example of cesium-assisted N2 cleavage to bis-nitride was observed at ambient condition.
Collapse
Affiliation(s)
- Nadir Jori
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Cedex 4, 31077 Toulouse, France
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Z̆ivković
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ADSresonances Sàrl, Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Cedex 4, 31077 Toulouse, France
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Staun SL, Wu G, Lukens WW, Hayton TW. Synthesis of a heterobimetallic actinide nitride and an analysis of its bonding. Chem Sci 2021; 12:15519-15527. [PMID: 35003580 PMCID: PMC8653994 DOI: 10.1039/d1sc05072a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Reaction of [K(DME)][Th{N(R)(SiMe2 CH2)}2(NR2)] (R = SiMe3) with 1 equiv. of [U(NR2)3(NH2)] (1) in THF, in the presence of 18-crown-6, results in formation of a bridged uranium-thorium nitride complex, [K(18-crown-6)(THF)2][(NR2)3UIV(μ-N)ThIV(NR2)3] (2), which can be isolated in 48% yield after work-up. Complex 2 is the first isolable molecular mixed-actinide nitride complex. Also formed in the reaction is the methylene-bridged mixed-actinide nitride, [K(18-crown-6)][K(18-crown-6)(Et2O)2][(NR2)2U(μ-N)(μ-κ2-C,N-CH2SiMe2NR)Th(NR2)2]2 (3), which can be isolated in 34% yield after work-up. Complex 3 is likely generated by deprotonation of a methyl group in 2 by [NR2]-, yielding the new μ-CH2 moiety and HNR2. Reaction of 2 with 0.5 equiv. of I2 results in formation of a UV/ThIV bridged nitride, [(NR2)3UV(μ-N)ThIV(NR2)3] (4), which can be isolated in 42% yield after work-up. The electronic structure of 4 was analyzed with EPR spectroscopy, SQUID magnetometry, and NIR-visible spectroscopy. This analysis demonstrated that the energies of 5f orbitals of 4 are largely determined by the strong ligand field exerted by the nitride ligand.
Collapse
Affiliation(s)
- Selena L Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara Santa Barbara California 93106 USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara Santa Barbara California 93106 USA
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara Santa Barbara California 93106 USA
| |
Collapse
|
13
|
Keener M, Scopelliti R, Mazzanti M. Nitride protonation and NH 3 binding versus N-H bond cleavage in uranium nitrides. Chem Sci 2021; 12:12610-12618. [PMID: 34703546 PMCID: PMC8494049 DOI: 10.1039/d1sc03957a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
The conversion of metal nitrides to NH3 is an essential step in dinitrogen fixation, but there is limited knowledge of the reactivity of nitrides with protons (H+). Herein, we report comparative studies for the reactions of H+ and NH3 with uranium nitrides, containing different types of ancillary ligands. We show that the differences in ancillary ligands, leads to dramatically different reactivity. The nitride group, in nitride-bridged cationic and anionic diuranium(iv) complexes supported by –N(SiMe3)2 ligands, is resistant toward protonation by weak acids, while stronger acids result in ligand loss by protonolysis. Moreover, the basic –N(SiMe3)2 ligands promote the N–H heterolytic bond cleavage of NH3, yielding a “naked” diuranium complex containing three bridging ligands, a nitride (N3−) and two NH2 ligands. Conversely, in the nitride-bridged diuranium(iv) complex supported by –OSi(OtBu)3 ligands, the nitride group is easily protonated to afford NH3, which binds the U(iv) ion strongly, resulting in a mononuclear U–NH3 complex, where NH3 can be displaced by addition of strong acids. Furthermore, the U–OSi(OtBu)3 bonds were found to be stable, even in the presence of stronger acids, such as NH4BPh4, therefore indicating that –OSi(OtBu)3 supporting ligands are well suited to be used when acidic conditions are required, such as in the H+/e− mediated catalytic conversion of N2 to NH3. Ancillary ligands alter the reactivity of U-nitrides with H+, relevant to N2 conversion to NH3. The amides lead to complete ligand loss and NH3 activation, while for siloxides, the nitride is protonated to NH3 leaving the ancillary ligands intact.![]()
Collapse
Affiliation(s)
- Megan Keener
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
14
|
Kumar U, Ramakrishna B, Varghese J, Vidhyapriya P, Sakthivel N, Manimaran B. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host-Guest Interaction, Anticancer, and CO-Releasing Studies. Inorg Chem 2021; 60:13284-13298. [PMID: 34357751 DOI: 10.1021/acs.inorgchem.1c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular one-step self-assembly of dimanganese decacarbonyl, diaryl diselenide, and linear dipyridyl ligands (L = pyrazine (pz), 4,4'-bipyridine (bpy), and trans-1,2-bis(4-pyridyl)ethylene (bpe)) has resulted in the formation of selenolato-bridged manganese(I)-based metallorectangles. The synthesis of tetranuclear Mn(I)-based metallorectangles [{(CO)3Mn(μ-SeR)2Mn(CO)3}2(μ-L)2] (1-6) was facilitated by the oxidative addition of diaryl diselenide to dimanganese decacarbonyl with the simultaneous coordination of linear bidentate pyridyl linker in an orthogonal fashion. Formation of metallorectangles 1-6 was ascertained using IR, UV-vis, NMR spectroscopic techniques, and elemental analyses. The molecular mass of compounds 2, 4, and 6 were determined by ESI-mass spectrometry. Solid-state structural elucidation of 2, 3, and 6 by single-crystal X-ray diffraction methods revealed a rectangular framework wherein selenolato-bridges and pyridyl ligands define the shorter and longer edges, respectively. Also, the guest binding capability of metallorectangles 3 and 5 with different aromatic guests was studied using UV-vis absorption and emission spectrophotometric titration methods that affirmed strong host-guest binding interactions. The formation of the host-guest complex between metallorectangle 3 and pyrene has been explicitly corroborated by the single-crystal X-ray structure of 3•pyrene. Moreover, select metallorectangles 1-4 and 6 were studied to explore their anticancer activity, while CO-releasing ability of metallorectangle 2 was further appraised using equine heart myoglobin assay.
