1
|
Das S, Thansila PN, Maiti B, Padmaja RD, Prathima TS, Balamurali MM, Chanda K. Synthesis and Anticancer Evaluation of Disubstituted Benzimidazoles via One-Pot Telescopic Grinding Approach. ChemMedChem 2024; 19:e202400365. [PMID: 39136608 DOI: 10.1002/cmdc.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Indexed: 10/27/2024]
Abstract
Benzimidazole compounds are known for their broad spectrum therapeutic potentials. A small library of benzimidazole derivatives were designed and synthesized via a one-pot telescopic grinding approach. The ability of these molecules as proposed anticancer agents were evaluated by their potential to bind to two important cancer pathway protein targets, human estrogen receptors and cyclin dependant kinases, 3ERT and 5FGK respectively. Further nucleic acid binding and reactive oxygen species (ROS) scavenging capacity being in the scope for anticancer potential evaluations, the ability of these molecules have been evaluated for the same. Further, to support the experimental and computational results, AI-assisted tools were employed to predict the anticancer activity (PASS) as well as to identify false positives (PAINS). Also, the druggability of the proposed compounds was evaluated by following their pharmacokinetic parameters - ADME.
Collapse
Affiliation(s)
- Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Parvin N Thansila
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India, 600027
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - R D Padmaja
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - T S Prathima
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India, 600027
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India, 600027
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India
| |
Collapse
|
2
|
Hawthorne N, Broker EJ, Bao Y, Banerjee S, Moore Q, Cardinal C, Ha J, Braga UD, Rappe AM, Batteas JD. Studies of the mechanically induced reactivity of graphene with water using a 2D-materials strain reactor. MATERIALS HORIZONS 2024. [PMID: 39588715 DOI: 10.1039/d4mh01360c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Using mechanical force to induce chemical reactions with two-dimensional (2D) materials provides an approach for both understanding mechanochemical processes on the molecular level, and a potential method for using mechanical strain as a means of directing the functionalization of 2D materials. To investigate this, we have designed a modular experimental platform which allows for in situ monitoring of reactions on strained graphene via Raman spectroscopy as a function of time. Both the strain present in graphene and the corresponding chemical changes it undergoes in the presence of a reagent can be followed concomitantly. As a case study, we have experimentally monitored and theoretically modeled the reactivity of a suspended single-layer graphene membrane under strain with water, where the graphene is strained via an applied backing pressure. While exposure of the unstrained membrane to water does not drive a chemical reaction, distortion of the membrane causes a rise in the ID/IG peak ratio, indicating an initial lattice conversion from crystalline to nanocrystalline due to reaction with water. With continued reaction, a decrease in the ID/IG peak ratio is then seen, indicative of a nanocrystalline to amorphous lattice transition. Using density functional theory (DFT) calculations, the reaction of water on graphene has been determined to be nucleated by epoxide defects, with the reaction barrier decreasing by nearly 5× for the strained vs. unstrained graphene. While demonstrated here for graphene, this approach also provides the opportunity to examine a host of force-driven chemical reactions with 2D materials.
Collapse
Affiliation(s)
- Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Edward J Broker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Yutian Bao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Quentarius Moore
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Camille Cardinal
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39401, USA
| | - Jimmy Ha
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Ulisses D Braga
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- Department of Chemistry, University of Texas at Austin, Austin, TX 87812, USA
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Jafter OF, Lee S, Park J, Cabanetos C, Lungerich D. Navigating Ball Mill Specifications for Theory-to-Practice Reproducibility in Mechanochemistry. Angew Chem Int Ed Engl 2024; 63:e202409731. [PMID: 39148147 DOI: 10.1002/anie.202409731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
The rising prospects of mechanochemically assisted syntheses hold promise for both academia and industry, yet they face challenges in understanding and, therefore, anticipating respective reaction kinetics. Particularly, dependencies based on variations in milling equipment remain little understood and globally overlooked. This study aims to address this issue by identifying critical parameters through kinematic models, facilitating the reproducibility of mechanochemical reactions across the most prominent mills in laboratory settings, namely planetary and mixer mills. Through a series of selected experiments replicating major classes of organic, organometallic, transition metal-catalyzed, and inorganic reactions from literature, we rationalize the independence of kinematic parameters on reaction kinetics when the accumulated energy criterion is met. As a step forward and to facilitate the practicability of our findings, we provide a freely accessible online tool[†] that allows the calculation of respective energy parameters for different planetary and mixer mills. Our work advances the current understanding of mechanochemistry and lays the foundation for future rational exploration in this rapidly evolving field.
Collapse
Affiliation(s)
- Orein F Jafter
- Center for Nanomedicine, Institute for Basic Science (IBS), 03722, Seoul, South Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 03722, Seoul, South Korea
| | - Sol Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), 03722, Seoul, South Korea
| | - Jongseong Park
- Center for Nanomedicine, Institute for Basic Science (IBS), 03722, Seoul, South Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 03722, Seoul, South Korea
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000, Angers, France
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), 03722, Seoul, South Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, 03722, Seoul, South Korea
| |
Collapse
|
4
|
Kadri L, Casali L, Emmerling F, Tajber L. Mechanochemical comparison of ball milling processes for levofloxacin amorphous polymeric systems. Int J Pharm 2024; 665:124652. [PMID: 39214432 DOI: 10.1016/j.ijpharm.2024.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the amorphization capabilities of levofloxacin hemihydrate (LVXh), a fluoroquinolone drug, using a polymer excipient, Eudragit® L100 (EL100). Ball milling (BMing) was chosen as the manufacturing process and multiple mill types were utilized for comparison purposes. The product outcomes of each mill were analyzed in detail. The solid-state of the samples produced was comprehensively characterized by Powder X-ray Diffraction (PXRD), In-situ PXRD, Differential Scanning Calorimetry (DSC), Solid-State Fourier Transform Infrared Spectroscopy (FT-IR), and Dynamic Vapor Sorption (DVS). The crystallographic planes of LVXh were investigated by in-situ PXRD to disclose the presence or absence of weak crystallographic plane(s). The mechanism of LVXh:EL100 system formation was discovered as a two-step process, first involving amorphization of LVXh followed by an interaction with EL100, rather than as an instantaneous process. DVS studies of LVXh:EL100 samples showed different stability properties depending on the mill used and % LVXh present. Overall, a more sustainable approach for achieving full amorphization of the fluoroquinolone drug, LVXh, was accomplished, and advancements to the fast-growing world of pharmaceutical mechano- and tribo-chemistry were made.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland
| | - Lucia Casali
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland.
| |
Collapse
|
5
|
Quaranta C, d'Anciães Almeida Silva I, Moos S, Bartalucci E, Hendrickx L, Fahl BMD, Pasqualini C, Puccetti F, Zobel M, Bolm C, Wiegand T. Molecular Recognition in Mechanochemistry: Insights from Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202410801. [PMID: 39007361 DOI: 10.1002/anie.202410801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Molecular-recognition events are highly relevant in biology and chemistry. In the present study, we investigated such processes in the solid state under mechanochemical conditions using the formation of racemic phases upon reacting enantiopure entities as example. As test systems, α-(trifluoromethyl)lactic acid (TFLA) and the amino acids serine and alanine were used. The effects of ball-milling and resonant acoustic mixing (RAM) on the formation of racemic phases were probed by using solid-state Nuclear Magnetic Resonance (NMR) spectroscopy. In a mixer mill, a highly efficient and fast racemic phase formation occurred for both TFLA and the two amino acids. RAM led to the racemic phase for TFLA also, and this process was facilitated upon employing pre-milled enantiopure entities. In contrast, under comparable conditions RAM did not result in the formation of racemic phases for serine and alanine.
