1
|
Hammecke H, Fritzler D, Vashistha N, Jin P, Dietzek-Ivanšić B, Wang C. 100 μs Luminescence Lifetime Boosts the Excited State Reactivity of a Ruthenium(II)-Anthracene Complex in Photon Upconversion and Photocatalytic Polymerizations with Red Light. Chemistry 2024:e202402679. [PMID: 39298687 DOI: 10.1002/chem.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 μs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1 % in aerated solution. Particularly, RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.
Collapse
Affiliation(s)
- Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Dennis Fritzler
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Nikita Vashistha
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Benjamin Dietzek-Ivanšić
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
2
|
Jin T, Wagner D, Wenger OS. Luminescent and Photoredox-Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines. Angew Chem Int Ed Engl 2024; 63:e202314475. [PMID: 37885363 DOI: 10.1002/anie.202314475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Ruthenium(II) complexes with chelating polypyridine ligands are among the most frequently investigated compounds in photophysics and photochemistry, owing to their favorable luminescence and photoredox properties. Equally good photoluminescence performance and attractive photocatalytic behavior is now achievable with isoelectronic molybdenum(0) complexes. The zero-valent oxidation state of molybdenum is stabilized by carbonyl or isocyanide ligands, and metal-to-ligand charge transfer (MLCT) excited states analogous to those in ruthenium(II) complexes can be established. Microsecond MLCT excited-state lifetimes and photoluminescence quantum yields up to 0.2 have been achieved in solution at room temperature, and the emission wavelength has become tunable over a large range. The molybdenum(0) complexes are stronger photoreductants than ruthenium(II) polypyridines and can therefore perform more challenging chemical reductions. The triplet nature of their luminescent MLCT states allows sensitization of photon upconversion via triplet-triplet annihilation, to convert low-energy input radiation into higher-energy output fluorescence. This review summarizes the current state of the art concerning luminescent molybdenum(0) complexes and highlights their application potential. Molybdenum is roughly 140 times more abundant and far cheaper than ruthenium, hence this research is relevant in the greater context of finding more sustainable alternatives to using precious and rare transition metals in photophysics and photochemistry.
Collapse
Affiliation(s)
- Tao Jin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Glaser F, Schmitz M, Kerzig C. Coulomb interactions for mediator-enhanced sensitized triplet-triplet annihilation upconversion in solution. NANOSCALE 2023; 16:123-137. [PMID: 38054748 DOI: 10.1039/d3nr05265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion offers an attractive possibility to replace a high-energy photon by two photons with lower energy through the combination of a light-harvesting triplet sensitizer and an annihilator for the formation of a fluorescent singlet state. Typically, high annihilator concentrations are required to achieve an efficient initial energy transfer and as a direct consequence the most highly energetic emission is often not detectable due to intrinsic reabsorption by the annihilator itself. Herein, we demonstrate that the addition of a charge-adapted mediator drastically improves the energy transfer efficiency at low annihilator concentrations via an energy transfer cascade. Inspired by molecular dyads and recent developments in nanocrystal-sensitized upconversion, our system exploits a concept to minimize intrinsic filter effects, while boosting the upconversion quantum yield in solution. A sensitizer-annihilator combination consisting of a ruthenium-based complex and 9,10-diphenylanthracene (DPA) is explored as model system and a sulfonated pyrene serves as mediator. The impact of opposite charges between sensitizer and mediator - to induce coulombic attraction and subsequently result in accelerated energy transfer rate constants - is analyzed in detail by different spectroscopic methods. Ion pairing and the resulting static energy transfer in both directions is a minor process, resulting in an improved overall performance. Finally, the more intense upconverted emission in the presence of the mediator is used to drive two catalytic photoreactions in a two-chamber setup, illustrating the advantages of our approach, in particular for photoreactions requiring oxygen that would interfere with the upconversion system.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
