1
|
Huang J, Chen G, Han T, Yi C, Zhang Y, Ding L, Sun T, Jin T, Zhou S. Ultrafast and facile construction of programmable, multidimensional wrinkled-patterned polyacrylamide/sodium alginate hydrogels for human skin-like tactile perception. Carbohydr Polym 2023; 319:121196. [PMID: 37567723 DOI: 10.1016/j.carbpol.2023.121196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Customizable structures and patterns are becoming powerful tools for biomimetic design and application of soft materials. The construction of long-range ordered self-wrinkled structures on multi-dimensional and complex-shaped surfaces with facile, fast and efficient strategies still faces serious challenges. During the stretch-recovery process, the carboxyl groups in the polyacrylamide/sodium alginate dual network gel form robust coordination with Fe3+ to achieve a hard shell layer, resulting in a modulus mismatch between the inner soft layer and the outer hard layer, thereby forming a wrinkled surface. This flexible strategy allows simultaneous construction of complex topologies from 1D to 3D wits well-organized microstructure and controllable dimensions. The mechanism of the influence of ion treating time and pre-stretching ratio on wrinkle wavelength was explored in detail. The finite element simulations matched well with the experimental results. Due to the unique surface and dual crosslinking network, the self-wrinkled hydrogel maintains a high sensitivity of up to 67.47 kPa-1 in 1000 compression cycles. As a high-sensitivity pressure sensor integrated into the detection system, it can be efficiently applied to the contact dynamic tactile perception and monitoring of various movement behaviors of the human body.
Collapse
Affiliation(s)
- Jianhua Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gong Chen
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Tianhang Han
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chenxin Yi
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yujia Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Lang Ding
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianshu Sun
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, China
| | - Ting Jin
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Zhou
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
3
|
Song H, Wang Y, Fei Q, Nguyen DH, Zhang C, Liu T. Cryopolymerization-enabled self-wrinkled polyaniline-based hydrogels for highly stretchable all-in-one supercapacitors. EXPLORATION (BEIJING, CHINA) 2022; 2:20220006. [PMID: 37325611 PMCID: PMC10191047 DOI: 10.1002/exp.20220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 06/17/2023]
Abstract
Conductive polymer hydrogels are attractive due to their combination of high theoretical capacitance, intrinsic electrical conductivity, fast ion transport, and high flexibility for supercapacitor electrodes. However, it is challenging to integrate conductive polymer hydrogels into an all-in-one supercapacitor (A-SC) simultaneously with large stretchability and superior energy density. Here, a self-wrinkled polyaniline (PANI)-based composite hydrogel (SPCH) with an electrolytic hydrogel and a PANI composite hydrogel as the core and sheath, respectively, was prepared through a stretching/cryopolymerization/releasing strategy. The self-wrinkled PANI-based hydrogel exhibited large stretchability (∼970%) and high fatigue resistance (∼100% retention of tensile strength after 1200 cycles at a 200% strain) ascribing to the formation of the self-wrinkled surfaces and the intrinsic stretchability of hydrogels. Upon cutting off the edge connections, the SPCH could directly work as an intrinsically stretchable A-SC maintaining high energy density (70 µW h cm-2) and stable electrochemical outputs under a stretchability of 500% strain and a full-scale bending of 180°. After 1000 cycles of 100% strain stretching and releasing processes, the A-SC device could deliver highly stable outputs with high capacitance retention of 92%. This study might provide a straightforward method for fabricating self-wrinkled conductive polymer-based hydrogels for A-SCs with highly deformation-tolerant energy storage.