Collapse
Affiliation(s)
- Calogero Quaranta
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Sven Moos
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Benjamin M D Fahl
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Claudia Pasqualini
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro, 2, I-53100, Siena, Italy
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
6
|
Zhu H, Gong L, Jiang L, Liu X, Hu L, Wu W, Lin D, Yang K. Green synthesis of a superhydrophobic porous organic polymer for the removal of volatile organic compounds at high humidity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174073. [PMID: 38909802 DOI: 10.1016/j.scitotenv.2024.174073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Superhydrophobic porous organic polymers are potential sorbents for volatile organic compounds (VOCs) pollution control by suppressing the competition of water molecules on their surfaces. However, the synthesis of superhydrophobic reagents usually requires large amounts of organic solvents and a long reaction time (≥ 24 h). Herein, a green mechanochemical method was developed to synthesize a superhydrophobic polymer (MSHMP-1) with the advantages of using a small amount of organic solvents (5 mL/g) and a short reaction time (2 h). Meanwhile, MSHMP-1 with a water contact angle (WCA) of 162° exhibited a dramatically rich pore structure as revealed by its specific surface area (SSA) of 1780 m2/g. The decrease in the adsorption of benzene on MSHMP-1 due to the competition of water molecules, even at relative humidity of 90 %, was nonsignificant (<10 %), indicating the great application potential of MSHMP-1 in hydrophobic adsorption. Moreover, the adsorption capacity of MSHMP-1 was maintained after at least five adsorption-desorption cycles. Therefore, MSHMP-1 can be a remarkable adsorbent for the removal of hazardous VOCs, especially at high humidity levels.
Collapse
Affiliation(s)
- Hongxia Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, China
| | - Li Gong
- Party School of Sichuan Provincial Committee of C.P.C for Provincial Authorities, Chengdu 610059, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xianyu Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
7
|
Pan S, Wu P, Bampi D, Ward JS, Rissanen K, Bolm C. Mechanochemical Conditions for Intramolecular N-O Couplings via Rhodium Nitrenoids Generated from N-Acyl Sulfonimidamides. Angew Chem Int Ed Engl 2024:e202413181. [PMID: 39381922 DOI: 10.1002/anie.202413181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Starting from N-acyl sulfonimidamides, mechanochemically generated rhodium nitrenoids undergo intramolecular N-O couplings to provide unprecedented 1,3,2,4-oxathiadiazole 3-oxides in good to excellent yields. The cyclization proceeds efficiently with a catalyst loading of only 0.5 mol % in the presence of phenyliodine(III) diacetate (PIDA) as oxidant. Neither an inert atmosphere nor additional heating is required in this solvent-free procedure. Under heat or blue light, the newly formed five-membered heterocycles function as nitrene precursors reacting with sulfoxides as exemplified by the imidation of dimethyl sulfoxide.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dimitra Bampi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
8
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Xing H, Yaylayan V. Mechanochemistry in Glycation Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20738-20751. [PMID: 39241158 DOI: 10.1021/acs.jafc.4c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Mechanochemistry by milling has recently attracted considerable interest for its ability to drive solvent-free chemical transformations exclusively through mechanical energy and at ambient temperatures. Despite its popularity and expanding applications in different fields of chemistry, its impact on Food Science remains limited. This review aims to demonstrate the specific benefits that mechanochemistry can provide in performing controlled glycation, and in "activating" sugar and amino acid mixtures, thereby allowing for continued generation of colors and aromas even after termination of milling. The generated mechanical energy can be tuned under specific conditions either to form only the corresponding Schiff bases and Amadori compounds or to generate their degradation products, as a function of the frequency of the oscillations in combination with the reactivity of the selected substrates. Similarly, its ability to initiate the Strecker degradation and generate pyrazines and Strecker aldehydes was also demonstrated when proteogenic amino acids were milled with glyoxal.
Collapse
Affiliation(s)
- Haoran Xing
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Varoujan Yaylayan
- Department of Food Science & Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Québec H9X 3 V9, Canada
| |
Collapse
|
10
|
Liu R, He X, Liu T, Wang X, Wang Q, Chen X, Lian Z. Organic Reactions Enabled by Mechanical Force-Induced Single Electron Transfer. Chemistry 2024; 30:e202401376. [PMID: 38887819 DOI: 10.1002/chem.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Mechanochemical reactions, achieved through milling, grinding, or other mechanical actions, have emerged as a solvent-free alternative to traditional solution-based chemistry. Mechanochemistry not only provides the opportunity to eliminate bulk solvent use, reducing waste generation, but also unveils a new reaction strategy which enables the realization of reactions previously inaccessible in solution. While the majority of organic reactions facilitated by mechanical force traditionally follow two-electron transfer pathways similar to their solution-based counterparts, the field of mechanochemically induced single-electron transfer (SET) reactions has witnessed rapid development. This review outlines examples of mechanochemical reactions facilitated by the SET process, focusing on the reagents that initiate SET, thereby positioning mechanochemistry as a burgeoning field within the realm of single-electron chemistry.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Tianfen Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xinzhou Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| |
Collapse
|
11
|
Qu R, Wan S, Zhang X, Wang X, Xue L, Wang Q, Cheng GJ, Dai L, Lian Z. Mechanical-Force-Induced Non-spontaneous Dehalogenative Deuteration of Aromatic Iodides Enabled by Using Piezoelectric Materials as a Redox Catalyst. Angew Chem Int Ed Engl 2024; 63:e202400645. [PMID: 38687047 DOI: 10.1002/anie.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
The development of green and efficient deuteration methods is of great significance for various fields such as organic synthesis, analytical chemistry, and medicinal chemistry. Herein, we have developed a dehalogenative deuteration strategy using piezoelectric materials as catalysts in a solid-phase system under ball-milling conditions. This non-spontaneous reaction is induced by mechanical force. D2O can serve as both a deuterium source and an electron donor in the transformation, eliminating the need for additional stoichiometric exogenous reductants. A series of (hetero)aryl iodides can be transformed into deuterated products with high deuterium incorporation. This method not only effectively overcomes existing synthetic challenges but can also be used for deuterium labelling of drug molecules and derivatives. Bioactivity experiments with deuterated drug molecule suggest that the D-ipriflavone enhances the inhibitory effects on osteoclast differentiation of BMDMs in vitro.