5
|
Islam S, Mansha A, Asim S. Effects of Metal Ions and Substituents on HOMO-LUMO Gap Evident from UV-Visible and Fluorescence Spectra of Anthracene Derivatives. J Fluoresc 2023:10.1007/s10895-023-03482-y. [PMID: 37938476 DOI: 10.1007/s10895-023-03482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Controlled intake of complex metal cations and anions in the human body and other biological systems is essential for the health and well-being of the environment. Anthracene and anthracene derivatives are the most widely used sensors for this purpose. Because of their convenience, better detection and results are preferred over colorimetric sensors, which offer better color detection by the naked eye. This review article will present different designs of chemosensors using fluorescence and UV-visible spectroscopy to determine different ions. Density functional theory and Austin model 1 are widely used for theoretical and computational studies of the energy levels of molecules. The Indo/Cis method is used to calculate the geometries of anthracene oligomers. A novel anthracene-based fluorescent probe containing the benzothiazole group BFA was highly sensitive and selective toward trivalent cations (Cr3+ and Fe3+). This sensor is not sensitive to other ions, including Aluminum trivalent ions. (N- ((anthracen-9-yl) methyl)-N-(pyridin-2-yl) pyridin-2-amine) has been designed to detect zinc and copper. Click chemistry using photodimerization can be used to form cellulose nanoparticles. TEMPO-mediated hypohalite oxidation converts hydroxyl groups to carboxylic groups. Amide linkage formation between amine and carboxylic acid was followed by the installation of an alkyne group. Copper (I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) was used to produce highly photoresponsive and fluorescent cellulose nanoparticles by using coumarin, anthracene, and generated nanomaterials. The effects of naphthalene and phenanthrene on the spectra of anthracene were determined in a dilute solution. Temperature and solvent effects introduce different changes in fluorescence, emission, and absorption bands, leading to some changes in the configuration of anthracene. The solvent and temperature effects on variations of emission maxima of exciplex anthracene-diethylaniline (DEA) are also discussed.
Collapse
Affiliation(s)
- Sana Islam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asim Mansha
- Government College University, Faisalabad, Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan.
| |
Collapse
|
6
|
Wang C, Wegeberg C, Wenger OS. First-Row d 6 Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light. Angew Chem Int Ed Engl 2023; 62:e202311470. [PMID: 37681516 DOI: 10.1002/anie.202311470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Photosensitizers for sensitized triplet-triplet annihilation upconversion (sTTA-UC) often rely on precious heavy metals, whereas coordination complexes based on abundant first-row transition metals are less common. This is mainly because long-lived triplet excited states are more difficult to obtain for 3d metals, particularly when the d-subshell is only partially filled. Here, we report the first example of sTTA-UC based on a 3d6 metal photosensitizer yielding an upconversion performance competitive with precious metal-based analogues. Using a newly developed Cr0 photosensitizer featuring equally good photophysical properties as an OsII benchmark complex in combination with an acetylene-decorated anthracene annihilator, red-to-blue upconversion is achievable. The upconversion efficiency under optimized conditions is 1.8 %, and the excitation power density threshold to reach the strong annihilation limit is 5.9 W/cm2 . These performance factors, along with high photostability, permit the initiation of acrylamide polymerization by red light, based on radiative energy transfer between delayed annihilator fluorescence and a blue light absorbing photo-initiator. Our study provides the proof-of-concept for photon upconversion with elusive first-row analogues of widely employed precious d6 metal photosensitizers, and for their application in photochemical reactions triggered by excitation wavelengths close to near-infrared.
