1
|
Wang Y, Fang LP, Zhang HY, Ren JJ, Liang T, Lv XB, Cheng CJ, Yu HR. Efficient adsorption of cationic dyes by a novel honeycomb-like porous hydrogel with ultrahigh mechanical property. Int J Biol Macromol 2024; 278:134457. [PMID: 39111487 DOI: 10.1016/j.ijbiomac.2024.134457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The optimization of hydrogel structure is crucial for adsorption capacity, mechanical stability, and reusability. Herein, a chitosan and laponite-XLS co-doped poly(acrylic acid-co-acrylamide) hydrogel (CXAA) with honeycomb-like porous structures is synthesized by cooperative cross-linking of 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and laponite-XLS in reticular frameworks of acrylic acid (AAc) and acrylamide (AM). The CXAA exhibits extraordinary mechanical performances including tough tensile strength (3.36 MPa) and elasticity (2756 %), which facilitates recycling in practical adsorption treatment and broadens potential applications. Since the regular porous structures can fully expose numerous adsorption sites and electronegative natures within polymer materials, CXAA displays efficient and selective adsorption properties for cationic dyes like methylene blue (MB) and malachite green (MG) from mixed pollutants and can reach record-high values (MB = 6886 mg g-1, MG = 11,381 mg g-1) compared with previously reported adsorbents. Therefore, CXAA exhibits promising potential for separating cationic and anionic dyes by their charge disparities. Mechanism studies show that the synergistic effects of HACC, laponite-XLS, and functional groups in monomers promote highly efficient adsorption. Besides, the adsorption capacity of CXAA remains stable even after undergoing five cycles of regeneration. The results confirm that CXAA is a promising adsorbent for effectively removing organic dyes in wastewater.
Collapse
Affiliation(s)
- Yun Wang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Li-Ping Fang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Hui-Yao Zhang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jun-Jie Ren
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Ting Liang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Xing-Bin Lv
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Chang-Jing Cheng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Hai-Rong Yu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
2
|
Shi H, Wang X, Guo H, Yang Y, Yang Y. Antiswelling Photochromic Hydrogels for Underwater Optically Camouflageable Flexible Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46810-46821. [PMID: 39178378 DOI: 10.1021/acsami.4c10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Optical camouflage offers an effective strategy for enhancing the survival chances of underwater flexible electronic devices akin to underwater organisms. Photochromism is one of the most effective methods to achieve optical camouflage. In this study, antiswelling hydrogels with photochromic properties were prepared using a two-step solvent replacement strategy and explored as underwater optically camouflaged flexible electronic devices. The hydrophobic network formed upon polymerization of hydroxyethyl methacrylate (HEMA) ensured that the hydrogels possessed outstanding antiswelling properties. Internetwork hydrogen bonding interactions allowed the hydrogels to exhibit tissue-adaptable mechanical properties and excellent self-bonding capabilities. The introduction of polyoxometalates further enhanced the hydrogels' mechanical and self-bonding properties while imparting photochromic capability. The hydrogels could be rapidly and reversibly colored under 365 nm UV irradiation. The bleaching rate of the colored hydrogels increased with temperature, bleaching within 12 h at 60 °C but maintaining the color for more than 5 days at room temperature. The self-bonding and photochromic properties enabled the hydrogels to be easily assembled into optically camouflaged underwater flexible electronic devices for underwater motion sensing and wireless information transmission. An optically camouflaged strain sensor was first assembled for underwater limb motion sensing. Additionally, an underwater optically camouflaged wireless information exchange device was assembled to enable wireless communication with a smartphone. This work provided an effective strategy for the optical camouflage of underwater flexible electronic devices, presenting opportunities for next-generation underwater hydrogel-based flexible devices.