Collapse
Affiliation(s)
- Ruiling Qu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Shan Wan
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Li Xue
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, P. R. China
| | - Lunzhi Dai
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
12
|
Nayek P, Mal P. Mimicking Ozonolysis via Mechanochemistry: Internal Alkynes to 1,2-Diketones using H 5IO 6. Chemistry 2024; 30:e202401027. [PMID: 38634437 DOI: 10.1002/chem.202401027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Utilizing periodic acid as an environmentally benign oxidizing agent, this study introduces a novel mechanochemical method that mimics ozonolysis to convert internal alkynes into 1,2-diketones, showcasing effective emulation of ozone's reactivity. Notably, this oxidation occurs at room temperature in aerobic conditions, eliminating the need for toxic transition metals, hazardous oxidants, or expensive solvents. Through control experiments validating the mechanism, substantial evidence supports a concerted reaction pathway. This progress marks a significant stride toward cleaner and more efficient chemical synthesis, mitigating the environmental impact of conventional processes. Assessing the green chemistry metrics in both solvent-free and previously reported solvent-based methods, our eco-friendly protocol demonstrates an E-factor of 7.40, a 51.7 % atom economy, a 45.5 % atom efficiency, 100 % carbon efficiency, and 11.9 % reaction mass efficiency when solvents are not used.
Collapse
Affiliation(s)
- Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
13
|
Mkrtchyan S, Shalimov O, Garcia MG, Zapletal J, Iaroshenko VO. Mechanochemical synthesis of aromatic ketones: pyrylium tetrafluoroborate mediated deaminative arylation of amides. Chem Sci 2024; 15:9155-9163. [PMID: 38903233 PMCID: PMC11186303 DOI: 10.1039/d4sc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
A new method has been introduced that is able to tackle the complexities of N-C(O) activation in amide moieties through utilization of pyrylium tetrafluoroborate in a mechanochemical setting, where amide bonds undergo activation and subsequent conversion to biaryl ketones. Due to the employment of a mechanochemical setting, the reaction conforms to green chemistry principles, offering an environmentally friendly approach to traditional amide derivatization techniques that rely on transition metals to achieve further functionalization.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
| | - Oleksandr Shalimov
- Department of Heteroatom Chemistry, Institute of Organic Chemistry, National Academy of Sciences of Ukraine 5 Murmans'ka 02660 Kyiv Ukraine
| | - Michael G Garcia
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Jiří Zapletal
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
- Functional Materials Group, Gulf University for Science and Technology Mubarak Al-Abdullah 32093 Kuwait
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| |
Collapse
|
14
|
Raji-Adefila B, Wang Y, Ding Y, Avdeev M, Outka A, Gonzales H, Engelstad K, Sainio S, Nordlund D, Kan WH, Zhou S, Chen D. Mechanochemically Enabled Metastable Niobium Tungsten Oxides. J Am Chem Soc 2024; 146:10498-10507. [PMID: 38590084 DOI: 10.1021/jacs.3c14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Metastable compounds have greatly expanded the synthesizable compositions of solid-state materials and have attracted enormous amounts of attention in recent years. Especially, mechanochemically enabled metastable materials synthesis has been very successful in realizing cation-disordered materials with highly simple crystal structures, such as rock salts. Application of the same strategy for other structural types, especially for non-close-packed structures, is peculiarly underexplored. Niobium tungsten oxides (NbWOs), a class of materials that have been under the spotlight because of their diverse structural varieties and promising electrochemical and thermoelectric properties, are ideally suited to fill such a knowledge gap. In this work, we develop a new series of metastable NbWOs and realize one with a fully cation-disordered structure. Furthermore, we find that metastable NbWOs transform to a cation-disordered cubic structure when applied as a Li-ion battery anode, highlighting an intriguing non-close-packed-close-packed conversion process, as evidenced in various physicochemical characterizations, in terms of diffraction, electronic, and vibrational structures. Finally, by comparing the cation-disordered NbWO with other trending cation-disordered oxides, we raise a few key structural features for cation disorder and suggest a few possible research opportunities for this field.
Collapse
Affiliation(s)
- Basirat Raji-Adefila
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - You Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maxim Avdeev
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexandra Outka
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hailey Gonzales
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kory Engelstad
- Nanoscience & Biomedical Engineering, South Dakota School of Mines & Technology, Rapid City, South Dakota 57701, United States
| | - Sami Sainio
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wang Hay Kan
- Spallation Neutron Source Science Center, Dalang, Dongguan 523803, China
- China Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Zhou
- Nanoscience & Biomedical Engineering, South Dakota School of Mines & Technology, Rapid City, South Dakota 57701, United States
| | - Dongchang Chen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
15
|
Yang L, Guo X, Yang Y, Duan G, Chen K, Wang J, Li Y, Wang Z. Mechanically Controlled Enzymatic Polymerization and Remodeling. ACS Macro Lett 2024; 13:401-406. [PMID: 38511967 DOI: 10.1021/acsmacrolett.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In nature, proteins possess the remarkable ability to sense and respond to mechanical forces, thereby triggering various biological events, such as bone remodeling and muscle regeneration. However, in synthetic systems, harnessing the mechanical force to induce material growth still remains a challenge. In this study, we aimed to utilize low-frequency ultrasound (US) to activate horseradish peroxidase (HRP) and catalyze free radical polymerization. Our findings demonstrate the efficacy of this mechano-enzymatic chemistry in rapidly remodeling the properties of materials through cross-linking polymerization and surface coating. The resulting samples exhibited a significant enhancement in tensile strength, elongation, and Young's modulus. Moreover, the hydrophobicity of the surface could be completely switched within just 30 min of US treatment. This work presents a novel approach for incorporating mechanical sensing and rapid remodeling capabilities into materials.
Collapse
Affiliation(s)
- Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Hu HC, Yu SY, Tsai YH, Hsieh PW, Wang HC, Chen YN, Chuang YT, Lee MY, Chang HW, Hu HC, Wu YC, Chang FR, Szatmári I, Fülöp F. Synthesis of bioactive evodiamine and rutaecarpine analogues under ball milling conditions. Org Biomol Chem 2024; 22:2620-2629. [PMID: 38451121 DOI: 10.1039/d4ob00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 μg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.
Collapse
Affiliation(s)
- Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Pharmaceutical Chemistry and HUN-REN-Stereochemistry Research Group, University of Szeged, Szeged 6720, Hungary.