Collapse
Affiliation(s)
- Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Division of Chemical Physics, Department of Chemistry, Lund University Box 124, 22100, Lund, Sweden
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
7
|
Li Y, Zhang J, Zhu SE, Wei Y, Zhang F, Chen L, Zhou X, Liu S. Efficient Red-to-Blue Triplet-Triplet Annihilation Upconversion Using the C 70-Bodipy-Triphenylamine Triad as a Heavy-Atom-Free Triplet Photosensitizer. J Phys Chem B 2023; 127:8476-8486. [PMID: 37606596 DOI: 10.1021/acs.jpcb.3c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) with heavy-atom-free organic triplet photosensitizers has attracted extensive attention recently, however, the successful examples with absorption in red and first near-infrared (NIR-I, 650-900 nm) region are still insufficient. Herein, we conducted a new TTA-UC system of perylene using C70-bodipy-triphenylamine triad (C70-BDP-T) as the heavy-atom-free photosensitizer. Efficient red-to-blue (663 to 450 nm) TTA-UC was achieved in this system with an anti-Stokes shift of 0.88 eV and a quantum yield up to 5.2% (out of a 50% maximum) in deaerated toluene. Notably, this is the highest quantum yield to date in similar TTA-UC systems with heavy-atom-free organic photosensitizers. Using steady-state and transient absorption spectroscopy, together with cyclic voltammogram and quantum chemical calculations, photophysical and photochemical mechanisms were elucidated. Specifically, two triplet triads, C70-3BDP*-T and 3C70*-BDP-T, were produced efficiently upon photoexcitation, with lifetimes of 2.0 ± 0.1 and 32.2 ± 0.3 μs, respectively. Electron transfer and recombination mechanisms were confirmed to play crucial roles in the formation of these triplets, instead of intersystem crossing. Our results shed light on the superiority of fullerenes in the development of heavy-atom-free photosensitizers.
Collapse
Affiliation(s)
- Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhui Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yaxiong Wei
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fan Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lin Chen
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Naimovičius L, Bharmoria P, Moth-Poulsen K. Triplet-triplet annihilation mediated photon upconversion solar energy systems. MATERIALS CHEMISTRY FRONTIERS 2023; 7:2297-2315. [PMID: 37313216 PMCID: PMC10259159 DOI: 10.1039/d3qm00069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023]
Abstract
Solar energy harvesting is among the best solutions for a global transition toward carbon-neutral energy technologies. The existing solar energy harvesting technologies like photovoltaics (PV) and emerging molecular concepts such as solar fuels and molecular solar thermal energy storage (MOST) are rapidly developing. However, to realize their full potential, fundamental solar energy loss channels like photon transmission, recombination, and thermalization need to be addressed. Triplet-triplet annihilation mediated photon upconversion (TTA-UC) is emerging as a way to overcome losses due to the transmission of photons below the PV/chromophore band gap. However, there are several challenges related to the integration of efficient solid-state TTA-UC systems into efficient devices such as: wide band absorption, materials sustainability, and device architecture. In this article, we review existing work, identify and discuss challenges as well as present our perspective toward possible future directions.
Collapse
Affiliation(s)
- Lukas Naimovičius
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra 08193 Barcelona Spain
- Institute of Photonics and Nanotechnology, Vilnius University Saulėtekio av. 3 LT-10257 Vilnius Lithuania
| | - Pankaj Bharmoria
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra 08193 Barcelona Spain
| | - Kasper Moth-Poulsen
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra 08193 Barcelona Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivagen 4 Gothenburg 412 96 Sweden
| |
Collapse
|
9
|
Honda J, Sugawa K, Tahara H, Otsuki J. Plasmonic Metal Nanostructures Meet Triplet-Triplet Annihilation-Based Photon Upconversion Systems: Performance Improvements and Application Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091559. [PMID: 37177104 PMCID: PMC10181111 DOI: 10.3390/nano13091559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Improving the performance of upconversion systems based on triplet-triplet annihilation (TTA-UC) can have far-reaching implications for various fields, including solar devices, nano-bioimaging, and nanotherapy. This review focuses on the use of localized surface plasmon (LSP) resonance of metal nanostructures to enhance the performance of TTA-UC systems and explores their potential applications. After introducing the basic driving mechanism of TTA-UC and typical sensitizers used in these systems, we discuss recent studies that have utilized new sensitizers with distinct characteristics. Furthermore, we confirm that the enhancement in upconverted emission can be explained, at least in part, by the mechanism of "metal-enhanced fluorescence", which is attributed to LSP resonance-induced fluorescence enhancement. Next, we describe selected experiments that demonstrate the enhancement in upconverted emission in plasmonic TTA-UC systems, as well as the emerging trends in their application. We present specific examples of studies in which the enhancement in upconverted emission has significantly improved the performance of photocatalysts under both sunlight and indoor lighting. Additionally, we discuss the potential for future developments in plasmonic TTA-UC systems.
