1
|
Lledos M, Calatayud DG, Cortezon-Tamarit F, Ge H, Pourzand C, Botchway SW, Sodupe M, Lledós A, Eggleston IM, Pascu SI. Tripodal BODIPY-Tagged and Functional Molecular Probes: Synthesis, Computational Investigations and Explorations by Multiphoton Fluorescence Lifetime Imaging Microscopy. Chemistry 2024; 30:e202400858. [PMID: 38887133 DOI: 10.1002/chem.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM).
Collapse
Affiliation(s)
- Marina Lledos
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - David G Calatayud
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Francisco Tomas y Valiente 7, 28049, Madrid, Spain
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| | - Stanley W Botchway
- STFC Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Science and Innovation Campus, Harwell, Oxfordshire, OX11 0QX, UK
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Ian M Eggleston
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| |
Collapse
|
2
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
3
|
Tang B, Lau KM, Zhu Y, Shao C, Wong WT, Chow LMC, Wong CTT. Chemical Modification of Cytochrome C for Acid-Responsive Intracellular Apoptotic Protein Delivery for Cancer Eradication. Pharmaceutics 2024; 16:71. [PMID: 38258082 PMCID: PMC10819283 DOI: 10.3390/pharmaceutics16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Delivering bioactive proteins into cells without carriers presents significant challenges in biomedical applications due to limited cell membrane permeability and the need for targeted delivery. Here, we introduce a novel carrier-free method that addresses these challenges by chemically modifying proteins with an acid-responsive cell-penetrating peptide (CPP) for selective intracellular delivery within tumours. Cytochrome C, a protein known for inducing apoptosis, served as a model for intracellular delivery of therapeutic proteins for cancer treatment. The CPP was protected with 2,3-dimethyl maleic anhydride (DMA) and chemically conjugated onto the protein surface, creating an acid-responsive protein delivery system. In the acidic tumour microenvironment, DMA deprotects and exposes the positively charged CPP, enabling membrane penetration. Both in vitro and in vivo assays validated the pH-dependent shielding mechanism, demonstrating the modified cytochrome C could induce apoptosis in cancer cells in a pH-selective manner. These findings provide a promising new approach for carrier-free and tumour-targeted intracellular delivery of therapeutic proteins for a wide range of potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Larry M. C. Chow
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| | - Clarence T. T. Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (B.T.); (K.M.L.); (Y.Z.); (C.S.); (W.-T.W.)
| |
Collapse
|
4
|
Akbar A, Khan S, Chatterjee T, Ghosh M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112796. [PMID: 37804542 DOI: 10.1016/j.jphotobiol.2023.112796] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
This comprehensive review provides the current trends and recent developments of porphyrin-based photosensitizers. We discuss their evolution from first-generation to third-generation compounds, including cutting-edge nanoparticle-integrated derivatives, and explores their pivotal role in advancing photodynamic therapy (PDT) for enhanced cancer treatment. Integrating porphyrins with nanoparticles represents a promising avenue, offering improved selectivity, reduced toxicity, and heightened biocompatibility. By elucidating recent breakthroughs, innovative methodologies, and emerging applications, this review provides a panoramic snapshot of the dynamic field, addressing challenges and charting prospects. With a focus on harnessing reactive oxygen species (ROS) through light activation, PDT serves as a minimally invasive therapeutic approach. This article offers a valuable resource for researchers, clinicians, and PDT enthusiasts, highlighting the potential of porphyrin photosensitizers to improve the future of cancer therapy.
Collapse
Affiliation(s)
- Alibasha Akbar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mihir Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
5
|
Gao J, Jiang H, Chen P, Zhang R, Liu N. Photosensitizer-based small molecule theranostic agents for tumor-targeted monitoring and phototherapy. Bioorg Chem 2023; 136:106554. [PMID: 37094481 DOI: 10.1016/j.bioorg.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.