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Pharmacognosy, University of Szeged, Szeged 6720, Hungary
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907101, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yan-Ning Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Min-Yu Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Chun Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN-Stereochemistry Research Group, University of Szeged, Szeged 6720, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and HUN-REN-Stereochemistry Research Group, University of Szeged, Szeged 6720, Hungary.
| |
Collapse
|
17
|
Zhang X, Xue S, Yan Y, Liu S, Ye Q, Zhou F. Mechanochemical Synthesis of Thiadiazole Functionalized COF as Oil-Based Lubricant Additive for Reducing Friction and Wear. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4373-4381. [PMID: 38359406 DOI: 10.1021/acs.langmuir.3c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In this work, the functionalized covalent organic framework (COF) was prepared via a convenient ball milling process. The aldehyde group terminated COF-F reacted with amino thiadiazole in the ball milling jar under mechanical forces; hence, the thiadiazole functionalized COF-F was obtained and denoted as Thdz@COF-F. The as-prepared Thdz@COF-F serves as an oil-based lubricant additive and exhibits remarkable tribological properties, which can reduce the average friction coefficient of base oil from 0.169 to 0.102 and decrease the wear volume by 87.0%. The antifriction and antiwear performances are mainly due to the repairing effect of Thdz@COF-F nanoparticles and the protective tribo-film that averts the direct contact of friction pairs. In addition, through the ball milling method, triazole and thiazole functionalized COF-F were also prepared and represented good lubrication performance, demonstrating the feasibility of this mechanochemical synthesis method for functionalized COFs.
Collapse
Affiliation(s)
- Xiaozhi Zhang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Shenghua Xue
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Yaojie Yan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| |
Collapse
|
18
|
Chen S, Fan C, Xu Z, Pei M, Wang J, Zhang J, Zhang Y, Li J, Lu J, Peng C, Wei X. Mechanochemical synthesis of organoselenium compounds. Nat Commun 2024; 15:769. [PMID: 38278789 PMCID: PMC10817960 DOI: 10.1038/s41467-024-44891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
We disclose herein a strategy for the rapid synthesis of versatile organoselenium compounds under mild conditions. In this work, magnesium-based selenium nucleophiles are formed in situ from easily available organic halides, magnesium metal, and elemental selenium via mechanical stimulation. This process occurs under liquid-assisted grinding (LAG) conditions, requires no complicated pre-activation procedures, and operates broadly across a diverse range of aryl, heteroaryl, and alkyl substrates. In this work, symmetrical diselenides are efficiently obtained after work-up in the air, while one-pot nucleophilic addition reactions with various electrophiles allow the comprehensive synthesis of unsymmetrical monoselenides with high functional group tolerance. Notably, the method is applied to regioselective selenylation reactions of diiodoarenes and polyaromatic aryl halides that are difficult to operate via solution approaches. Besides selenium, elemental sulfur and tellurium are also competent in this process, which showcases the potential of the methodology for the facile synthesis of organochalcogen compounds.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Chunying Fan
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Mengyao Pei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiemin Wang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Yanta, China
| | - Jiyu Li
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Junliang Lu
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Cheng Peng
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
19
|
Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ. Fixed-bed adsorption studies of endocrine-disrupting compounds from water by using novel calcium-based metal-organic frameworks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122980. [PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
Collapse
Affiliation(s)
- Fahren Fazzer Sukatis
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
20
|
Kubota K, Jiang J, Kamakura Y, Hisazumi R, Endo T, Miura D, Kubo S, Maeda S, Ito H. Using Mechanochemistry to Activate Commodity Plastics as Initiators for Radical Chain Reactions of Small Organic Molecules. J Am Chem Soc 2024; 146:1062-1070. [PMID: 38134051 DOI: 10.1021/jacs.3c12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Radical initiators such as azo compounds and organic peroxides have been widely used to facilitate numerous transformations of free radicals, which enable the efficient synthesis of structurally complex molecules, natural products, polymers, and functional materials. However, these high-energy reagents are potentially explosive and thus often require special precautions or delicate operating conditions. We postulated that a more convenient and safer alternative for radical chain initiation could be developed by mechanical activation of thermodynamically stable covalent bonds. Here, we show that commodity plastics such as polyethylene and poly(vinyl acetate) are capable of acting as efficient initiators for radical chain reactions under solvent-free mechanochemical conditions. In this approach, polymeric mechanoradicals, which are generated by homolytic cleavage of the polymer chains in response to the applied mechanical energy provided by ball milling, react with tris(trimethylsilyl)silane to initiate radical chain dehalogenation of organic halides. Preliminary calculations support our proposed force-induced radical chain mechanism.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yuri Kamakura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Reon Hisazumi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Tsubura Endo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Daiyo Miura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Shotaro Kubo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
21
|
Pan S, Mulks FF, Wu P, Rissanen K, Bolm C. Mechanochemical Iron-Catalyzed Nitrene Transfer Reactions: Direct Synthesis of N-Acyl Sulfonimidamides from Sulfinamides and Dioxazolones. Angew Chem Int Ed Engl 2023:e202316702. [PMID: 38055189 DOI: 10.1002/anie.202316702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
A mechanochemical synthesis of sulfonimidamides by iron(II)-catalyzed exogenous ligand-free N-acyl nitrene transfer to sulfinamides is reported. The one-step method tolerates a wide range of sulfinamides with various substituents under solvent-free ambient conditions. Compared to its solution-phase counterpart, this mechanochemical approach shows better conversion and chemoselectivity. Mechanistic investigations by ESI-MS revealed the generation of crucial nitrene iron intermediates.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Florian F Mulks
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
22
|
Reynes JF, Isoni V, García F. Tinkering with Mechanochemical Tools for Scale Up. Angew Chem Int Ed Engl 2023; 62:e202300819. [PMID: 37114517 DOI: 10.1002/anie.202300819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Mechanochemistry provides an environmentally benign platform to develop more sustainable chemical processes by limiting raw materials, energy use, and waste generation while using physically smaller equipment. A continuously growing research community has steadily showcased examples of beneficial mechanochemistry applications at both the laboratory and the preparative scale. In contrast to solution-based chemistry, mechanochemical processes have not yet been standardized, and thus scaling up is still a nascent discipline. The purpose of this Minireview is to highlight similarities, differences and challenges of the various approaches that have been successfully applied for a range of chemical applications at various scales. We hope to provide a discussion starting point for those interested in further developing mechanochemical processes for commercial use and/or industrialisation.
Collapse
Affiliation(s)
- Javier F Reynes
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
| | - Valerio Isoni
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1, Pesek Road, Jurong Island, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006, Oviedo, Asturias, Spain
- School of Chemistry, Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
23
|
Fan B, Zhou B, Chen S, Zhu F, Chen B, Gong Z, Wang X, Zhu C, Zhou D, He F, Gao S. Preparation of Fe/Cu bimetals by ball milling iron powder and copper sulfate for trichloroethylene degradation: Combined effect of FeS x and Fe/Cu alloy. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132402. [PMID: 37660624 DOI: 10.1016/j.jhazmat.2023.132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The addition of a secondary metal (such as Cu, Co, Ni and Pd) to form iron-based bimetallic particles could enhance the reactivity of zero valent iron (ZVI). This study proposed a new synthesis method for preparing Cu-Fe bimetals (Cu-Febm (CuSO4)) by ball milling mZVI and CuSO4. During ball-milling process, 40% of Cu2+ can be reduced to Cu0, which formed galvanic couple with Fe0 in a way of Fe/Cu alloy structure. Part Cu2+ was only reduced to Cu+ (corresponding to Cu2O), while 29% of SO42- was reduced to Sx2- (corresponding to FeSx). The appearance of Cu2O was not conducive to the activity of Cu-Febm (CuSO4) particles, the formation of Fe0/FeSx structure compensated for the partial loss of Fe/Cu alloy. H•abs was identified as the main active species for TCE degradation by Cu-Febm (CuSO4) bimetals. The Cu-Febm (CuSO4) bimetals has great potential for the removal of chlorinated hydrocarbons in water.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Bo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
24
|
Li Z, Wang Z, Wang C, Li W, Fan W, Zhao R, Feng H, Peng D, Huang W. Mechanoluminescent Materials Enable Mechanochemically Controlled Atom Transfer Radical Polymerization and Polymer Mechanotransduction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0243. [PMID: 37795336 PMCID: PMC10546606 DOI: 10.34133/research.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.