Collapse
Affiliation(s)
- Jotaro Honda
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan
| | - Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308, Japan
| |
Collapse
|
10
|
Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS NANO 2023; 17:3259-3288. [PMID: 36800310 DOI: 10.1021/acsnano.3c00543] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.
Collapse
Affiliation(s)
- Tracy Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Emma Belliveau
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Seitz
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Zähringer TJB, Moghtader JA, Bertrams MS, Roy B, Uji M, Yanai N, Kerzig C. Blue-to-UVB Upconversion, Solvent Sensitization and Challenging Bond Activation Enabled by a Benzene-Based Annihilator. Angew Chem Int Ed Engl 2023; 62:e202215340. [PMID: 36398891 PMCID: PMC10108172 DOI: 10.1002/anie.202215340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Several energy-demanding photoreactions require harsh UV light from inefficient light sources. The conversion of low-energy visible light to high-energy singlet states via triplet-triplet annihilation upconversion (TTA-UC) could offer a solution for driving such reactions under mild conditions. We present the first annihilator with an emission maximum in the UVB region that, combined with an organic sensitizer, is suitable for blue-to-UVB upconversion. The annihilator singlet was successfully employed as an energy donor in subsequent FRET activations of aliphatic carbonyls. This hitherto unreported UC-FRET reaction sequence was directly monitored using laser spectroscopy and applied to mechanistic irradiation experiments demonstrating the feasibility of Norrish chemistry. Our results provide clear evidence for a novel blue light-driven substrate or solvent activation strategy, which is important in the context of developing more sustainable light-to-chemical energy conversion systems.
Collapse
Affiliation(s)
- Till J B Zähringer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Julian A Moghtader
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bibhisan Roy
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanori Uji
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
12
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
13
|
Duan J, Liu Y, Zhang Y, Chen Z, Xu X, Ye L, Wang Z, Yang Y, Zhang D, Zhu H. Efficient solid-state infrared-to-visible photon upconversion on atomically thin monolayer semiconductors. SCIENCE ADVANCES 2022; 8:eabq4935. [PMID: 36288313 PMCID: PMC9604526 DOI: 10.1126/sciadv.abq4935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 05/28/2023]
Abstract
Upconverting infrared light into visible light via the triplet-triplet annihilation process in solid state is important for various applications including photovoltaics, photodetection, and bioimaging. Although inorganic semiconductors with broad absorption and negligible exchange energy loss have emerged as promising alternative to molecular sensitizers, currently, they have exclusively suffered from low efficiency and contained toxic elements in near-infrared (NIR)-to-visible upconversion. Here, we report an ultrathin bilayer film for NIR-to-visible upconversion based on atomically thin two-dimensional (2D) monolayer semiconductors. The atomic flatness and strong light absorption of 2D monolayer semiconductors enable ultrafast energy transfer and robust NIR-to-visible emission with a high upconversion quantum yield (1.1 ± 0.2%) at modest incident power (260 mW cm-2). Increasing layer thickness adversely quenches the upconversion emission, highlighting the 2D advantage. Considering the whole library of 2D semiconductors, the facile large-scale production and the ultrathin solid-state architecture open a new research field for solid-state upconversion applications.
