1
|
Gabarró-Riera G, Sañudo EC. Challenges for exploiting nanomagnet properties on surfaces. Commun Chem 2024; 7:99. [PMID: 38693350 PMCID: PMC11063158 DOI: 10.1038/s42004-024-01183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Molecular complexes with single-molecule magnet (SMM) or qubit properties, commonly called molecular nanomagnets, are great candidates for information storage or quantum information processing technologies. However, the implementation of molecular nanomagnets in devices for the above-mentioned applications requires controlled surface deposition and addressing the nanomagnets' properties on the surface. This Perspectives paper gives a brief overview of molecular properties on a surface relevant for magnetic molecules and how they are affected when the molecules interact with a surface; then, we focus on systems of increasing complexity, where the relevant SMMs and qubit properties have been observed for the molecules deposited on surfaces; finally, future perspectives, including possible ways of overcoming the problems encountered so far are discussed.
Collapse
Affiliation(s)
- Guillem Gabarró-Riera
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona IN2UB, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - E Carolina Sañudo
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona IN2UB, C/Martí i Franqués 1-11, 08028, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Wang T, Xu L, Wu Z, Li Y, Yin Z, Han J, Yang Z, Qiu J, Song Z. Self-doping induced oxygen vacancies and lattice strains for synergetic enhanced upconversion luminescence of Er 3+ ions in 2D BiOCl nanosheets. NANOSCALE 2022; 14:12909-12917. [PMID: 36043419 DOI: 10.1039/d2nr02624d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare earth (RE) ions combined with two-dimensional (2D) semiconductors can exhibit unexpected optical properties. However, fluorescence quenching has always been inevitable due to defects associated with the synthesis and doping of 2D materials. In this work, we reported an efficient upconversion (UC) enhancement of Er3+ doped BiOCl nanosheets, utilizing a defect engineering strategy conversely rather than eliminating defects. Experiments and theoretical calculations provide evidence that oxygen vacancies (OVs) and lattice strain are simultaneously formed in the BiOCl:Er3+ nanosheets through self-doping of Cl- ions. Under 980 nm excitation, samples doped with 300 mol% Cl- ions exhibit the best luminescent emission, and the green and red UC emissions are enhanced 3.5 and 15 times, respectively. We showed that the OVs in the 2D semiconductor can act as energy bridges to transfer charges to the Er3+ energy level, enriching the electron population at the excited levels; while, the lattice strain enhances the energy transfer and charge accumulation, which synergistically enhance the UC luminescence. This research provides a new insight into the development of defect engineering for UC PL in 2D nanomaterials.
Collapse
Affiliation(s)
- Tianhui Wang
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Liang Xu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhijie Wu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhaoyi Yin
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Jin Han
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhengwen Yang
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Jianbei Qiu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
3
|
Two transition metal-organic frameworks based on 5-phenyl-isophthalate and N-donor mixed ligands: Structure, magnetic, drug delivery and catalytic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
5
|
Tan BJ, Ren JT, Duan BH, Xu MH, Chen SL, Zhang H, Liu N. Facile synthesis and superior properties of a nitrogen-rich energetic Zn-MOF with a 2D azide-bridged bilayer structure. Dalton Trans 2022; 51:7804-7810. [PMID: 35441648 DOI: 10.1039/d2dt00789d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring the facile synthesis of Pb-free energetic metal-organic frameworks (EMOFs) with both high nitrogen content and high thermostability is a significant but challenging task in the field of MOF-based green energetic materials. Herein, a new EMOF, [Zn2(atz)3(N3)]n (atz = 5-amino-1H-tetrazole), has been synthesized by simply using a commercial ligand (atz) under mild conditions. A probable mechanism for the formation of azide groups in the product has been proposed, in which the fraction of C-N and N-N bonds in atz is the key. The X-ray single crystal structure analysis reveals the EMOF's unique graphene-like and azide-group-bridged 2D bilayer structure with gourd-type micropores. More impressively, the EMOF shows a high nitrogen content of 59.33% and superior thermostability of up to 362 °C, both among the best of existing EMOFs. In addition, detonation property calculations and sensitivity tests have been carried out, which demonstrate its high-energy and low-sensitivity features. Moreover, [Zn2(atz)3(N3)]n shows the ability to accelerate the thermal decomposition of ammonium perchlorate (AP) and hexanitrohexaazaisowurtzitane (CL-20), making it a potential combustion promoter for green and insensitive propellants.