Collapse
Affiliation(s)
- Jiake Gao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Tam LKB, Chu JCH, He L, Yang C, Han KC, Cheung PCK, Ng DKP, Lo PC. Enzyme-Responsive Double-Locked Photodynamic Molecular Beacon for Targeted Photodynamic Anticancer Therapy. J Am Chem Soc 2023; 145:7361-7375. [PMID: 36961946 PMCID: PMC10080691 DOI: 10.1021/jacs.2c13732] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
An advanced photodynamic molecular beacon (PMB) was designed and synthesized, in which a distyryl boron dipyrromethene (DSBDP)-based photosensitizer and a Black Hole Quencher 3 moiety were connected via two peptide segments containing the sequences PLGVR and GFLG, respectively, of a cyclic peptide. These two short peptide sequences are well-known substrates of matrix metalloproteinase-2 (MMP-2) and cathepsin B, respectively, both of which are overexpressed in a wide range of cancer cells either extracellularly (for MMP-2) or intracellularly (for cathepsin B). Owing to the efficient Förster resonance energy transfer between the two components, this PMB was fully quenched in the native form. Only upon interaction with both MMP-2 and cathepsin B, either in a buffer solution or in cancer cells, both of the segments were cleaved specifically, and the two components could be completely separated, thereby restoring the photodynamic activities of the DSBDP moiety. This PMB could also be activated in tumors, and it effectively suppressed the tumor growth in A549 tumor-bearing nude mice upon laser irradiation without causing notable side effects. In particular, it did not cause skin photosensitivity, which is a very common side effect of photodynamic therapy (PDT) using conventional "always-on" photosensitizers. The overall results showed that this "double-locked" PMB functioned as a biological AND logic gate that could only be unlocked by the coexistence of two tumor-associated enzymes, which could greatly enhance the tumor specificity in PDT.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lin He
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Caixia Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kam-Chu Han
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Chu JCH, Wong CTT, Ng DKP. Toward Precise Antitumoral Photodynamic Therapy Using a Dual Receptor-Mediated Bioorthogonal Activation Approach. Angew Chem Int Ed Engl 2023; 62:e202214473. [PMID: 36376249 DOI: 10.1002/anie.202214473] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 11/16/2022]
Abstract
Targeted delivery and specific activation of photosensitizers can greatly improve the treatment outcome of photodynamic therapy. To this end, we report herein a novel dual receptor-mediated bioorthogonal activation approach to enhance the tumor specificity of the photodynamic action. It involves the targeted delivery of a biotinylated boron dipyrromethene (BODIPY)-based photosensitizer, which is quenched in the native form by the attached 1,2,4,5-tetrazine unit, and an epidermal growth factor receptor (EGFR)-targeting cyclic peptide conjugated with a bicycle[6.1.0]non-4-yne moiety. Only for cancer cells that overexpress both the biotin receptor and EGFR, the two components can be internalized preferentially where they undergo an inverse electron-demand Diels-Alder reaction, leading to restoration of the photodynamic activity of the BODIPY core. By using a range of cell lines with different expression levels of these two receptors, we have demonstrated that this stepwise "deliver-and-click" approach can confine the photodynamic action on a specific type of cancer cells.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.,Current address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
8
|
Tam LKB, He L, Ng DKP, Cheung PCK, Lo P. A Tumor‐Targeting Dual‐Stimuli‐Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Chemistry 2022; 28:e202201652. [DOI: 10.1002/chem.202201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Leo K. B. Tam
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Lin He
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Peter C. K. Cheung
- School of Life Sciences The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
9
|
Xiong J, Chu JCH, Fong WP, Wong CTT, Ng DKP. Specific Activation of Photosensitizer with Extrinsic Enzyme for Precisive Photodynamic Therapy. J Am Chem Soc 2022; 144:10647-10658. [PMID: 35639988 DOI: 10.1021/jacs.2c04017] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of functional proteins into the intracellular space has been a challenging task that could lead to a myriad of therapeutic applications. We report herein a novel bioconjugation strategy for enzyme modification and selective delivery into cancer cells for lock-and-key-type activation of photosensitizers. Using a bifunctional linker containing a bis(bromomethyl)phenyl group and an o-phthalaldehyde moiety, it could induce cyclization of the peptide sequence Ac-NH-CRGDfC-CONH2 through