1
|
Mondal H. Halogen and Chalcogen Activation by Nucleophilic Catalysis. Chemistry 2024; 30:e202402261. [PMID: 39039960 DOI: 10.1002/chem.202402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. With the emergence of solid halogen carriers such as N-halosuccinimides, and halohydantoins as popular sources of halonium ions, the past decade has witnessed enormous growth in the development of new catalytic strategies for halofunctionalization. This review aims to provide a nuanced perspective on nucleophilic activators and their roles in halogen activation. It will highlight critical discoveries in effecting racemic and asymmetric variants of these reactions, driven by the development of new catalysts, activation modes, and improved understanding of chemical reactivity and reaction kinetics.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
2
|
Das S, Kundu S, Metya A, Maji MS. A toolbox approach to revealing a series of naphthocarbazoles to showcase photocatalytic reductive syntheses. Chem Sci 2024; 15:13466-13474. [PMID: 39183925 PMCID: PMC11339970 DOI: 10.1039/d4sc03438d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/14/2024] [Indexed: 08/27/2024] Open
Abstract
The development of highly reducing photocatalysts to functionalize arenes via the generation of reactive aryl radicals under mild and environmentally benign reaction conditions has emerged as a noteworthy approach in the realm of organic synthesis. Herein, we report a readily synthesized series of novel naphthocarbazole derivatives (NCs) as organo-photocatalysts, which, upon irradiation under 390 nm light, acquire high reducing power to catalyze several reductive transformations. The promising properties revealed by in depth photophysical and electrochemical studies ( = -1.9 V to -2.07 V vs. SCE, τ = 5.59 to 7.12 ns) demonstrate NCs to be versatile catalysts, and notably, rational variation of the substituents (NC1-NC6) modulates their success as efficient photoreductants. Detailed DFT calculations of the frontier MO diagrams and energy levels revealed them to be non-donor-acceptor type molecular scaffolds. The applicability of the NCs as catalysts was demonstrated in reductive dehalogenative borylation, phosphorylation, and dehydrohalide intramolecular C-C coupling reactions, as well as the dimerization of carbonyls and imines. Visible-light-irradiated selective reductive desulfonylation from heteroaromatics and peptides further enhances their synthetic utility.
Collapse
Affiliation(s)
- Sharmila Das
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| | - Abhisek Metya
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 WB India
| |
Collapse
|
3
|
Kundu S, Maji MS. Solution-Phase Late-Stage Chemoselective Photocatalytic Removal of Sulfonyl and Phenacyl Groups in Peptides. Chemistry 2024; 30:e202400033. [PMID: 38345998 DOI: 10.1002/chem.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 03/07/2024]
Abstract
Herein, BPC catalyzed visible-light-triggered target-specific late-stage solution phase desulfonylation from tryptophan in oligopeptides is portrayed by overcoming the isolation issue up to octamers. This robust and mild method is highly predictable and chemoselective, tolerating myriad of functional groups in aza-heteroaromatics and peptides. Interestingly, reductive desulfonylation is also amenable to biologically significant reactive histidine and tyrosine side chains, signifying the versatility of the strategy. Additional efficacy of BPC is demonstrated by solution phase phenacyl deprotection from C-terminal in peptides. Furthermore, excellent catalyst loading of 0.5 mol% and recyclability demonstrate the practical utility and applicability of this strategy.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
4
|
Kundu S, Ghosh C, Metya A, Banerjee A, Maji MS. Carbazoquinocin Analogues as Small Molecule Biomimetic Organocatalysts in Dehydrogenative Coupling of Amines. Org Lett 2024; 26:1705-1710. [PMID: 38373273 DOI: 10.1021/acs.orglett.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A new series of carbazole-cored biomimetic ortho-quinone catalysts structurally resembling carbazoquinocin alkaloids have been introduced to promote tunable, metal cocatalyst-free, organocatalytic, dehydrogenative amine oxidation under aerobic conditions. Differently substituted benzyl amines were tolerated under optimized conditions to provide imines in excellent yields. Further efficacy of the catalyst was demonstrated by synthesizing cross-coupled imines efficiently. Control experiments and in-depth DFT studies disclosed a covalent transamination pathway as a plausible mechanism for this newly developed catalytic system.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chayan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhisek Metya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Mondal H, Patra S, Saha S, Nayak T, Sengupta U, Sudan Maji M. Late-Stage Halogenation of Peptides, Drugs and (Hetero)aromatic Compounds with a Nucleophilic Hydrazide Catalyst. Angew Chem Int Ed Engl 2023; 62:e202312597. [PMID: 37933202 DOI: 10.1002/anie.202312597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Unlike its other halogen atom siblings, chlorination of a bioactive compound can change its physiological characteristics, improve its pharmacological profile, and function as a point of diversification through cross-coupling reactions. As a result, it has been a crucial strategy for drug discovery and development. However, functional groups such as amines, amides, hydroxy groups, or carboxylic acids trap the Cl+ , severely limiting the reactivity and making direct chlorination far too difficult to be practical. Herein, we introduce a nucleophilic sulfonohydrazide catalyst for late-stage halogenation of peptides and drugs. This direct, mild and metal-free protocol shows high functional-group tolerance and is compatible with a range of structurally diverse peptides, drugs and aromatic compounds. Furthermore, DFT studies indicate that the reaction most likely proceeds via a cationic transition state. The gram-scale synthesis, high stability and efficiency of the catalyst provide a facile route for late-stage functionalization and intermediates for further derivatization.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Subimal Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Shuvendu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Tarak Nayak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Uddalak Sengupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
6
|
Chen XH, Li YM, Huang X, Cui HL. POCl 3/Sulfoxide-Promoted Synthesis of Indolizino[8,7- b]indoles. J Org Chem 2023; 88:16400-16409. [PMID: 37983977 DOI: 10.1021/acs.joc.3c01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A mild chlorocyclization of pyrrole-tethered indoles has been realized using POCl3 as the chlorine source and tetramethylene sulfoxide as the promoter. A variety of chlorinated indolizino[8,7-b]indole derivatives have been constructed efficiently under this reaction system in moderate to good yields (19 examples, up to 93% yield).