Collapse
Affiliation(s)
- Bo-Jun Tan
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| | - Jia-Tong Ren
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| | - Bing-Hui Duan
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| | - Ming-Hui Xu
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| | - Shao-Li Chen
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| | - Heng Zhang
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| | - Ning Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi, 710065, China.
| |
Collapse
|
6
|
Ganjali F, Kashtiaray A, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. NANOSCALE ADVANCES 2022; 4:1263-1307. [PMID: 36133673 PMCID: PMC9418160 DOI: 10.1039/d1na00818h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Herein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated. In addition, MCSs can shorten the reaction time, effectively accelerate reactions, and significantly upgrade both pharmaceutical synthesis and degradation mechanisms by preventing unwanted side reactions. Moreover, the other significant benefits of MCSs include their convenient magnetic separation, high stability and reusability, inexpensive raw materials, facile preparation routes, and surface functionalization. In this review, our aim is to present at the recent improvements in the structure of versatile MCSs and their characteristics, i.e., magnetization, recyclability, structural stability, turnover number (TON), and turnover frequency (TOF). Concisely, different hybrid and multifunctional MCSs are discussed. Additionally, the applications of MCSs for the synthesis of different pharmaceutical ingredients and degradation of organic wastewater contaminants such as toxic dyes and drugs are demonstrated.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
7
|
Shao JJ, Ni J, Liang Y, Li GJ, Chen L, Wang FM. Luminescent MOFs for selective sensing of Ag+ and other ions(Fe(III) and Cr(VI))in aqueous solution. CrystEngComm 2022. [DOI: 10.1039/d2ce00057a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new title MOFs, [Zn(BTA)2]n(MOF-1), [Zn3(BTA)2(5-tbuip)2]n(MOF-2) (BTA=1H-Benzotriazole, 5-tbuip=5-tert-Butylisophthalcc Acid) have been synthesized by solvothermal method. The structures of two complexes have been determined by single-crystal X-ray diffraction analysis and further...
Collapse
|
8
|
|
9
|
López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, Šiškins M, Lee M, Steeneken PG, van der Zant HSJ, Mínguez Espallargas G, Coronado E. Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal-Organic Frameworks (MOFs). J Am Chem Soc 2021; 143:18502-18510. [PMID: 34723487 PMCID: PMC8587609 DOI: 10.1021/jacs.1c07802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 11/28/2022]
Abstract
Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solvent-free synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation of additional substituents in the ligand results in a novel system, denoted as MUV-8, formed by covalently bound magnetic double layers interconnected by van der Waals interactions, a topology that is very rare in the field of 2D materials and unprecedented for 2D magnets. These layered materials are robust enough to be mechanically exfoliated down to a few layers with large lateral dimensions. Finally, the robustness and crystallinity of these layered MOFs allow the fabrication of nanomechanical resonators that can be used to detect─through laser interferometry─the magnetic order in thin layers of these 2D molecule-based antiferromagnets.
Collapse
Affiliation(s)
- Javier López-Cabrelles
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Samuel Mañas-Valero
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | | | - Makars Šiškins
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Martin Lee
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Peter G. Steeneken
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Guillermo Mínguez Espallargas
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| | - Eugenio Coronado
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, c/Catedrático
José Beltrán, 2, 46980 Paterna, Spain
| |
Collapse
|
10
|
Luminescent and Magnetic Tb-MOF Flakes Deposited on Silicon. Molecules 2021; 26:molecules26185503. [PMID: 34576973 PMCID: PMC8469199 DOI: 10.3390/molecules26185503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis of a terbium-based 2D metal–organic framework (MOF), of formula [Tb(MeCOO)(PhCOO)2] (1), a crystalline material formed by neutral nanosheets held together by Van der Waals interactions, is presented. The material can be easily exfoliated by sonication and deposited onto different substrates. Uniform distributions of Tb-2D MOF flakes onto silicon were obtained by spin-coating. We report the luminescent and magnetic properties of the deposited flakes compared with those of the bulk. Complex 1 is luminescent in the visible and has a sizeable quantum yield of QY = 61% upon excitation at 280 nm. Photoluminescence measurements performed using a micro-Raman set up allowed us to characterize the luminescent spectra of individual flakes on silicon. Magnetization measurements of flakes-on-silicon with the applied magnetic field in-plane and out-of-plane display anisotropy. Ac susceptibility measurements show that 1 in bulk exhibits field-induced slow relaxation of the magnetization through two relaxation paths and the slowest one, with a relaxation time of τlf ≈ 0.5 s, is assigned to a direct process mechanism. The reported exfoliation of lanthanide 2D-MOFs onto substrates is an attractive approach for the development of multifunctional materials and devices for different applications.