Collapse
Affiliation(s)
- Zexuan Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenxi Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haoyang Feng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
25
|
Wang X, Zhang X, Xue L, Wang Q, You F, Dai L, Wu J, Kramer S, Lian Z. Mechanochemical Synthesis of Aryl Fluorides by Using Ball Milling and a Piezoelectric Material as the Redox Catalyst. Angew Chem Int Ed Engl 2023; 62:e202307054. [PMID: 37523257 DOI: 10.1002/anie.202307054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Aryl fluorides are important structural motifs in many pharmaceuticals. Although the Balz-Schiemann reaction provides an entry to aryl fluorides from aryldiazonium tetrafluoroborates, it suffers from drawbacks such as long reaction time, high temperature, toxic solvent, toxic gas release, and low functional group tolerance. Here, we describe a general method for the synthesis of aryl fluorides from aryldiazonium tetrafluoroborates using a piezoelectric material as redox catalyst under ball milling conditions in the presence of Selectfluor. This approach effectively addresses the aforementioned limitations. Furthermore, the piezoelectric material can be recycled multiple times. Mechanistic investigations indicate that this fluorination reaction may proceed via a radical pathway, and Selectfluor plays a dual role as both a source of fluorine and a terminal reductant.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Li Xue
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Fengzhi You
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Lunzhi Dai
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jiagang Wu
- Department of Materials Science, Sichuan University, 610064, Chengdu, China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China
| |
Collapse
|
26
|
Fink F, Stawski TM, Stockmann JM, Emmerling F, Falkenhagen J. Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate. Biomacromolecules 2023; 24:4274-4284. [PMID: 37561452 DOI: 10.1021/acs.biomac.3c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters.
Collapse
Affiliation(s)
- Friedrich Fink
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Mathematische-Naturwissenschaftliche Fakultät, Unter den Linden 6, 10099 Berlin, Germany
| | - Tomasz M Stawski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Jörg M Stockmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Mathematische-Naturwissenschaftliche Fakultät, Unter den Linden 6, 10099 Berlin, Germany
| | - Jana Falkenhagen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| |
Collapse
|
27
|
Ren Z, Ding C, Ding R, Wang J, Li Z, Tan R, Wang X, Wang Z, Zhang Z. Enhancing Ultrasound-Assisted Iodine-Mediated Reversible-Deactivation Radical Polymerization by Piezoelectric Nanoparticles. ACS Macro Lett 2023; 12:1159-1165. [PMID: 37523272 DOI: 10.1021/acsmacrolett.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The development of mechanochemical tools for regulating the polymerization process has received an increasing amount of attention in recent years. Herein, we report the example of the mechanically controlled iodine-mediated reversible-deactivation radical polymerization (mechano-RDRP) using piezoelectric tetragonal BaTiO3 nanoparticles (T-BTO) as mechanoredox catalyst and alkyl iodide as the initiator. We demonstrated a more efficient mechanochemical initiation and reversible deactivation process than sonochemical activation via a mechanoredox-mediated alkyl iodide cleavage reaction. The mechanochemical activation of the C-I bond was verified by density functional theory (DFT) calculations. Theoretical calculations together with experimental results confirmed the more efficient initiation and polymerization than the traditional sonochemical approach. The influence of BaTiO3, initiator, and solvent was further examined to reveal the mechanism of the mechano-RDRP. The results showed good controllability over molecular weight and capacity for a one-pot chain extension. This work expands the scope of mechanically controlled polymerization and shows good potential in the construction of adaptive materials.
Collapse
Affiliation(s)
- Ziye Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chengqiang Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ran Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junce Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengheng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
28
|
Heryanto H, Siswanto S, Rahmat R, Sulieman A, Bradley DA, Tahir D. Nickel Slag/Laterite Soil and Nickel Slag/Iron Sand Nanocomposites: Structural, Optical, and Electromagnetic Absorption Properties. ACS OMEGA 2023; 8:18591-18602. [PMID: 37273611 PMCID: PMC10233663 DOI: 10.1021/acsomega.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 06/06/2023]
Abstract
Efforts to produce microwave absorber materials that are inexpensive and environmentally friendly have become a means of greening the environment. The breakthrough can be focused on industrial waste and natural materials for functional purposes and how to enhance their performance. We successfully synthesized nickel slag/laterite soil (NS/LS) and nickel slag/iron sand (NS/IS) nanocomposites using a simple mechanical alloying technique, and the electromagnetic (EM) wave absorption capacities of the nanocomposites were measured using a vector network analyzer. The structural properties of the nanocomposites were analyzed by X-ray diffraction spectroscopy, where the results of the analysis showed that NS/IS has the largest crystallite size (15.69 nm) and the highest EM wave absorption performance. The optical properties of the nanocomposites were determined from their Fourier transform infrared spectra using the Kramers-Kronig relation. As determined through a quantitative analysis of the optical properties, the distance between the longitudinal and transversal optical phonon wavenumber positions (Δ(LO - TO) = 65 cm-1) is inversely proportional to the reflection loss. The surface morphologies of the nanocomposites were analyzed by scanning electron microscopy, and the particle diameters were observed by binary image and Gaussian distribution analyses. The nanocomposite surface exhibits a graded-like morphology, which indicates multiple reflections of the EM radiation, consequently reducing the EM interference. The best nanocomposite for an attenuated EM wave achieved a reflection loss of -39.14 dB at 5-8 GHz. A low penetration depth has implications for the electrical charge tuning of the storage and composite magnets. Finally, the EM absorption properties of NS/IS and NS/LS indicate a 2-mm-thick environmentally friendly nanocomposite for EM absorption.