Collapse
Affiliation(s)
- Huiwen Shi
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Wang
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Huijun Guo
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yanyan Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yongqi Yang
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
3
|
Bari GAKMR, Jeong JH, Barai HR. Conductive Gels for Energy Storage, Conversion, and Generation: Materials Design Strategies, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2268. [PMID: 38793335 PMCID: PMC11123231 DOI: 10.3390/ma17102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Gel-based materials have garnered significant interest in recent years, primarily due to their remarkable structural flexibility, ease of modulation, and cost-effective synthesis methodologies. Specifically, polymer-based conductive gels, characterized by their unique conjugated structures incorporating both localized sigma and pi bonds, have emerged as materials of choice for a wide range of applications. These gels demonstrate an exceptional integration of solid and liquid phases within a three-dimensional matrix, further enhanced by the incorporation of conductive nanofillers. This unique composition endows them with a versatility that finds application across a diverse array of fields, including wearable energy devices, health monitoring systems, robotics, and devices designed for interactive human-body integration. The multifunctional nature of gel materials is evidenced by their inherent stretchability, self-healing capabilities, and conductivity (both ionic and electrical), alongside their multidimensional properties. However, the integration of these multidimensional properties into a single gel material, tailored to meet specific mechanical and chemical requirements across various applications, presents a significant challenge. This review aims to shed light on the current advancements in gel materials, with a particular focus on their application in various devices. Additionally, it critically assesses the limitations inherent in current material design strategies and proposes potential avenues for future research, particularly in the realm of conductive gels for energy applications.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
4
|
He K, Cai P, Ji S, Tang Z, Fang Z, Li W, Yu J, Su J, Luo Y, Zhang F, Wang T, Wang M, Wan C, Pan L, Ji B, Li D, Chen X. An Antidehydration Hydrogel Based on Zwitterionic Oligomers for Bioelectronic Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311255. [PMID: 38030137 DOI: 10.1002/adma.202311255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Hydrogels are ideal interfacing materials for on-skin healthcare devices, yet their susceptibility to dehydration hinders their practical use. While incorporating hygroscopic metal salts can prevent dehydration and maintain ionic conductivity, concerns arise regarding metal toxicity due to the passage of small ions through the skin barrier. Herein, an antidehydration hydrogel enabled by the incorporation of zwitterionic oligomers into its network is reported. This hydrogel exhibits exceptional water retention properties, maintaining ≈88% of its weight at 40% relative humidity, 25 °C for 50 days and about 84% after being heated at 50 °C for 3 h. Crucially, the molecular weight design of the embedded oligomers prevents their penetration into the epidermis, as evidenced by experimental and molecular simulation results. The hydrogel allows stable signal acquisition in electrophysiological monitoring of humans and plants under low-humidity conditions. This research provides a promising strategy for the development of epidermis-safe and biocompatible antidehydration hydrogel interfaces for on-skin devices.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zihan Tang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhou Fang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenlong Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jing Yu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yifei Luo
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Feilong Zhang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
5
|
Yang Y, Lv C, Tan C, Li J, Wang X. Easy-to-Prepare Flexible Multifunctional Sensors Assembled with Anti-Swelling Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46417-46427. [PMID: 37733927 DOI: 10.1021/acsami.3c11117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Recent years have witnessed the development of flexible electronic materials. Flexible electronic devices based on hydrogels are promising but face the limitations of having no resistance to swelling and a lack of functional integration. Herein, we fabricated a hydrogel using a solvent replacement strategy and explored it as a flexible electronic material. This hydrogel was obtained by polymerizing 2-hydroxyethyl methacrylate (HEMA) in ethylene glycol and then immersing it in water. The synergistic effect of hydrogen bonding and hydrophobic interactions endows this hydrogel with anti-swelling properties in water, and it also exhibits enhanced mechanical properties and outstanding self-bonding properties. Moreover, the modulus of the hydrogel is tissue-adaptable. These properties allowed the hydrogel to be simply assembled with a liquid metal (LM) to create a series of structurally complex and functionally integrated flexible sensors. The hydrogel was used to assemble resistive and capacitive sensors to sense one-, two-, and three-dimensional strains and finger touches by employing specific structural designs. In addition, a multifunctional flexible sensor integrating strain sensing, temperature sensing, and conductance sensing was assembled via simple multilayer stacking to enable the simultaneous monitoring of underwater motion, water temperature, and water quality. This work demonstrates a simple strategy for assembling functionally integrated flexible electronics, which should open opportunities in next-generation electronic skins and hydrogel machines for various applications, especially underwater applications.