Collapse
|
11
|
Wang Z, Walter LS, Wang M, Petkov PS, Liang B, Qi H, Nguyen NN, Hambsch M, Zhong H, Wang M, Park S, Renn L, Watanabe K, Taniguchi T, Mannsfeld SCB, Heine T, Kaiser U, Zhou S, Weitz RT, Feng X, Dong R. Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal-Organic Framework Films toward Directional Charge Transport. J Am Chem Soc 2021; 143:13624-13632. [PMID: 34342992 DOI: 10.1021/jacs.1c05051] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables access to direct charge transport, dial-in lateral/vertical electronic devices, and the unveiling of transport mechanisms but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M = Cu or Fe) with an unprecedented edge-on layer orientation at the air/water interface. The edge-on structure formation is guided by the preorganization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2 size) Hall-effect measurement reveals a Hall mobility of ∼4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the development of various optoelectronic applications and the exploration of unique transport properties.
Collapse
Affiliation(s)
- Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lisa S Walter
- I. Physical Institute, Faculty of Physics, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Physics of Nanosystems, Department of Physics, Ludwig-Maximilians-University München, 80799 Munich, Germany
| | - Mao Wang
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Petko St Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| | - Baokun Liang
- Central Facility for Electron Microscopy, Electron Microscopy of Materials Science Central, Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Haoyuan Qi
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Central Facility for Electron Microscopy, Electron Microscopy of Materials Science Central, Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - SangWook Park
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lukas Renn
- I. Physical Institute, Faculty of Physics, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Physics of Nanosystems, Department of Physics, Ludwig-Maximilians-University München, 80799 Munich, Germany
| | - Kenji Watanabe
- National Institute for Materials Science, 305-0047 Tsukua, Japan
| | | | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Heine
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Leipzig Research Branch, 04316 Leipzig, Germany.,Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Electron Microscopy of Materials Science Central, Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Ralf Thomas Weitz
- I. Physical Institute, Faculty of Physics, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Physics of Nanosystems, Department of Physics, Ludwig-Maximilians-University München, 80799 Munich, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Max Planck Institute for Microstructure Physics, Weinberg 2, Halle (Saale), D-06120 Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
12
|
Heydari M, Gharagozlou M, Ghahari M, Sadjadi S. Synthesis and characterization of CoFe2O4@TiO2@HKUST-1 as a novel metal-organic framework nanocomposite. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
González J, Sevilla P, Gabarró‐Riera G, Jover J, Echeverría J, Fuertes S, Arauzo A, Bartolomé E, Sañudo EC. A Multifunctional Dysprosium‐Carboxylato 2D Metall–Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonay González
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
| | - Pablo Sevilla
- Department of Mechanical Engineering Escola Universitària Salesiana de Sarrià (EUSS) Passeig de Sant Joan Bosco, 74 08017 Barcelona Spain
| | - Guillem Gabarró‐Riera
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Nanociència i Tecnologia Universitat de Barcelona IN2UB C/Martí i Franquès, 1–11 08028 Barcelona Spain
| | - Jesús Jover
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional Universitat de Barcelona 08028 Barcelona Spain
| | - Jorge Echeverría
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional Universitat de Barcelona 08028 Barcelona Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica Facultad de Ciencias, Instituto de Síntesis Química y Catálisis, Homogénea (ISQCH) CSIC-Universidad de Zaragoza Zaragoza Spain
| | - Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