Collapse
Affiliation(s)
- Heryanto Heryanto
- Department
of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Siswanto Siswanto
- Department
of Statistics, Hasanuddin University, Makassar 90245, Indonesia
| | - Roni Rahmat
- Department
of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Abdelmoneim Sulieman
- Department
of Radiology and Medical Imaging Sciences, College of Applied Medical
Sciences, Prince Sattam bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| | - David A. Bradley
- Centre
for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
- Centre
for Applied Physics and Radiation Technologies, School of Engineering
and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Dahlang Tahir
- Department
of Physics, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
29
|
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the 'Veils' of Solvent, Exposing All Its Reactivity. Molecules 2023; 28:molecules28052239. [PMID: 36903485 PMCID: PMC10005452 DOI: 10.3390/molecules28052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The synthesis of nitrogen-based heterocycles has always been considered essential in developing pharmaceuticals in medicine and agriculture. This explains why various synthetic approaches have been proposed in recent decades. However performing as methods, they often imply harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry is undoubtedly one of the most promising technologies currently used for reducing any possible environmental impact, addressing the worldwide interest in counteracting environmental pollution. Following this line, we propose a new mechanochemical protocol for synthesizing various heterocyclic classes by exploiting thiourea dioxide (TDO)'s reducing proprieties and electrophilic nature. Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all the advantages brought by a green technique such as mechanochemistry, we plot a route towards a more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Pietro Caboni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical, and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| |
Collapse
|
30
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
31
|
Priestley I, Battilocchio C, Iosub AV, Barreteau F, Bluck GW, Ling KB, Ingram K, Ciaccia M, Leitch JA, Browne DL. Safety Considerations and Proposed Workflow for Laboratory-Scale Chemical Synthesis by Ball Milling. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ian Priestley
- Huddersfield Manufacturing Centre, Syngenta Ltd, Huddersfield HD2 1FF, United Kingdom
| | | | - Andrei V. Iosub
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332 Stein, Switzerland
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332 Stein, Switzerland
| | - Gavin W. Bluck
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332 Stein, Switzerland
| | - Kenneth B. Ling
- Jealott’s Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Katharine Ingram
- Jealott’s Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Maria Ciaccia
- Jealott’s Hill International Research Centre, Syngenta Ltd., Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, United Kingdom
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, United Kingdom
| |
Collapse
|
32
|
Oda K, Nishiyama H, Nishida JI, Kawase T. 9,9-Bis[4-(N-aryl)phenyl]methylidene-xanthylidene Derivatives Displaying Mechano-, Crystallo-, and Thermochromism. Chempluschem 2023; 88:e202200360. [PMID: 36515279 DOI: 10.1002/cplu.202200360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Tetraphenylethylene (TPE) derivatives bearing a xanthene moiety are of interest because they have novel optical properties. 9,9-Bis[4-(N,N-diphenylamino)phenyl] and 9,9-bis[4-(9-carbazolyl)-phenyl]methylidene-xanthylidenes 3 and 4 were synthesized using Suzuki-Miyaura coupling of 9,9-dibromomethylidene-xanthylidene with the corresponding boronic acids. Diphenylamino derivative 3 exhibits mechanochromism and mechanofluorochromism (MC and MFC) reflected in absorption and fluorescence color changes. In contrast, carbazolyl derivative 4 displays thermo- and crystallo-chromism in addition to MC and MFC in the solid state. Powder X-ray diffraction and single crystal X-ray crystallographic analysis reveal that the solid state photophysical properties of these substances are governed by conformational changes rather by the creation of planar π-conjugation extended geometries.
Collapse
Affiliation(s)
- Kasane Oda
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Hiroki Nishiyama
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Jun-Ichi Nishida
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Takeshi Kawase
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
33
|
Jia K, Ma J, Wang J, Liang Z, Ji G, Piao Z, Gao R, Zhu Y, Zhuang Z, Zhou G, Cheng HM. Long-Life Regenerated LiFePO 4 from Spent Cathode by Elevating the d-Band Center of Fe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208034. [PMID: 36300803 DOI: 10.1002/adma.202208034] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A large amount of spent LiFePO4 (LFP) has been produced in recent years because it is one of the most widely used cathode materials for electric vehicles. The traditional hydrometallurgical and pyrometallurgical recycling methods are doubted because of the economic and environmental benefits; the direct regeneration method is considered a promising way to recycle spent LFP. However, the performance of regenerated LFP by direct recycling is not ideal due to the migration of Fe ions during cycling and irreversible phase transition caused by sluggish Li+ diffusion. The key to addressing the challenge is to immobilize Fe atoms in the lattice and improve the Li+ migration capability during cycling. In this work, spent LFP is regenerated by using environmentally friendly ethanol, and its cycling stability is promoted by elevating the d-band center of Fe atoms via construction of a heterogeneous interface between LFP and nitrogen-doped carbon. The FeO bonding is strengthened and the migration of Fe ions during cycling is suppressed due to the elevated d-band center. The Li+ diffusion kinetics in the regenerated LFP are improved, leading to an excellent reversibility of the phase transition. Therefore, the regenerated LFP exhibits an ultrastable cycling performance at a high rate of 10 C with ≈80% capacity retention after 1000 cycles.
Collapse
Affiliation(s)
- Kai Jia
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jun Ma
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junxiong Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanjun Ji
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhihong Piao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Runhua Gao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanfei Zhu
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaofeng Zhuang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
34
|
Sander M, Fabig S, Borchardt L. The Transformation of Inorganic to Organic Carbonates: Chasing for Reaction Pathways in Mechanochemistry. Chemistry 2023; 29:e202202860. [PMID: 36314665 PMCID: PMC10107195 DOI: 10.1002/chem.202202860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Mechanochemical reactions are solvent-free alternatives to solution-based syntheses enabling even conventionally impossible transformations. Their reaction pathways, however, usually remain unexplored within the heavily vibrating, dense milling vessels. Here, we showcase how the green organic solvent diethyl carbonate is synthesized mechanochemically from inorganic alkali carbonates and how the complementary combination of milling parameter studies, synchrotron X-ray diffraction real time monitoring, and quantum chemical calculations reveal the underlying reaction pathways. With this, reaction intermediates are identified, and chemical concepts of solution-chemistry are challenged or corroborated for mechanochemistry.
Collapse
Affiliation(s)
- Miriam Sander
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sven Fabig
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
35
|
Auvray T, Friščić T. Shaking Things from the Ground-Up: A Systematic Overview of the Mechanochemistry of Hard and High-Melting Inorganic Materials. Molecules 2023; 28:897. [PMID: 36677953 PMCID: PMC9865874 DOI: 10.3390/molecules28020897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
We provide a systematic overview of the mechanochemical reactions of inorganic solids, notably simple binary compounds, such as oxides, nitrides, carbides, sulphides, phosphides, hydrides, borides, borane derivatives, and related systems. Whereas the solid state has been traditionally considered to be of little synthetic value by the broader community of synthetic chemists, the solid-state community, and in particular researchers focusing on the reactions of inorganic materials, have thrived in building a rich and dynamic research field based on mechanically-driven transformations of inorganic substances typically seen as inert and high-melting. This review provides an insight into the chemical richness of such mechanochemical reactions and, at the same time, offers their tentative categorisation based on transformation type, resulting in seven distinct groupings: (i) the formation of adducts, (ii) the reactions of dehydration; (iii) oxidation-reduction (redox) reactions; (iv) metathesis (or exchange) reactions; (v) doping and structural rearrangements, including reactions involving the reaction vessel (the milling jar); (vi) acid-base reactions, and (vii) other, mixed type reactions. At the same time, we offer a parallel description of inorganic mechanochemical reactions depending on the reaction conditions, as those that: (i) take place under mild conditions (e.g., manual grinding using a mortar and a pestle); (ii) proceed gradually under mechanical milling; (iii) are self-sustained and initiated by mechanical milling, i.e., mechanically induced self-propagating reactions (MSRs); and (iv) proceed only via harsh grinding and are a result of chemical reactivity under strongly non-equilibrium conditions. By elaborating on typical examples and general principles in the mechanochemistry of hard and high-melting substances, this review provides a suitable complement to the existing literature, focusing on the properties and mechanochemical reactions of inorganic solids, such as nanomaterials and catalysts.