Collapse
Affiliation(s)
- Jiaru Duan
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yanping Liu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yongqing Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xuehui Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lei Ye
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zukun Wang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yang Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
14
|
Bharmoria P, Edhborg F, Bildirir H, Sasaki Y, Ghasemi S, Mårtensson A, Yanai N, Kimizuka N, Albinsson B, Börjesson K, Moth-Poulsen K. Recyclable optical bioplastics platform for solid state red light harvesting via triplet-triplet annihilation photon upconversion. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:21279-21290. [PMID: 36325268 PMCID: PMC9578683 DOI: 10.1039/d2ta04810h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)2(TFSI)2), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)2(TFSI)2 bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
| | - Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
| | - Hakan Bildirir
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
| | - Yoichi Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
| | - Anders Mårtensson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology Kemivägen 10 Gothenburg 412 96 Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivägen 4 Gothenburg 412 96 Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra Barcelona, 08193 Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluís Companys 23 Barcelona Spain
| |
Collapse
|
15
|
Liang H, Tang L, He J, Li J, Chen Z, Cai S, Pang J, Mahmood Z, Chen W, Li MD, Zhao Z, Huo Y, Ji S. Modulating the intersystem crossing mechanism of anthracene carboxyimide-based photosensitizers via structural adjustments and application as a potent photodynamic therapeutic reagent. Phys Chem Chem Phys 2022; 24:20901-20912. [PMID: 36047252 DOI: 10.1039/d2cp02897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a series of compact anthracene carboxyimide (ACI) based donor-acceptor dyads were prepared by substituting bulky aryl moieties with various electron-donating ability to study the triplet-excited state properties. The ISC mechanism and triplet yield of the dyads were successfully tuned via structural manipulation. Efficient ISC (ΦΔ ≈ 99%) and long-lived triplet state (τT ≈ 122 μs) was observed for the orthogonal anthracene-labeled ACI derivative compared to the Ph-ACI and NP-ACI dyads, which showed fast triplet state decay (τT ≈ 7.7 μs). Femtosecond transient absorption study demonstrated the ultrafast charge separation (CS) and efficient charge recombination (CR) in the orthogonal dyads and ISC occurring via spin-orbit charge transfer (SOCT) mechanism (AN-ACI: τCS = 355 fs, τCR = 2.41 ns; PY-ACI: τCS = 321 fs, τCR = 1.61 ns), while in Ph-ACI and NP-ACI dyads triplet populate following the normal ISC channel (nπ* → ππ* transition), no CS was observed. We found that the attachment of suitable aryl donor moiety (AN- or PY-) to the ACI core can ensure the insertion of the intermediate triplet state, resulting in a small energy gap among charge separated state (CSS) and triplet state, which leads to efficient ISC in these derivatives. The SOCT-ISC-based AN-ACI dyad was confirmed to be a potent photodynamic therapeutic reagent; an ultra-low IC50 value (0.27 nM) that was nearly 214 times lower than that of the commercial Rose Bengal photosensitizer (57.8 nM) was observed.
Collapse
Affiliation(s)
- Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Liting Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jiaxing He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zeduan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shuqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Wencheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
16
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
18
|
Hino Y, Matsuo T, Hayashi S. Structural Phase Transitions in Anthracene Crystals. Chempluschem 2022; 87:e202200157. [PMID: 35762685 DOI: 10.1002/cplu.202200157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Indexed: 01/03/2023]
Abstract
Anthracene (C14 H10 ) and its derivatives, π-conjugated molecules in acenes, have been widely researched in terms of their reactions, physical properties, and self-assembly (or crystal engineering). These molecules can be functionalized to tune reactivities, optoelectronic properties, and self-assembling abilities. Structural changes in the molecular assemblies, solid states, and crystals have recently been discovered. Therefore, a systematic discussion of anthracene's molecular structure, packing, and optical properties based on its intermolecular structure and phase transitions is important for future chemical and structural design. In the present review, we discuss anthracene's molecular design, dimer packing, and crystal structure, focusing on the structural phase transitions of its crystals. We also provide examples of the phase transitions of anthracene crystals. Changes to edge-to-face of CH-π interaction and face-to-face packing of π-π interaction affect the thermodynamic stabilities of various crystal structures. These structures can inform the prediction of structural and physical properties.
Collapse
Affiliation(s)
- Yuto Hino
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Takumi Matsuo
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Shotaro Hayashi
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| |
Collapse
|
19
|
Heavy atom-free triplet photosensitizer based on thermally activated delayed fluorescence material for NIR-to-blue triplet-triplet annihilation upconversion. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Cooperation of σ-π and σ*-π* Conjugation in the UV/Vis and Fluorescence Spectra of 9,10-Disilylanthracene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072241. [PMID: 35408638 PMCID: PMC9000373 DOI: 10.3390/molecules27072241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
In 1996, we reported that silyl groups of 9,10-disilylanthracenes significantly affect the UV/Vis and fluorescence spectra. Although the results indicate that the silyl groups have strong electronic effects on anthracene, the details of the mechanisms responsible for this have not yet been clarified. This article describes the analysis of the UV/Vis and fluorescence spectra of 9,10-bis(diisopropylsilyl)anthracene by theoretical calculations. This study reveals that π conjugation of anthracene is extended by cooperation of σ-π and σ*-π* conjugation between the silyl groups and anthracene. This effect increases the transition moment of the π-π* transition of anthracene. As a result, the molecular extinction coefficient of the 1La band and the fluorescence quantum yield are increased.