Collapse
Affiliation(s)
- Udit Kumar
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | - Buthanapalli Ramakrishna
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Tamil Nadu 600127, India
| | - Jisna Varghese
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| | | | - Natarajan Sakthivel
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Bala Manimaran
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
15
|
Jori N, Barluzzi L, Douair I, Maron L, Fadaei-Tirani F, Z Ivković I, Mazzanti M. Stepwise Reduction of Dinitrogen by a Uranium-Potassium Complex Yielding a U(VI)/U(IV) Tetranitride Cluster. J Am Chem Soc 2021; 143:11225-11234. [PMID: 34269064 DOI: 10.1021/jacs.1c05389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multimetallic cooperativity is believed to play a key role in the cleavage of dinitrogen to nitrides (N3-), but the mechanism remains ambiguous due to the lack of isolated intermediates. Herein, we report the reduction of the complex [K2{[UV(OSi(OtBu)3)3]2(μ-O)(μ-η2:η2-N2)}], B, with KC8, yielding the tetranuclear tetranitride cluster [K6{(OSi(OtBu)3)2UIV}3{(OSi(OtBu)3)2UVI}(μ4-N)3(μ3-N)(μ3-O)2], 1, a novel example of N2 cleavage to nitride by a diuranium complex. The structure of complex 1 is remarkable, as it contains a unique uranium center bound by four nitrides and provides the second example of a trans-N═UVI═N core analogue of UO22+. Experimental and computational studies indicate that the formation of the U(IV)/U(VI) tetrauranium cluster occurs via successive one-electron transfers from potassium to the bound N24- ligand in complex B, resulting in N2 cleavage and the formation of the putative diuranium(V) bis-nitride [K4{[UV(OSi(OtBu)3)3]2(μ-O)(μ-N)2}], X. Additionally, cooperative potassium binding to the U-bound N24- ligand facilitates dinitrogen cleavage during electron transfer. The nucleophilic nitrides in both complexes are easily functionalized by protons to yield ammonia in 93-97% yield and with excess 13CO to yield K13CN and KN13CO. The structures of two tetranuclear U(IV)/U(V) bis- and mononitride clusters isolated from the reaction with CO demonstrate that the nitride moieties are replaced by oxides without disrupting the tetranuclear structure, but ultimately leading to valence redistribution.
Collapse
Affiliation(s)
- Nadir Jori
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iskander Douair
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ivica Z Ivković
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Straub MD, Moreau LM, Qiao Y, Ouellette ET, Boreen MA, Lohrey TD, Settineri NS, Hohloch S, Booth CH, Minasian SG, Arnold J. Amidinate Supporting Ligands Influence Molecularity in Formation of Uranium Nitrides. Inorg Chem 2021; 60:6672-6679. [PMID: 33844509 DOI: 10.1021/acs.inorgchem.1c00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA)2]2(μ-N)(μ-κ1:κ1-BCMA) (7), [(U(BIMA)2)2(μ-N)(μ-NiPr)(K2(μ-η3:η3-CH2CHNiPr)]2 (8), and [U(BIMA)2]2(μ-N)(μ-κ1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. 15N isotopic labeling experiments confirmed the bridging nitride moieties in 7-9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and [U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.