Collapse
Affiliation(s)
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Bhuiyan FH, Li YS, Kim SH, Martini A. Shear-activated chemisorption and association of cyclic organic molecules. Faraday Discuss 2023; 241:194-205. [PMID: 36134558 DOI: 10.1039/d2fd00086e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mechanochemical activation has created new opportunities for applications such as solvent-free chemical synthesis, polymer processing, and lubrication. However, mechanistic understanding of these processes is still limited because the mechanochemical response of a system is a complex function of many variables, including the direction of applied stress and the chemical features of the reactants in non-equilibrium conditions. Here, we studied shear-activated reactions of simple cyclic organic molecules to isolate the effect of chemical structure on reaction yield and pathway. Reactive molecular dynamics simulations were used to model methylcyclopentane, cyclohexane, and cyclohexene subject to pressure and shear stress between silica surfaces. Cyclohexene was found to be more susceptible to mechanochemical activation of oxidative chemisorption and subsequent oligomerization reactions than either methylcyclopentane or cyclohexane. The oligomerization trend was consistent with shear-driven polymerization yield measured in ball-on-flat sliding experiments. Analysis of the simulations showed the distribution of carbon atom sites at which oxidative chemisorption occurred and identified the double bond in cyclohexene as being the origin of its shear susceptibility. Lastly, the most common reaction pathways for association were identified, providing insight into how the chemical structures of the precursor molecules determined their response to mechanochemical activation.
Collapse
Affiliation(s)
- Fakhrul H Bhuiyan
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, California 95343, USA.
| | - Yu-Sheng Li
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California Merced, 5200 N. Lake Road, Merced, California 95343, USA.
| |
Collapse
|
37
|
Boldyreva E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday Discuss 2023; 241:9-62. [PMID: 36519434 DOI: 10.1039/d2fd00149g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The paper presents a view on the achievements, challenges and prospects of mechanochemistry. The extensive reference list can serve as a good entry point to a plethora of mechanochemical literature.
Collapse
Affiliation(s)
- Elena Boldyreva
- Boreskov Institute of Catalysis SB RAS & Novosibirsk State University, Novosibirsk, Russian Federation.
| |
Collapse
|
38
|
Biswas S, Banerjee S, Shlain MA, Bardin AA, Ulijn RV, Nannenga BL, Rappe AM, Braunschweig AB. Photomechanochemical control over stereoselectivity in the [2 + 2] photodimerization of acenaphthylene. Faraday Discuss 2023; 241:266-277. [PMID: 36134559 PMCID: PMC10088556 DOI: 10.1039/d2fd00122e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tuning solubility and mechanical activation alters the stereoselectivity of the [2 + 2] photochemical cycloaddition of acenaphthylene. Photomechanochemical conditions produce the syn cyclobutane, whereas the solid-state reaction in the absence of mechanical activation provides the anti. When the photochemical dimerization occurs in a solubilizing organic solvent, there is no selectivity. Dimerization in H2O, in which acenaphthylene is insoluble, provides the anti product. DFT calculations reveal that insoluble and solid-state reactions proceed via a covalently bonded excimer, which drives anti selectivity. Alternatively, the noncovalently bound syn conformer is more mechanosusceptible than the anti, meaning it experiences greater destabilization, thereby producing the syn product under photomechanochemical conditions. Cyclobutanes are important components of biologically active natural products and organic materials, and we demonstrate stereoselective methods for obtaining syn or anti cyclobutanes under mild conditions and without organic solvents. With this work, we validate photomechanochemistry as a viable new direction for the preparation of complex organic scaffolds.
Collapse
Affiliation(s)
- Sankarsan Biswas
- Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA
| | - Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Milan A Shlain
- Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA
| | - Andrey A Bardin
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rein V Ulijn
- Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Adam B Braunschweig
- Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA.
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
- PhD Program in Chemistry, Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA
| |
Collapse
|
39
|
Song Z, Liu Y, Zhang B, Song S, Zhou Z, Huang Y, Zhao Z. Magnetic grinding synthesis of copper sulfide-based photocatalytic composites for the degradation of organic dyes under visible light. NEW J CHEM 2023. [DOI: 10.1039/d2nj05397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CuS based composites prepared by magnetic grinding method with metal and sulfur powder as raw materials have photocatalytic activity.
Collapse
Affiliation(s)
- Zhangbin Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yaoguo Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
40
|
Meng Q, Liu D, zhou Y, Cai R, Feng Y, Hu Z, Han S. Durable, highly sensitive conductive elastomeric nanocomposite films containing various graphene nanoplatelets and their derivatives. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qingshi Meng
- College of Aerospace Engineering, Shenyang Aerospace University Shenyang China
- Shenyang Aircraft Design Institute, AVIC Shenyang China
| | - Daiqiang Liu
- College of Aerospace Engineering, Shenyang Aerospace University Shenyang China
| | - Yi zhou
- Dyson School of Design Engineering, Imperial College London London UK
| | - Rui Cai
- School of Mechanical, Aerospace and Automotive Engineering, Coventry University Coventry UK
| | - Yuanyuan Feng
- College of Aerospace Engineering, Shenyang Aerospace University Shenyang China
| | - Zonghao Hu
- Shenyang Aircraft Design Institute, AVIC Shenyang China
| | - Sensen Han
- Shi‐changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences Shenyang China
| |
Collapse
|
41
|
Gao P, Jiang J, Maeda S, Kubota K, Ito H. Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon–Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2022; 61:e202207118. [DOI: 10.1002/anie.202207118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Pan Gao
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Julong Jiang
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
42
|
Akopova TA, Popyrina TN, Demina TS. Mechanochemical Transformations of Polysaccharides: A Systematic Review. Int J Mol Sci 2022; 23:10458. [PMID: 36142370 PMCID: PMC9501544 DOI: 10.3390/ijms231810458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Taking into consideration the items of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this study reviews application of mechanochemical approaches to the modification of polysaccharides. The ability to avoid toxic solvents, initiators, or catalysts during processes is an important characteristic of the considered approach and is in line with current trends in the world. The mechanisms of chemical transformations in solid reactive systems during mechanical activation, the structure and physicochemical properties of the obtained products, their ability to dissolve and swell in different media, to form films and fibers, to self-organize in solution and stabilize nanodispersed inorganic particles and biologically active substances are considered using a number of polysaccharides and their derivatives as examples.