Collapse
|
21
|
Schmid L, Glaser F, Schaer R, Wenger OS. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. J Am Chem Soc 2022; 144:963-976. [PMID: 34985882 DOI: 10.1021/jacs.1c11667] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Raoul Schaer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Kyushin S, Fujii H, Negishi K, Matsumoto H. Improvement of the fluorescence quantum yield of triphenylene by the rotational effect of 4-(trimethylsilyl)phenyl groups. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Yang M, Sheykhi S, Zhang Y, Milsmann C, Castellano FN. Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer. Chem Sci 2021; 12:9069-9077. [PMID: 34276936 PMCID: PMC8261719 DOI: 10.1039/d1sc01662h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr(iv) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA-carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet-triplet energy transfer (TTET) processes (ΔG ∼ -0.19 eV) featured very large Stern-Volmer quenching constants (K SV) approaching or achieving 105 M-1 with bimolecular rate constants between 2 and 3 × 108 M-1 s-1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet-triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern-Volmer metrics support 95% quenching of the Zr(iv) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence (λ ex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting η UC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm-2) below that of solar flux integrated across the Zr(iv) photosensitizer's absorption band (26.7 mW cm-2). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals.
Collapse
Affiliation(s)
- Mo Yang
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Sara Sheykhi
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Yu Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| |
Collapse
|
24
|
Sasaki Y, Amemori S, Yanai N, Kimizuka N. Singlet-to-Triplet Absorption for Near-Infrared-to-Visible Photon Upconversion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoichi Sasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Amemori
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Kanoh M, Matsui Y, Honda K, Kokita Y, Ogaki T, Ohta E, Ikeda H. Elongation of Triplet Lifetime Caused by Intramolecular Energy Hopping in Diphenylanthracene Dyads Oriented to Undergo Efficient Triplet-Triplet Annihilation Upconversion†. J Phys Chem B 2021; 125:4831-4837. [PMID: 33891418 DOI: 10.1021/acs.jpcb.1c01982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplet-triplet annihilation (TTA)-assisted photon upconversion (TTA-UC) in three dyads (DPA-Cn-DPA), comprised of two diphenylanthracene (DPA) moieties connected by nonconjugated C1, C2, and C3 linkages (Cn), has been investigated. The performance of these dyads as energy acceptors in the presence of the energy donor platinum octaethylporphyrin are characterized by longer triplet lifetimes (τT) and different TTA rate constants than those of the parent DPA. The larger τT of the linked systems, caused by "intramolecular energy hopping" in the triplet dyad 3DPA*-Cn-DPA, results in a low threshold intensity, a key characteristic of efficient TTA-UC.
Collapse
Affiliation(s)
- Masaya Kanoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yasunori Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kiyomasa Honda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuto Kokita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Takuya Ogaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Eisuke Ohta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.,The Research Institute for Molecular Electronic Devices (RIMED), Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
26
|
Wei Y, Xian H, Lv X, Ni F, Cao X, Yang C. Triplet-triplet annihilation upconversion with reversible emission-tunability induced by chemical-stimuli: a remote modulator for photocontrol isomerization. MATERIALS HORIZONS 2021; 8:606-611. [PMID: 34821277 DOI: 10.1039/d0mh01590c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has been widely studied, but a color-tunable TTA-UC system triggered by chemical stimuli has not yet been proposed. Herein, reversible acid/base switching of the TTA-UC emission wavelength is achieved for the first time by a simple platform, composed of a direct singlet-triplet (S0-T1) absorption photosensitizer, and proton-responsive 9,10-di(pyridin-4-yl)anthracene (DPyA) as an acceptor. The photosensitizer-acceptor pair exhibits efficient UC emission (quantum yield up to 3.3%, and anti-Stokes shift up to 0.92 eV) with remarkable contrast upon base/acid treatment (Δλem,max = 82 nm, 0.46 eV). In a proof-of-concept study, the color-adjustable TTA-UC emission was applied as a remote modulator to photo-control reversible chemical reactions for the first time. This platform enriches the portfolio of color-switchable TTA-UC, and the mechanism would inspire further development of smart UC systems and extend the application field of upconversion.