| | - Elena Bartolomé
- Department of Mechanical Engineering Escola Universitària Salesiana de Sarrià (EUSS) Passeig de Sant Joan Bosco, 74 08017 Barcelona Spain
| | - E. Carolina Sañudo
- Secció de Química Inorgànica Departament de Química Inorgànica i Orgànica Universitat de Barcelona C/Martí i Franquès, 1–11 08028 Barcelona Spain
- Institut de Nanociència i Tecnologia Universitat de Barcelona IN2UB C/Martí i Franquès, 1–11 08028 Barcelona Spain
| |
Collapse
|
14
|
González J, Sevilla P, Gabarró-Riera G, Jover J, Echeverría J, Fuertes S, Arauzo A, Bartolomé E, Sañudo EC. A Multifunctional Dysprosium-Carboxylato 2D Metall-Organic Framework. Angew Chem Int Ed Engl 2021; 60:12001-12006. [PMID: 33587310 DOI: 10.1002/anie.202100507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Indexed: 01/05/2023]
Abstract
We report the microwave assisted synthesis of a bidimensional (2D) MOF of formula [Dy(MeCOO)(PhCOO)2 ]n (1) and its magnetically diluted analogue [La0.9 Dy0.1 (MeCOO)(PhCOO)2 ] (1 d). 1 is a 2D material with single-ion-magnet (SIM) behaviour and 1 d is a multifunctional, magnetic and luminescent 2D material. 1 can be exfoliated into stable nanosheets by sonication.
Collapse
Affiliation(s)
- Jonay González
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Pablo Sevilla
- Department of Mechanical Engineering, Escola Universitària Salesiana de Sarrià (EUSS), Passeig de Sant Joan Bosco, 74, 08017, Barcelona, Spain
| | - Guillem Gabarró-Riera
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Tecnologia, Universitat de Barcelona IN2UB, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Jorge Echeverría
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sara Fuertes
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis, Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Elena Bartolomé
- Department of Mechanical Engineering, Escola Universitària Salesiana de Sarrià (EUSS), Passeig de Sant Joan Bosco, 74, 08017, Barcelona, Spain
| | - E Carolina Sañudo
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain.,Institut de Nanociència i Tecnologia, Universitat de Barcelona IN2UB, C/Martí i Franquès, 1-11, 08028, Barcelona, Spain
| |
Collapse
|
15
|
Zhang X, Jin Y, Wang G, Liu A, Zhang DS, Zhang YZ, Hu H, Li T, Geng L. Construction of Co/Ni-based coordination polymers with three-dimensional isostructural frameworks and multiple catalytic applications. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Pepió B, Contreras-Pereda N, Suárez-García S, Hayati P, Benmansour S, Retailleau P, Morsali A, Ruiz-Molina D. Solvent-tuned ultrasonic synthesis of 2D coordination polymer nanostructures and flakes. ULTRASONICS SONOCHEMISTRY 2021; 72:105425. [PMID: 33388692 PMCID: PMC7803821 DOI: 10.1016/j.ultsonch.2020.105425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Herein, a new 2-dimensional coordination polymer based on copper (II), {Cu2(L)(DMF)2}n, where L stands for 1,2,4,5-benzenetetracarboxylate (complex 1) is synthesized. Interestingly, we demonstrate that both solvent and sonication are relevant in the top-down fabrication of nanostructures. Water molecules are intercalated in suspended crystals of complex 1 modifying not only the coordination sphere of Cu(II) ions but also the final chemical formula and crystalline structure obtaining {[Cu(L)(H2O)3]·H2O}n (complex 2). On the other hand, ultrasound is required to induce the nanostructuration. Remarkably, different morphologies are obtained using different solvents and interconversion from one morphology to another seems to occur upon solvent exchange. Both complexes 1 and 2, as well as the corresponding nanostructures, have been fully characterized by different means such as infrared spectroscopy, x-ray diffraction and microscopy.
Collapse
Affiliation(s)
- Belén Pepió
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Noemí Contreras-Pereda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Salvio Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Payam Hayati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Samia Benmansour
- Instituto de Ciencia Molecular, Parque Científico, Universidad de Valencia, José Beltrán 2, 46980 Paterna (Valencia), Spain
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ali Morsali
- Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|