Collapse
Affiliation(s)
- Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
| | | | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia
| |
Collapse
|
43
|
Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible" Reactions. CHEMSUSCHEM 2022; 15:e202200362. [PMID: 35867602 PMCID: PMC9542358 DOI: 10.1002/cssc.202200362] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Indexed: 05/10/2023]
Abstract
Mechanochemical transformations have made chemists enter unknown territories, forcing a different chemistry perspective. While questioning or revisiting familiar concepts belonging to solution chemistry, mechanochemistry has broken new ground, especially in the panorama of organic synthesis. Not only does it foster new "thinking outside the box", but it also has opened new reaction paths, allowing to overcome the weaknesses of traditional chemistry exactly where the use of well-established solution-based methodologies rules out progress. In this Review, the reader is introduced to an intriguing research subject not yet fully explored and waiting for improved understanding. Indeed, the study is mainly focused on organic transformations that, although impossible in solution, become possible under mechanochemical processing conditions, simultaneously entailing innovation and expanding the chemical space.
Collapse
Affiliation(s)
- Federico Cuccu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Lidia De Luca
- Dipartimento di Chimica e FarmaciaUniversità degli Studi di Sassarivia Vienna 207100SassariItaly
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariVia Marengo 209123CagliariItaly
| | | | - Niclas Solin
- Department of PhysicsChemistry and Biology (IFM)Electronic and Photonic Materials (EFM)Building Fysikhuset, Room M319, CampusVallaSweden
| | - Rita Mocci
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di CagliariCittadella Universitaria09042Monserrato, CagliariItaly
| |
Collapse
|
44
|
Čarný T, Peňaška T, Andrejčák S, Šebesta R. Mechanochemical Pd‐Catalyzed Cross‐Coupling of Arylhalides and Organozinc Pivalates. Chemistry 2022; 28:e202202040. [DOI: 10.1002/chem.202202040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Tibor Peňaška
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
45
|
Mechanochemical synthesis of inverse vulcanized polymers. Nat Commun 2022; 13:4824. [PMID: 35974005 PMCID: PMC9381570 DOI: 10.1038/s41467-022-32344-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Inverse vulcanization, a sustainable platform, can transform sulfur, an industrial by-product, into polymers with broad promising applications such as heavy metal capture, electrochemistry and antimicrobials. However, the process usually requires high temperatures (≥159 °C), and the crosslinkers needed to stabilize the sulfur are therefore limited to high-boiling-point monomers only. Here, we report an alternative route for inverse vulcanization—mechanochemical synthesis, with advantages of mild conditions (room temperature), short reaction time (3 h), high atom economy, less H2S, and broader monomer range. Successful generation of polymers using crosslinkers ranging from aromatic, aliphatic to volatile, including renewable monomers, demonstrates this method is powerful and versatile. Compared with thermal synthesis, the mechanochemically synthesized products show enhanced mercury capture. The resulting polymers show thermal and light induced recycling. The speed, ease, versatility, safety, and green nature of this process offers a more potential future for inverse vulcanization, and enables further unexpected discoveries. Inverse vulcanization is a process that enables to convert sulfur, a by-product of the petroleum industry, into polymers. Here the authors report a synthetic method of inverse vulcanization via mechanochemical synthesis; compared to thermal routes, a broader range of monomers can be used, and the protocol yields materials with enhanced mercury capture capacity.
Collapse
|
46
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron-Catalyzed Intramolecular Arene C(sp 2 )-H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202204874. [PMID: 35511087 PMCID: PMC9401578 DOI: 10.1002/anie.202204874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 02/06/2023]
Abstract
In a ball mill, FeBr3 -catalyzed intramolecular amidations lead to 3,4-dihydro-2(1H)-quinolinones in good to almost quantitative yields. The reactions do not require a solvent and are easy to perform. No additional ligand is needed for the iron catalyst. Both 4-substituted aryl and β-substituted dioxazolones provide products with high selectivity. Mechanistically, an electrophilic spirocyclization followed by C-C migration explains the formation of rearranged products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yongliang Tu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Deshen Kong
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Peng Wu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ding Ma
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
47
|
Gao P, Jiang J, Maeda S, Kubota K, Ito H. Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon−Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pan Gao
- Hokkaido University: Hokkaido Daigaku Institute for Chemical Reaction Design and Discovery JAPAN
| | - Julong Jiang
- Hokkaido University: Hokkaido Daigaku Chemistry JAPAN
| | - Satoshi Maeda
- Hokkaido University: Hokkaido Daigaku Chemistry JAPAN
| | - Koji Kubota
- Hokkaido University: Hokkaido Daigaku Division of Applied Chemistry JAPAN
| | - Hajime Ito
- Hokkaido University Division of Applied Chemistry Kita-13 Nishi-8Kita-ku 060-8628 Sapporo JAPAN
| |
Collapse
|
48
|
Green solvent-free synthesis of new N-heterocycle-L-ascorbic acid hybrids and their antiproliferative evaluation. Future Med Chem 2022; 14:1187-1202. [DOI: 10.4155/fmc-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The authors' aim was to improve the application of copper-catalyzed azide-alkyne cycloaddition in the synthesis of hybrids containing biologically significant nucleobases and L-ascorbic acid scaffolds by introducing an environmentally friendly and waste-free ball mill. Results: Two series of hybrids with a purine, pyrrolo[2,3- d]pyrimidine or 5-substituted pyrimidine attached to 2,3-dibenzyl-L-ascorbic acid via a hydroxyethyl- (15a–23a) or ethylidene-1,2,3-triazolyl (15b–23b) bridge were prepared by ball milling and conventional synthesis. The unsaturated 6-chloroadenine L-ascorbic acid derivative 16b can be highlighted as a lead compound and showed strong antiproliferative activity against HepG2 (hepatocellular carcinoma) and SW620 (colorectal adenocarcinoma) cells. Conclusion: Mechanochemical synthesis was superior in terms of sustainability, reaction rate and yield, highlighting the advantageous applications of ball milling over classical reactions.
Collapse
|
49
|
Shi P, Tu Y, Kong D, Wu P, Ma D, Bolm C. Iron‐Catalyzed Intramolecular Arene C(sp
2
)−H Amidations under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Yongliang Tu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Deshen Kong
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Peng Wu
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ding Ma
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
50
|
Bera SK, Bhanja R, Mal P. DDQ in mechanochemical C-N coupling reactions. Beilstein J Org Chem 2022; 18:639-646. [PMID: 35706992 PMCID: PMC9174842 DOI: 10.3762/bjoc.18.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a commonly known oxidant. Herein, we report that DDQ can be used to synthesize 1,2-disubstituted benzimidazoles and quinazolin-4(3H)-ones via the intra- and intermolecular C-N coupling reaction under solvent-free mechanochemical (ball milling) conditions. In the presence of DDQ, the intramolecular C(sp2)-H amidation of N-(2-(arylideneamino)phenyl)-p-toluenesulfonamides leads to 1,2-disubstituted benzimidazoles and the one-pot coupling of 2-aminobenzamides with aryl/alkyl aldehydes resulted in substituted quinazolin-4(3H)-one derivatives in high yields.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|