Collapse
Affiliation(s)
- Yaxiong Wei
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | |
Collapse
|
27
|
Niihori Y, Wada Y, Mitsui M. Single Platinum Atom Doping to Silver Clusters Enables Near‐Infrared‐to‐Blue Photon Upconversion. Angew Chem Int Ed Engl 2021; 60:2822-2827. [DOI: 10.1002/anie.202013725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/16/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Yuki Wada
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
28
|
Niihori Y, Wada Y, Mitsui M. Single Platinum Atom Doping to Silver Clusters Enables Near‐Infrared‐to‐Blue Photon Upconversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Niihori
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Yuki Wada
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Masaaki Mitsui
- Department of Chemistry College of Science Rikkyo University 3-34-1, Nishiikebukuro, Toshima-ku Tokyo 171-8501 Japan
| |
Collapse
|
29
|
Bilger JB, Kerzig C, Larsen CB, Wenger OS. A Photorobust Mo(0) Complex Mimicking [Os(2,2'-bipyridine) 3] 2+ and Its Application in Red-to-Blue Upconversion. J Am Chem Soc 2021; 143:1651-1663. [PMID: 33434435 DOI: 10.1021/jacs.0c12805] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osmium(II) polypyridines are a well-known class of complexes with luminescent metal-to-ligand charge-transfer (MLCT) excited states that are currently experiencing a revival due to their application potential in organic photoredox catalysis, triplet-triplet annihilation upconversion, and phototherapy. At the same time, there is increased interest in the development of photoactive complexes made from Earth-abundant rather than precious metals. Against this background, we present a homoleptic Mo(0) complex with a new diisocyanide ligand exhibiting different bite angles and a greater extent of π-conjugation than previously reported related chelates. This new design leads to deep red emission, which is unprecedented for homoleptic arylisocyanide complexes of group 6 metals. With a 3MLCT lifetime of 56 ns, an emission band maximum at 720 nm, and a photoluminescence quantum yield of 1.5% in deaerated toluene at room temperature, the photophysical properties are reminiscent of the prototypical [Os(2,2'-bipyridine)3]2+ complex. Under 635 nm irradiation with a cw-laser, the new Mo(0) complex sensitizes triplet-triplet annihilation upconversion of 9,10-diphenylanthracene (DPA), resulting in delayed blue fluorescence with an anti-Stokes shift of 0.93 eV. The photorobustness of the Mo(0) complex and the upconversion quantum yield are high enough to generate a flux of upconverted light that can serve as a sufficiently potent irradiation source for a blue-light-driven photoisomerization reaction. These findings are relevant in the greater contexts of designing new luminophores and photosensitizers for use in red-light-driven photocatalysis, photochemical upconversion, light-harvesting, and phototherapy.