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Yun-Meng Li
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
7
|
Ren H, Wang RA, Shi J, Song JR, Wu W, Chi Q, Zhang N. Electrochemical bromocyclization enables 3,5-diversification of heterocyclic indolines. Org Biomol Chem 2023; 21:7290-7294. [PMID: 37650516 DOI: 10.1039/d3ob00985h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Electrophilic bromocyclization reactions are widely used as key steps in the synthesis of diverse functionalized tetrahydrofuroindolines and hexahydropyrroloindolines. However, the direct dibromination variants of these reactions for the synthesis of 3,5-dibromoindolines remain undeveloped. Here, we report a protonic-acid-promoted electrooxidative protocol for the dearomative C3,C5-dibromocyclizations of tryptophol and tryptamine derivatives. This electrosynthetic approach, which enables direct selective construction of heterocyclic 3a,5a-dibromoindolines with inexpensive, non-hazardous NaBr as both the electrolyte and Br source, provides a convenient, practical method for the late-stage 3,5-diversification of heterocyclic indolines.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
8
|
Luo X, Xu MM, Xu XP, Ji SJ. NBS-induced intramolecular annulation reactions for the divergent synthesis of fused- and spirocyclic indolines. Chem Commun (Camb) 2023; 59:6576-6579. [PMID: 37183546 DOI: 10.1039/d3cc01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An NBS-induced intramolecular annulation of 3-(1H-indol-3-yl)-N-alkoxypropanamide is described. The reactions proceed well and quickly under mild conditions with the help of a base. It was found that C2-substituents on the indole ring in 3-(1H-indol-3-yl)-N-alkoxypropanamide have a great influence upon the reaction. By using C2-methyl- and C2-phenyl-3-(1H-indol-3-yl)-N-alkoxypropanamide as templates, practical protocols for the divergent synthesis of fused- and spirocyclic indoline compounds were studied and established.
Collapse
Affiliation(s)
- Xian Luo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Innovation Center for Chemical Science, Soochow University, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
9
|
Abstract
A mild bromination of pyrrolo[2,1-a]isoquinolines has been achieved using acetyl bromide and dimethyl sulfoxide. A series of brominated pyrrolo[2,1-a]isoquinolines could be obtained in moderate to excellent yields (46-99%) at room temperature. This strategy can also be expanded to the facile bromination of polysubstituted pyrroles, indoles, electron-rich phenols, aniline, and 2-naphthol.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
10
|
Saha N, Wanjari PJ, Dubey G, Mahawar N, Bharatam PV. Metal-free synthesis of imidazoles and 2-aminoimidazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Chen XH, Li WZ, Zhang W, Wang ZD, Cui HL. Modification of Pyrroloisoquinolines with 2‐Bromoketones and Dimethyl Sulfoxide through Bromination. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Hui Chen
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Wan-Zhen Li
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Wei Zhang
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Zhao-Dong Wang
- Chongqing University of Arts and Sciences Key Laboratory of Environmental Materials & Remediation Technologies CHINA
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis 319 Honghe Ave, Yongchuan, Chongqing 402160 Chongqing CHINA
| |
Collapse
|
12
|
Sun H, Shang H, Cui B. (Salen)Mn(III)-Catalyzed Enantioselective Intramolecular Haloamination of Alkenes through Chiral Aziridinium Ion Ring-Opening Sequence. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People’s Republic of China
| | - Huijian Shang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People’s Republic of China
| | - Bin Cui
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People’s Republic of China
| |
Collapse
|
13
|
Kim KS, Kim DY. Electrochemical bromolactonization of alkenoic acids with carbon tetrabromide: Synthesis of bromomethylated γ-lactones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2028843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kyeong Seop Kim
- Department of Chemistry and ICT Environmental Health System, Soonchunhyang University, Asan, South Korea
| | - Dae Young Kim
- Department of Chemistry and ICT Environmental Health System, Soonchunhyang University, Asan, South Korea
| |
Collapse
|
14
|
Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: Synthesis of bromomethylated γ-lactones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Li JQ, Chen XH, Wang XX, Cui HL. Bromination of phenyl ether and other aromatics with bromoisobutyrate and dimethyl sulfoxide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|