Collapse
Affiliation(s)
- Hui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Yufeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Qingyang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Dai Hai Nguyen
- Institute of Applied Materials ScienceVietnam Academy of Science and TechnologyHo Chi Minh CityVietnam
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghaiChina
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringInternational Joint Research Laboratory for Nano Energy CompositesJiangnan UniversityWuxiChina
| |
Collapse
|
4
|
Xu L, Fu Y, Wagner RJ, Zou X, He Q, Li T, Pan W, Ding J, Vernerey FJ. Thermosensitive P(AAc-co-NIPAm) hydrogels display enhanced toughness and self-healing via ion-ligand interactions. Macromol Rapid Commun 2022; 43:e2200320. [PMID: 35766135 DOI: 10.1002/marc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Indexed: 11/05/2022]
Abstract
Hydrogels containing thermosensitive polymers such as poly(N-isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+ ) that coordinate with functional groups along the P(AAc) chains, we here introduce a thermoresponsive hydrogel with significantly enhanced mechanical extensibility, strength, and toughness. Using both experimentation and constitutive modeling, we find that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+ concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+ bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self-healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) is reduced slightly with increased Fe3+ concentration, the temperature transition range is widened and shifted upwards towards that of human body temperature (between 30 and 40°C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lin Xu
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Yu Fu
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Robert J Wagner
- Material Science & Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Xiang Zou
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Qingrui He
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Tao Li
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Wenlong Pan
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jianning Ding
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Franck J Vernerey
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Shi J, Dong R, Ji C, Fan W, Yu T, Xia Y, Sui K. Strong and tough self-wrinkling polyelectrolyte hydrogels constructed via a diffusion-complexation strategy. SOFT MATTER 2022; 18:3748-3755. [PMID: 35506704 DOI: 10.1039/d2sm00332e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-wrinkling hydrogels enable various engineering and biomedical applications. The major challenge is to couple the self-wrinkling technologies and enhancement strategies, so as to get rid of the poor mechanical properties of existing self-wrinkling gels. Herein we present a facile diffusion-complexation strategy for constructing strong and ultratough self-wrinkling polyelectrolyte hydrogels with programmable wrinkled structures and customizable 3D configurations. Driven by the diffusion of low-molecular-weight chitosan polycations into the polyanion hydrogels, the high-modulus polyelectrolyte complexation shells can form directly on the hydrogel surface. Meanwhile, the polyanion hydrogels deswell/shrink due to the low osmotic pressure, which applies an isotropous surface compressive stress for inducing the formation of polygonal wrinkled structures. When the diffusion-complexation reaction occurs on a pre-stretched hydrogel sheet, the long-range ordered wrinkled structures can form during the springback/recovery of the hydrogel matrix. Moreover, through controlling the regions of diffusion-complexation reaction on the pre-stretched hydrogels, they can be spontaneously transformed into various 3D configurations with ordered wrinkled structures. Notably, because of the introduction of plenty of electrostatic binding (i.e., sacrificial bonds), the as-prepared self-wrinkling gels possess outstanding mechanical properties, far superior to the reported ones. This diffusion-complexation strategy paves the way for the on-demand design of high-performance self-wrinkling hydrogels.
Collapse
Affiliation(s)
- Jianzhuang Shi
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Ruoyu Dong
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Changbin Ji
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Wenxin Fan
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital to Qingdao University, Qingdao 266003, China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Kunyan Sui
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Raj SS, Mathew RM, Nair Y, S. T. A, T. P. V. Fabrication and Applications of Wrinkled Soft Substrates: An Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202200714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soorya S. Raj
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| | - Romina Marie Mathew
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| | - Yamuna Nair
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| | - Aruna S. T.
- Surface Engineering Division CSIR – National Aerospace Laboratories HAL Airport Road Bangalore 560017 India
| | - Vinod T. P.