Collapse
Affiliation(s)
- Yongqi Yang
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Chunyang Lv
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Chang Tan
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xin Wang
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
6
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
7
|
Ming X, Xiang Y, Yao L, He W, Zhu H, Zhang Q, Zhu S. Ionic Switches with Positive Temperature Coefficient Enabled by Phase Separation within Hydrogel Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47167-47175. [PMID: 36201631 DOI: 10.1021/acsami.2c15446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ionic switches with a positive temperature coefficient (PTC) effect are highly desirable in the fabrication of smart electrolytes for the safety protection of electrochemical energy devices. However, most of them encounter liquid leaking or volume shrinking problems, limiting their long-term and stable operations. Herein, a PTC-type ionic switch is introduced based on a poly(acrylic acid) (PAA) hydrogel soaked by calcium acetate (CaAc), with a resistance change of six times in maximum between the homogeneous and phase separated state. The PTC effect is owing to the strong phase separation upon heating where the ion transport is restricted. Such a hydrogel-based PTC-type ionic switch is in the solid state and isochoric during phase separation without leaking or shrinking issues. The influence of different CaAc soaking concentrations is investigated. A simplified model consisting of interconnected ion channels is proposed based on microstructure analysis. A smart supercapacitor is successfully demonstrated by this PTC ionic switch with a safety protection ability. The research here would provide a new pathway for the design and development of PTC-type ionic switches in the safety protection of electrochemical energy storage devices.
Collapse
Affiliation(s)
- Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Yang Xiang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Le Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Wenqing He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| |
Collapse
|
8
|
Swelling of Thermo-Responsive Gels in Aqueous Solutions of Salts: A Predictive Model. Molecules 2022; 27:molecules27165177. [PMID: 36014417 PMCID: PMC9415754 DOI: 10.3390/molecules27165177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The equilibrium degree of swelling of thermo-responsive (TR) gels is strongly affected by the presence of ions in an aqueous solution. This phenomenon plays an important role in (i) the synthesis of multi-stimuli-responsive gels for soft robotics, where extraordinary strength and toughness are reached by soaking of a gel in solutions of multivalent ions, and (ii) the preparation of hybrid gels with interpenetrating networks formed by covalently cross-linked synthetic chains and ionically cross-linked biopolymer chains. A model is developed for equilibrium swelling of a TR gel in aqueous solutions of salts at various temperatures T below and above the critical temperature at which collapse of the gel occurs. An advantage of the model is that it involves a a small (compared with conventional relations) number of material constants and allows the critical temperature to be determined explicitly. Its ability (i) to describe equilibrium swelling diagrams on poly(N-isopropylacrylamide) gels in aqueous solutions of mono- and multivalent salts and (ii) to predict the influence of volume fraction of salt on the critical temperature is confirmed by comparison of observations with results of numerical simulation.
Collapse
|
9
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
10
|
Shen J, Du S, Xu Z, Gan T, Handschuh-Wang S, Zhang X. Anti-Freezing, Non-Drying, Localized Stiffening, and Shape-Morphing Organohydrogels. Gels 2022; 8:gels8060331. [PMID: 35735675 PMCID: PMC9222875 DOI: 10.3390/gels8060331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Artificial shape-morphing hydrogels are emerging toward various applications, spanning from electronic skins to healthcare. However, the low freezing and drying tolerance of hydrogels hinder their practical applications in challenging environments, such as subzero temperatures and arid conditions. Herein, we report on a shape-morphing system of tough organohydrogels enabled by the spatially encoded rigid structures and its applications in conformal packaging of “island–bridge” stretchable electronics. To validate this method, programmable shape morphing of Fe (III) ion-stiffened Ca-alginate/polyacrylamide (PAAm) tough organohydrogels down to −50 °C, with long-term preservation of their 3D shapes at arid or even vacuum conditions, was successfully demonstrated, respectively. To further illustrate the potency of this approach, the as-made organohydrogels were employed as a material for the conformal packaging of non-stretchable rigid electronic components and highly stretchable liquid metal (galinstan) conductors, forming a so-called “island–bridge” stretchable circuit. The conformal packaging well addresses the mechanical mismatch between components with different elastic moduli. As such, the as-made stretchable shape-morphing device exhibits a remarkably high mechanical durability that can withstand strains as high as 1000% and possesses long-term stability required for applications under challenging conditions.