Collapse
Affiliation(s)
- Mark D Straub
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yusen Qiao
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor D Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephan Hohloch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Barluzzi L, Hsueh FC, Scopelliti R, Atkinson BE, Kaltsoyannis N, Mazzanti M. Synthesis, structure, and reactivity of uranium(vi) nitrides. Chem Sci 2021; 12:8096-8104. [PMID: 34194699 PMCID: PMC8208130 DOI: 10.1039/d1sc01796a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber-Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(O t Bu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(O t Bu)3)3(μ-N)}2], 2 and [K2{U(OSi(O t Bu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant ("magic blue") yields the U(vi)/U(vi) complex [{U(OSi(O t Bu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(O t Bu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(O t Bu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U-N bonding. Computational studies show a delocalised bond across the U-N-U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U-N σ orbital well localised to U[triple bond, length as m-dash]N and π orbitals which partially delocalise to form the U-N single bond with the other uranium.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fang-Che Hsueh
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
18
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η
3
‐Coordination and Functionalization of the 2‐Phosphaethynthiolate Anion at Lanthanum(III)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Stefan Mitzinger
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 6020 Innsbruck Austria
| |
Collapse
|
19
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η 3 -Coordination and Functionalization of the 2-Phosphaethynthiolate Anion at Lanthanum(III)*. Angew Chem Int Ed Engl 2021; 60:9534-9539. [PMID: 33565689 PMCID: PMC8252525 DOI: 10.1002/anie.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 01/08/2023]
Abstract
We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(μ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(μ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.
Collapse
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Stefan Mitzinger
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
20
|
Iwai K, Mizuhata Y, Tokitoh N. Alkali-Metal-Ion-Centered Sandwich Structures of 4-Bromophenyl[tris(pentafluorophenyl)]borates and Their Synthetic Utility. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kento Iwai
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
21
|
Barluzzi L, Scopelliti R, Mazzanti M. Photochemical Synthesis of a Stable Terminal Uranium(VI) Nitride. J Am Chem Soc 2020; 142:19047-19051. [DOI: 10.1021/jacs.0c09814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Boreen MA, Groß OA, Hohloch S, Arnold J. Isocyanide adducts of tri- and tetravalent uranium metallocenes supported by tetra(isopropyl)cyclopentadienyl ligands. Dalton Trans 2020; 49:11971-11977. [PMID: 32812574 DOI: 10.1039/d0dt02005b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the uranium(iii) metallocenium salt [(CpiPr4)2U][B(C6F5)4] with tert-butyl isocyanide (tBuNC) yielded the dicationic uranium(iv) complex [(CpiPr4)2U(CNtBu)4][B(C6F5)4]2 (1), which displays a linear metallocene geometry. Use of crude mixtures of [(CpiPr4)2U][B(C6F5)4], which contain a soluble source of iodide, led instead to isolation of the monocationic uranium(iv) iodide complex [(CpiPr4)2U(I)(CNtBu)2][B(C6F5)4] (2). Adduct formation with no change in oxidation state was observed upon addition of tBuNC to the neutral uranium(iii) species (CpiPr4)2UI, resulting in isolation of (CpiPr4)2U(I)(CNtBu) (3). X-ray crystallographic and IR spectroscopic studies both showed effects ascribed to the presence of multiple strongly donating isocyanide ligands in 1.
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, USA. and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Oliver A Groß
- Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA. and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Boreen MA, Gould CA, Booth CH, Hohloch S, Arnold J. Structure and magnetism of a tetrahedral uranium(iii) β-diketiminate complex. Dalton Trans 2020; 49:7938-7944. [PMID: 32495782 DOI: 10.1039/d0dt01599g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the functionalisation of the previously reported uranium(iii) β-diketiminate complex (BDI)UI2(THF)2 (1) with one and two equivalents of a sterically demanding 2,6-diisopropylphenolate ligand (ODipp) leading to the formation of two heteroleptic complexes: [(BDI)UI(ODipp)]2 (2) and (BDI)U(ODipp)2 (3). The latter is a rare example of a tetrahedral uranium(iii) complex, and it shows single-molecule magnet behaviour.
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
24
|
Boreen MA, McCabe KN, Lohrey TD, Watt FA, Maron L, Hohloch S, Arnold J. Uranium Metallocene Azides, Isocyanates, and Their Borane-Capped Lewis Adducts. Inorg Chem 2020; 59:8580-8588. [DOI: 10.1021/acs.inorgchem.0c01038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karl N. McCabe
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fabian A. Watt
- Paderborn University, Warburger Straße 100, Paderborn 33098, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, Innsbruck 6020, Austria
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
26
|
Watt FA, McCabe KN, Schoch R, Maron L, Hohloch S. A transient lanthanum phosphinidene complex. Chem Commun (Camb) 2020; 56:15410-15413. [DOI: 10.1039/d0cc06670b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Deprotonation of the terminal phosphido complex (PN)2La(PHMes) results in the C–H-activation of one of the PN ligands via a transient phosphinidene complex.
Collapse
|