Collapse
Affiliation(s)
- Jakob B Bilger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Weber JL, Churchill EM, Jockusch S, Arthur EJ, Pun AB, Zhang S, Friesner RA, Campos LM, Reichman DR, Shee J. In silico prediction of annihilators for triplet-triplet annihilation upconversion via auxiliary-field quantum Monte Carlo. Chem Sci 2020; 12:1068-1079. [PMID: 34163873 PMCID: PMC8179011 DOI: 10.1039/d0sc03381b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
The energy of the lowest-lying triplet state (T1) relative to the ground and first-excited singlet states (S0, S1) plays a critical role in optical multiexcitonic processes of organic chromophores. Focusing on triplet-triplet annihilation (TTA) upconversion, the S0 to T1 energy gap, known as the triplet energy, is difficult to measure experimentally for most molecules of interest. Ab initio predictions can provide a useful alternative, however low-scaling electronic structure methods such as the Kohn-Sham and time-dependent variants of Density Functional Theory (DFT) rely heavily on the fraction of exact exchange chosen for a given functional, and tend to be unreliable when strong electronic correlation is present. Here, we use auxiliary-field quantum Monte Carlo (AFQMC), a scalable electronic structure method capable of accurately describing even strongly correlated molecules, to predict the triplet energies for a series of candidate annihilators for TTA upconversion, including 9,10 substituted anthracenes and substituted benzothiadiazole (BTD) and benzoselenodiazole (BSeD) compounds. We compare our results to predictions from a number of commonly used DFT functionals, as well as DLPNO-CCSD(T0), a localized approximation to coupled cluster with singles, doubles, and perturbative triples. Together with S1 estimates from absorption/emission spectra, which are well-reproduced by TD-DFT calculations employing the range-corrected hybrid functional CAM-B3LYP, we provide predictions regarding the thermodynamic feasibility of upconversion by requiring (a) the measured T1 of the sensitizer exceeds that of the calculated T1 of the candidate annihilator, and (b) twice the T1 of the annihilator exceeds its S1 energetic value. We demonstrate a successful example of in silico discovery of a novel annihilator, phenyl-substituted BTD, and present experimental validation via low temperature phosphorescence and the presence of upconverted blue light emission when coupled to a platinum octaethylporphyrin (PtOEP) sensitizer. The BTD framework thus represents a new class of annihilators for TTA upconversion. Its chemical functionalization, guided by the computational tools utilized herein, provides a promising route towards high energy (violet to near-UV) emission.
Collapse
Affiliation(s)
- John L Weber
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Evan J Arthur
- Schrodinger Inc 120 West 45th Street New York NY 1003 USA
| | - Andrew B Pun
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute 162 5th Avenue New York NY 10010 USA
- Department of Physics, College of William and Mary Williamsburg VA 23187 USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - Luis M Campos
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - David R Reichman
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| | - James Shee
- Department of Chemistry, Columbia University 3000 Broadway New York NY 10027 USA
| |
Collapse
|
31
|
Huang L, Wu W, Li Y, Huang K, Zeng L, Lin W, Han G. Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis. J Am Chem Soc 2020; 142:18460-18470. [DOI: 10.1021/jacs.0c06976] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing School of Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Yang Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Le Zeng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Wenhai Lin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
32
|
Bharmoria P, Bildirir H, Moth-Poulsen K. Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chem Soc Rev 2020; 49:6529-6554. [PMID: 32955529 DOI: 10.1039/d0cs00257g] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Triplet-triplet annihilation based molecular photon upconversion (TTA-UC) is an exciting research area for a broad range of photonic applications due to its tunable spectral range and possible operation at non-coherent solar irradiance. Most of the TTA-UC studies are limited to Visible to Visible (Vis to Vis) energy upconversion. However, for several practical photonic applications, efficient near infrared (NIR) to Vis upconversion is preferred. Examples include, (i) photovoltaics where TTA-UC could lead to utilization of a larger part of the solar spectrum and (ii) in NIR stimulated biological applications where the deep penetration and non-invasive nature of NIR light coupled to TTA-UC offers new opportunities. Although, NIR to Vis TTA-UC is known since 2007, the recent five years have witnessed quite a progress in terms of the development of new chromophores, hybrid systems and fabrication techniques to increase the UC quantum yield at low excitation intensity. With this tutorial review we are reviewing recent progress, identifying existing challenges and discus possible future directions and opportunities.
Collapse
|
33
|
Wehlin SAM, Troian-Gautier L, Maurer AB, Brennaman MK, Meyer GJ. Photophysical characterization of new osmium (II) photocatalysts for hydrohalic acid splitting. J Chem Phys 2020; 153:054307. [DOI: 10.1063/5.0014269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), CP 160/06, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium
| | - Andrew B. Maurer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - M. Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|