Collapse
Affiliation(s)
- Jiayan Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Shutong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Ziyao Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Xueli Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
- Correspondence: ; Tel.: +86-755-26557377
| |
Collapse
|
11
|
Smith PT, Altin G, Millik SC, Narupai B, Sietz C, Park JO, Nelson A. Methacrylated Bovine Serum Albumin and Tannic Acid Composite Materials for Three-Dimensional Printing Tough and Mechanically Functional Parts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21418-21425. [PMID: 35471016 DOI: 10.1021/acsami.2c01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nature uses proteins as building blocks to create three-dimensional (3D) structural components (like spiderwebs and tissue) that are recycled within a closed loop. Furthermore, it is difficult to replicate the mechanical properties of these 3D architectures within synthetic systems. In the absence of biological machinery, protein-based materials can be difficult to process and can have a limited range of mechanical properties. Herein, we present an additive manufacturing workflow to fabricate tough, protein-based composite hydrogels and bioplastics with a range of mechanical properties. Briefly, methacrylated bovine-serum-albumin-based aqueous resins were 3D-printed using a commercial vat photopolymerization system. The printed structures were then treated with tannic acid to introduce additional non-covalent interactions and form tough hydrogels. The hydrogel material could be sutured and withstand mechanical load, even after immersion in water for 24 h. Additionally, a denaturing thermal cure could be used to virtually eliminate rehydration of the material and form a bioplastic. To highlight the functionality of this material, a bioplastic screw was 3D-printed and driven into wood without damage to the screw. Moreover, the 3D-printed constructs enzymatically degraded up to 85% after 30 days in pepsin solution. Thus, these protein-based 3D-printed constructs show great potential for biomedical devices that degrade in situ.
Collapse
Affiliation(s)
- Patrick T Smith
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gokce Altin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - S Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjaporn Narupai
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Cameron Sietz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James O Park
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Wang W, Chen F, Fang L, Li Z, Xie Z. Reversibly Stretchable Organohydrogel-Based Soft Electronics with Robust and Redox-Active Interfaces Enabled by Polyphenol-Incorporated Double Networks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12583-12595. [PMID: 35230799 DOI: 10.1021/acsami.1c21273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogel electrolytes as soft ionic conductors have been extensively exploited to establish skinlike and biocompatible devices. However, in many common hydrogels, there exists irreversible elongation upon prolonged stretching cycles and poor interfacial contact, which have significantly hindered their practical applications where long-term operation at large deformations is needed. Herein, multifunctional soft electronic devices with reversible stretchability and improved electrode/electrolyte interfaces are demonstrated by employing polyacrylamide-based double-network organohydrogel electrolytes soaked with a high content of tannic acid (TA) that affords multiple noncovalent interactions and redox activity. Performances of the TA-rich gels are evaluated for the first time in realizing shape-recoverable stretchable devices against repeated deformations to 500% strain, with superior gel-electrode interfaces exhibiting both intimate adhesion and boosted electrochemical capacitance of >200 mF·cm-2. A maximal 4-fold higher capacitance can be achieved by introducing TA and ethylene glycol (EG) into hydrogels. Moreover, a soft electronic system consisting of stretchable supercapacitors and gel-based microsensors was demonstrated, in which the electronic performance of these devices can be well preserved after >1000 repeated cycles at strains of up to 200%, without obvious residual strain or electrode delamination. This could pave a route to the design of multifunctional gel networks tackling both the mechanical and interfacial issues in soft and biocompatible devices.
