1
|
Liu C, Cai Z, Luo J, Wu L, He L. Arynes Promoted Dehydrosulfurization of Thioamides: Access to Nitriles and Diaryl Sulfides. Org Lett 2024; 26:7678-7682. [PMID: 39214529 DOI: 10.1021/acs.orglett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An aryne-promoted dehydrosulfurization reaction of thioamides to give nitriles and diaryl sulfides in a one-pot manner is presented. Aromatic, heteroaromatic, and aliphatic natural products and drug-derived nitriles and diaryl sulfides were obtained in good to excellent yields. Especially, selenoamide was also a suitable substrate and produced diaryl selenide and nitrile in high yields. The D-labeled experiments indicated that the protons of thioamides transfer to diaryl sulfides.
Collapse
Affiliation(s)
- Cuicui Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
2
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
3
|
Zhang Y, Shi S, Yang Z. Thiourea-Mediated Stereospecific Deoxygenation of Cyanoepoxides to Access Highly Diastereopure Alkenyl Nitriles. J Org Chem 2024; 89:2748-2758. [PMID: 38277233 DOI: 10.1021/acs.joc.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
A practical and efficient protocol for synthesis of >99% diastereopure Z- and E-alkenyl nitriles is developed, through tetramethylthiourea-mediated stereospecific deoxygenation of respective cis- and trans-cyanoepoxides in ethanol. The desired products are obtained in excellent yields.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shukui Shi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
4
|
George GC, Hutchins KM. Solid-State [4+4] Cycloaddition and Cycloreversion with Use of Unpaired Hydrogen-Bond Donors to Achieve Solvatomorphism and Stabilization. Chemistry 2023; 29:e202302482. [PMID: 37639230 DOI: 10.1002/chem.202302482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The crystal structure of a commercially available anthracene derivative, anthracene-9-thiocarboxamide, is reported here for the first time. The compound undergoes a [4+4] cycloaddition in the solid state to afford facile synthesis of the cycloadduct (CA). The cycloaddition is also reversible in the solid state using heat or mechanical force. Due to the presence of unpaired, strong hydrogen-bond donor atoms on the CA, significant solvatomorphism is achieved, and components of the solvatomorphs self-assemble into four different classes of supramolecular structures. The CA readily crystallizes with a variety of structurally-diverse solvents including those containing oxygen-, nitrogen-, or pi-acceptors. Some of the solvents the CA crystallized with include thiophene, benzene, and the three xylene isomers; thus, the CA was employed in industrially-relevant solvent separation. However, in competition studies, the CA did not exhibit selectivity. Lastly, it is demonstrated that the CA crystallizes with vinyl-containing monomers and is currently the only compound that crystallizes with both widely used monomers 4-vinylpyridine and styrene. Solid-state complexation of the CA with the monomers affords over a 50 °C increase in the monomer's thermal stabilities. The strategy of designing molecules with unused donors can be applied to achieve separations or volatile liquid stabilization.
Collapse
Affiliation(s)
- Gary C George
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Kristin M Hutchins
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Lancel M, Gomez C, Port M, Amara Z. Performances of Homogeneous and Heterogenized Methylene Blue on Silica Under Red Light in Batch and Continuous Flow Photochemical Reactors. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.752364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Methylene blue was efficiently immobilized on silica micro- and nanoparticles by electrostatic interactions and the performances of the heterogenized photocatalysts were compared against the homogeneous conditions using the photooxidation of citronellol as a model reaction under red light, in a batch and a continuous flow photochemical reactor. In batch, the heterogeneous photocatalyst outperforms the homogeneous one, presumably due to kinetic and stability effects. The two catalytic systems are also compared in a flow reactor displaying improved mass transfer properties. We demonstrate that this results in a dramatic enhancement in photocatalyst stability, reactivity and productivity. This study highlights the importance of photocatalyst stability under homogeneous versus heterogenized conditions and in batch versus flow photochemistry.
Collapse
|
6
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
7
|
Patel RI, Sharma A, Sharma S, Sharma A. Visible light-mediated applications of methylene blue in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d0qo01182g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the manipulation of methylene blue in visible-light-assisted organic synthesis.
Collapse
Affiliation(s)
| | - Anoop Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
8
|
Liu Y, Chen XL, Li XY, Zhu SS, Li SJ, Song Y, Qu LB, Yu B. 4CzIPN-tBu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated N-Heteroaromatics. J Am Chem Soc 2020; 143:964-972. [DOI: 10.1021/jacs.0c11138] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Xiao-Lan Chen
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xiao-Yun Li
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shan-Shan Zhu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shi-Jun Li
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yan Song
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Bing Yu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
9
|
Gao J, Feng J, Du D. Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis. Chem Asian J 2020; 15:3637-3659. [DOI: 10.1002/asia.202000905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Gao
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Jie Feng
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Ding Du
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| |
Collapse
|
10
|
Patil RD, Gupta MK. Methods of Nitriles Synthesis from Amines through Oxidative Dehydrogenation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rajendra D. Patil
- School of Chemical Sciences KCES's Moolji Jaitha College, Jalgaon (An Autonomous college affiliated to KBC, North Maharashtra University, Jalgaon) Maharashtra India- 425002
| | - Maneesh Kumar Gupta
- Department of Chemistry Hotilal Ramnath College (A constituent unit of Jai Prakash University), Amnour, Chapra Bihar 841401
| |
Collapse
|
11
|
Ganesan M, Nagaraaj P. Recent developments in dehydration of primary amides to nitriles. Org Chem Front 2020. [DOI: 10.1039/d0qo00843e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various dehydration methods available for the direct conversion of amides to the corresponding nitriles have been reviewed.
Collapse
Affiliation(s)
- Muthupandian Ganesan
- Toxicology Division
- Regional Forensic Science Laboratory
- Forensic Sciences Department
- Chennai-4
- India
| | | |
Collapse
|