site-specific dibenzylation with the two cysteine residues and further coupling with β-galactosidase via the phthalaldehyde-amine capture reaction. This facile two-step one-pot procedure enabled the preparation of cyclic RGD-modified β-galactosidase readily, which could be internalized selectively into αvβ3 integrin-overexpressed cancer cells. Upon encountering an intrinsically quenched distyryl boron dipyrromethene-based photosensitizer conjugated with a galactose moiety through a self-immolative linker inside the cells, the extrinsic enzyme induced specific cleavage of the β-galactosidic bond followed by self-immolation to release an activated derivative, thereby restoring the photodynamic activities and causing cell death effectively. The high specificity of this extrinsic enzyme-activated photosensitizing system was also demonstrated in vivo using nude mice bearing an αvβ3 integrin-positive U87-MG tumor. The specific activation at the tumor site resulted in lighting up and complete eradication of the tumor upon laser irradiation, while by using the native β-galactosidase, the effects were largely reduced. In contrast to the conventional activation using intrinsic enzymes, this extrinsic enzyme activatable approach can further minimize the nonspecific activation toward precisive photodynamic therapy.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
10
|
Aerssens D, Cadoni E, Tack L, Madder A. A Photosensitized Singlet Oxygen ( 1O 2) Toolbox for Bio-Organic Applications: Tailoring 1O 2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules 2022; 27:778. [PMID: 35164045 PMCID: PMC8838016 DOI: 10.3390/molecules27030778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.
Collapse
Affiliation(s)
| | | | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium; (D.A.); (E.C.); (L.T.)
| |
Collapse
|
11
|
Chu JCH, Shao C, Ha SYY, Fong WP, Wong CTT, Ng DKP. One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy. Biomater Sci 2021; 9:7832-7837. [PMID: 34726672 DOI: 10.1039/d1bm01306h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a one-pot approach to cyclise a tumour-targeting peptide and conjugate it on the surface of red blood cells loaded with a boron dipyrromethene-based photosensitiser using a bifunctional linker consisting of a bis(bromomethyl)phenyl unit and an ortho-phthalaldehyde unit. This cell-based photosensitiser with surface modification with cyclic RGD peptide moieties can selectively bind against the αvβ3 integrin-overexpressed cancer cells, leading to enhanced photocytotoxicity. The results demonstrate that this facile strategy is effective for live-cell surface modification for a wide range of applications.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Chihao Shao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
12
|
Dong JH, Ma Y, Li R, Zhang WT, Zhang MQ, Meng FN, Ding K, Jiang HT, Gong YK. Smart MSN-Drug-Delivery System for Tumor Cell Targeting and Tumor Microenvironment Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42522-42532. [PMID: 34463488 DOI: 10.1021/acsami.1c14189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor-targeted delivery and controlled release of antitumor drugs are promising strategies for increasing chemotherapeutic efficacy and reducing adverse effects. Although mesoporous silica nanoparticles (MSNs) have been known as a potential delivery system for doxorubicin (DOX), they have restricted applications due to their uncontrolled leakage and burst release from their large open pores. Herein, we engineered a smart drug-delivery system (smart MSN-drug) based on MSN-drug loading, cell membrane mimetic coating, on-demand pore blocking/opening, and tumor cell targeting strategies. The pore size of DOX-loaded MSNs was narrowed by polydopamine coating, and the pores/channels were blocked with tumor-targeting ligands anchored by tumor environment-rupturable -SS- chains. Furthermore, a cell membrane mimetic surface was constructed to enhance biocompatibility of the smart MSN-drug. Confocal microscopy results demonstrate highly selective uptake (12-fold in comparison with L929 cell) of the smart MSN-drug by HeLa cells and delivery into the HeLa cellular nuclei. Further in vitro IC50 studies showed that the toxicity of the smart MSN-drug to HeLa cells was 4000-fold higher than to the normal fibroblast cells. These exciting results demonstrate the utility of the smart MSN-drug capable of selectively killing tumor cells and saving the normal cells.
Collapse
Affiliation(s)
- Jin-Hu Dong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Yao Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Wen-Tao Zhang
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Meng-Qian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Fan-Ning Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Kai Ding
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Hai-Tao Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, China
| |
Collapse
|