Collapse
Affiliation(s)
- Wenjin Wang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fubin Chen
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lvye Fang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Hirsch M, Steinacher M, Zhao R, Amstad E. Load-bearing hydrogels ionically reinforced through competitive ligand exchanges. Biomater Sci 2021; 9:6753-6762. [PMID: 34498620 DOI: 10.1039/d1bm01170g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fast advances in soft robotics and tissue engineering demand for new soft materials whose mechanical properties can be interchangeably and locally varied, thereby enabling, for example, the design of soft joints within an integral material. Inspired by nature, we introduce a competitive ligand-mediated approach to selectively and interchangeably reinforce metal-coordinated hydrogels. This is achieved by reinforcing carboxylate-containing hydrogels with Fe3+ ions. Key to achieving a homogeneous, predictable reinforcement of the hydrogels is the presence of weak complexation agents that delay the formation of metal-complexes within the hydrogels, thereby allowing a homogeneous distribution of the metal ions. The resulting metal-reinforced hydrogels show a compressive modulus of up to 2.5 MPa, while being able to withstand pressures as high as 0.6 MPa without appreciable damage. Competitive ligand exchanges offer an additional advantage: they enable non-linear compositional changes that, for example, allow the formation of joints within these hydrogels. These features open up new possibilities to extend the field of use of metal reinforced hydrogels to load-bearing applications that are omnipresent for example in soft robots and actuators.
Collapse
Affiliation(s)
- Matteo Hirsch
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Mathias Steinacher
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Ran Zhao
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Wang K, Wang H, Li J, Liang Y, Xie XQ, Liu J, Gu C, Zhang Y, Zhang G, Liu CS. Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour. MATERIALS HORIZONS 2021; 8:2520-2532. [PMID: 34870306 DOI: 10.1039/d1mh00725d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The current tough and stretchable gels with various integrated functions are mainly based on polymer hydrogels. By introducing a non-covalent supramolecular self-assembled network into a covalently cross-linked polymer network in the presence of eco-friendly and cost-effective deep eutectic solvents (DESs), we developed a new small molecule-based supramolecular-polymer double-network (SP-DN) eutectogel platform. This exciting material exhibits high stretchability and toughness (>18 000% areal strain), spontaneous self-healing ability, ultrafast (∼5 s) in situ underwater and low-temperature (-80 °C) adhesion, and unusual boiling water-resistance, as well as strong base-, strong acid- (even aqua regia), ultra-low-temperature- (liquid nitrogen, -196 °C), and high-temperature- (200 °C) resistance. All these outstanding properties strongly recommend the SP-DN eutectogels as a quasi-solid electrolyte for soft electrochromic devices, which exhibited exceptional flexibility and consistent electrochromic behaviours in harsh mechanical or temperature environments. The experimental and simulation results uncovered the assembly mechanism of the SP-DN eutectogels. Unlike polymer hydrogels, the obtained SP-DN eutectogels showed high molecular design freedom and structural versatility. The findings of this work offer a promising strategy for developing the next generation of mechanically robust and functionally integrated soft materials with high environmental adaptability.
Collapse
Affiliation(s)
- Kaifang Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Hai Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Yujia Liang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Xiao-Qiao Xie
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Junpeng Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chaonan Gu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Yunfei Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Guo Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2591-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Pan J, Gao L, Sun W, Wang S, Shi X. Length Effects of Short Alkyl Side Chains on Phase-Separated Structure and Dynamics of Hydrophobic Association Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jiageng Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weixiang Sun
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuting Wang
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuetao Shi
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Chen Z, Chen Y, Hedenqvist MS, Chen C, Cai C, Li H, Liu H, Fu J. Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B 2021; 9:2561-2583. [PMID: 33599653 DOI: 10.1039/d0tb02929g] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, hydrogel-based conductive materials and their applications as smart wearable devices have been paid tremendous attention due to their high stretchability, flexibility, and excellent biocompatibility. Compared with single functional conductive hydrogels, multifunctional conductive hydrogels are more advantageous to match various demands for practical applications. This review focuses on multifunctional conductive hydrogels applied for smart wearable devices. Representative strategies for conduction of hydrogels are discussed firstly: (1) electronic conduction based on the conductive fillers and (2) ionic conduction based on charged ions. Then, the common and intensive research on multiple functionalities of conductive hydrogels, such as mechanical properties, conductive and sensory properties, anti-freezing and moisturizing properties, and adhesion and self-healing properties is presented. The applications of multifunctional conductive hydrogels such as in human motion sensors, sensory skins, and personal healthcare diagnosis are provided in the third part. Finally, we offer our perspective on open challenges and future areas of interest for multifunctional conductive hydrogels used as smart wearable devices.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|