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| |
Collapse
|
7
|
Cai P, Wang C, Gao H, Chen X. Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007977. [PMID: 34197013 DOI: 10.1002/adma.202007977] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Indexed: 06/13/2023]
Abstract
The knowledge of mechanics of materials has been extensively implemented in developing functional materials, giving rise to recent advances in soft actuators, flexible electronics, mechanical metamaterials, tunable mechanochromics, regenerative mechanomedicine, etc. While conventional mechanics of materials offers passive access to mechanical properties of materials in existing forms, a paradigm shift is emerging toward proactive programming of materials' functionality by leveraging the force-geometry-property relationships. Here, such a rising field is coined as "mechanomaterials". To profile the concept, the design principles in this field at four scales is first outlined, namely the atomic scale, the molecular scale, the manipulation of nanoscale materials, and the microscale design of structural materials. A variety of techniques have been recruited to deliver the multiscale programming of functional mechanomaterials, such as strain engineering, capillary assembly, topological interlocking, kirigami, origami, to name a few. Engineering optical and biological functionalities have also been achieved by implementing the fundamentals of mechanochemistry and mechanobiology. Nonetheless, the field of mechanomaterials is still in its infancy, with many open challenges and opportunities that need to be addressed. The authors hope this review can serve as a modest spur to attract more researchers to further advance this field.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changxian Wang
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Huajian Gao
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Zhu Y, Deng S, Zhao X, Xia G, Zhao R, Chan HF. Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomater 2021; 134:32-42. [PMID: 34325076 DOI: 10.1016/j.actbio.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The folding of tissues/organs into complex shapes is a common phenomenon that occurs in organisms such as animals and plants, and is both structurally and functionally important. Deciphering the process of tissue folding and applying this knowledge to engineer folded systems would significantly advance the field of tissue engineering. Although early studies focused on investigating the biochemical signaling events that occur during the folding process, the physical or mechanical aspects of the process have received increasing attention in recent years. In this review, we will summarize recent findings on the mechanical aspects of folding and introduce strategies by which folding can be controlled in vitro. Emphasis will be placed on the folding events triggered by mechanical effects at the cellular and tissue levels and on the different cell- and biomaterial-based approaches used to recapitulate folding. Finally, we will provide a perspective on the development of engineering tissue folding toward preclinical and clinical translation. STATEMENT OF SIGNIFICANCE: Tissue folding is a common phenomenon in a variety of organisms including human, and has been shown to serve important structural and functional roles. Understanding how folding forms and applying the concept in tissue engineering would represent an advance of the research field. Recently, the physical or mechanical aspect of tissue folding has gained increasing attention. In this review, we will cover recent findings of the mechanical aspect of folding mechanisms, and introduce strategies to control the folding process in vitro. We will also provide a perspective on the future development of the field towards preclinical and clinical translation of various bio fabrication technologies.
Collapse
Affiliation(s)
- Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai 200233, China
| | - Ruike Zhao
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China.
| |
Collapse
|
9
|
Xiong Y, Kuksenok O. Mechanical Adaptability of Patterns in Constrained Hydrogel Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4900-4912. [PMID: 33844552 DOI: 10.1021/acs.langmuir.1c00138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pattern formation and dynamic restructuring play a vital role in a plethora of natural processes. Understanding and controlling pattern formation in soft synthetic materials is important for imparting a range of biomimetic functionalities. Using a three-dimensional gel Lattice spring model, we focus on the dynamics of pattern formation and restructuring in thin thermoresponsive poly(N-isopropylacrylamide) membranes under mechanical forcing via stretching and compression. A mechanical instability due to the constrained swelling of a polymer network in response to the temperature quench results in out-of-plane buckling of these membranes. The depth of the temperature quench and applied mechanical forcing affect the onset of buckling and postbuckling dynamics. We characterize formation and restructuring of buckling patterns under the stretching and compression by calculating the wavelength and the amplitude of these patterns. We demonstrate dynamic restructuring of the patterns under mechanical forcing and characterize the hysteresis behavior. Our findings show that in the range of the strain rates probed, the wavelength prescribed during the compression remains constant and independent of the sample widths, while the amplitude is regulated dynamically. We demonstrate that significantly smaller wavelengths can be prescribed and sustained dynamically than those achieved in equilibrium in the same systems. We show that an effective membrane thickness may decrease upon compression due to the out-of-plane deformations and pattern restructuring. Our findings point out that mechanical forcing can be harnessed to control the onset of buckling, postbuckling dynamics, and hysteresis phenomena in gel-based systems, introducing novel means of tailoring the functionality of soft structured surfaces and interfaces.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|