1
|
Hirayama D, Kawawaki T, Oguchi S, Ogano M, Kon N, Yasuda T, Higami A, Negishi Y. Ultrafine Rhodium-Chromium Mixed-Oxide Cocatalyst with Facet-Selective Loading for Excellent Photocatalytic Water Splitting. J Am Chem Soc 2024; 146:26808-26818. [PMID: 39311751 PMCID: PMC11613323 DOI: 10.1021/jacs.4c07351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
The development of water-splitting photocatalysts capable of generating green hydrogen (H2) from water and sunlight is crucial for achieving carbon neutrality. Further enhancement of the photocatalytic water-splitting activity is essential to realizing this objective. Photocatalysts with specific exposed crystal facets can facilitate efficient charge separation of electrons/holes, thereby achieving high activity for water splitting. However, there have been no reports of ultrafine (∼1 nm) cocatalysts being loaded onto specific crystal facets of photocatalysts, despite cocatalysts being the actual reaction sites for water splitting. This study establishes a novel method for achieving facet-selective loading of ultrafine H2-evolution cocatalysts onto the {100} facets, which are the H2-evolution facets, of a strontium titanate photocatalyst. The resulting photocatalyst exhibits the highest apparent quantum yield achieved to date for strontium titanate. This research holds the potential to further improve various types of advanced photocatalysts and is expected to accelerate the transition to carbon neutrality.
Collapse
Affiliation(s)
- Daisuke Hirayama
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Carbon
Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sota Oguchi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Ogano
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Naochika Kon
- Innovation
Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Tomohiro Yasuda
- Innovation
Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Akihiro Higami
- Innovation
Center, Mitsubishi Materials Corporation, 1002-14, Mukohyama, Naka-shi, Ibaraki 311-0102, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Carbon
Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Du Y, Li C, Dai Y, Yin H, Zhu M. Recent progress in atomically precise metal nanoclusters for photocatalytic application. NANOSCALE HORIZONS 2024; 9:1262-1278. [PMID: 38956971 DOI: 10.1039/d4nh00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Photocatalysis is a widely recognized green and sustainable technology that can harness inexhaustible solar energy to carry out chemical reactions, offering the opportunity to mitigate environmental issues and the energy crisis. Photocatalysts with wide spectral response and rapid charge transfer capability are crucial for highly efficient photocatalytic activity. Atomically precise metal nanoclusters (NCs), an emerging atomic-level material, have attracted great interests owing to their ultrasmall size, unique atomic stacking, abundant surface active sites, and quantum confinement effect. In particular, the molecule-like discrete electronic energy level endows them with small-band-gap semiconductor behavior, which allows for photoexcitation in order to generate electrons and holes to participate in the photoredox reaction. In addition, metal NCs exhibit strong light-harvesting ability in the wide spectral UV-near IR region, and the diversity of optical absorption properties can be precisely regulated by the composition and structure. These merits make metal NCs ideal candidates for photocatalysis. In this review, the recent advances in atomically-precise metal NCs for photocatalytic application are summarized, including photocatalytic water splitting, CO2 reduction, organic transformation, photoelectrocatalytic reactions, N2 fixation and H2O2 production. In addition, the strategy for promoting photostability, charge transfer and separation efficiency of metal NCs is highlighted. Finally, a perspective on the challenges and opportunities for NCs-based photocatalysts is provided.
Collapse
Affiliation(s)
- Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Chengqi Li
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Yali Dai
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Haijiao Yin
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, China.
| |
Collapse
|
3
|
Ni YR, Pillay MN, Chiu TH, Rajaram J, Wu YY, Kahlal S, Saillard JY, Liu CW. Diselenophosphate Ligands as a Surface Engineering Tool in PdH-Doped Silver Superatomic Nanoclusters. Inorg Chem 2024; 63:2766-2775. [PMID: 38253002 PMCID: PMC10848256 DOI: 10.1021/acs.inorgchem.3c04253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The first hydride-doped Pd/Ag superatoms stabilized by selenolates are reported: [PdHAg19(dsep)12] [dsep = Se2P(OiPr)2] 1 and [PdHAg20(dsep)12]+ 2. 1 was derived from the targeted transformation of [PdHAg19(dtp)12] [dtp = S2P(OiPr)2] by ligand exchange, whereas 2 was obtained from the addition of trifluoroacetic acid to 1, resulting in a symmetric redistribution of the capping silver atoms. The transformations are all achieved while retaining an 8-electron superatomic configuration. VT-NMR attests to the good stability of the NCs in solution, and single-crystal X-ray diffraction reveals the crucial role that the interstitial hydride plays in directing the position of the capping silver atoms. The total structures are reported alongside their electronic and optical properties. 1 and 2 are phosphorescent with a lifetime of 73 and 84 μs at 77 K, respectively. The first antibacterial activity data for superatomic bimetallic Pd/Ag nanoclusters are also reported.
Collapse
Affiliation(s)
- Yu-Rong Ni
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Michael N. Pillay
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Tzu-Hao Chiu
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Jagadeesh Rajaram
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Ying-Yann Wu
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| | - Samia Kahlal
- Univ
Rennes CNRS, ISC-UMR 6226, F-35000 Rennes, France
| | | | - C. W. Liu
- Department
of Chemistry, National Dong Hwa University, Hualien 97401 Taiwan, Republic of
China
| |
Collapse
|
4
|
Vennapoosa CS, Varangane S, Abraham BM, Bhasin V, Bhattacharyya S, Wang X, Pal U, Chatterjee D. Single-Atom Ru Catalyst-Decorated CNF(ZnO) Nanocages for Efficient H 2 Evolution and CH 3OH Production. J Phys Chem Lett 2023; 14:11400-11411. [PMID: 38079360 DOI: 10.1021/acs.jpclett.3c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The presence of transition-metal single-atom catalysts effectively enhances the interaction between the substrate and reactant molecules, thus exhibiting extraordinary catalytic performance. In this work, we for the first time report a facile synthetic procedure for placing highly dispersed Ru single atoms on stable CNF(ZnO) nanocages. We unravel the atomistic nature of the Ru single atoms in CNF(ZnO)/Ru systems using advanced HAADF-STEM, HRTEM, and XANES analytical methods. Density functional theory calculations further support the presence of ruthenium single-atom sites in the CNF(ZnO)/Ru system. Our work further demonstrates the excellent photocatalytic ability of the CNF(ZnO)/Ru system with respect to H2 production (5.8 mmol g-1 h-1) and reduction of CO2 to CH3OH [249 μmol (g of catalyst)-1] with apparent quantum efficiencies of 3.8% and 1.4% for H2 and CH3OH generation, respectively. Our studies unambiguously demonstrate the presence of atomically dispersed ruthenium sites in CNF(ZnO)/Ru catalysts, which greatly enhance charge transfer, thus facilitating the aforementioned photocatalytic redox reactions.
Collapse
Affiliation(s)
- Chandra Shobha Vennapoosa
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sagar Varangane
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - B Moses Abraham
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vidha Bhasin
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Chatterjee
- Vice-Chancellor's Research Group, Zoology Department, University of Burdwan, Burdwan 713104, India
| |
Collapse
|
5
|
Wang M, Li S, Tang X, Zuo D, Jia Y, Guo S, Guan ZJ, Shen H. One-step preparation of Pt/Ag nanoclusters for CO 2 transformation. Phys Chem Chem Phys 2023; 25:30373-30380. [PMID: 37909301 DOI: 10.1039/d3cp02736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Kawawaki T, Negishi Y. Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Trans 2023; 52:15152-15167. [PMID: 37712891 DOI: 10.1039/d3dt02005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Metal nanoclusters (NCs) with sizes of approximately 2 nm or less have different physical/chemical properties from those of the bulk metals owing to quantum size effects. Metal NCs, which can be size-controlled and heterometal doped at atomic accuracy, are expected to be the next generation of important materials, and new metal NCs are reported regularly. However, compared with conventional materials such as metal complexes and relatively large metal nanoparticles (>2 nm), these metal NCs are still underdeveloped in terms of evaluation and establishment of application methods. Electrochemical measurements are one of the most widely used methods for synthesis, application, and characterisation of metal NCs. This review summarizes the basic knowledge of the electrochemistry and experimental techniques, and provides examples of the reported electronic states of thiolate-protected gold NCs elucidated by electrochemical approaches. It is expected that this review will provide useful information for researchers starting to study metal NCs.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Yazaki D, Kawawaki T, Hirayama D, Kawachi M, Kato K, Oguchi S, Yamaguchi Y, Kikkawa S, Ueki Y, Hossain S, Osborn DJ, Ozaki F, Tanaka S, Yoshinobu J, Metha GF, Yamazoe S, Kudo A, Yamakata A, Negishi Y. Carbon Nitride Loaded with an Ultrafine, Monodisperse, Metallic Platinum-Cluster Cocatalyst for the Photocatalytic Hydrogen-Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208287. [PMID: 37093189 DOI: 10.1002/smll.202208287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .
Collapse
Affiliation(s)
- Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Masanobu Kawachi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kosaku Kato
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Sota Oguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Yamaguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Yoshiya Ueki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - D J Osborn
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Fumihiko Ozaki
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Shunsuke Tanaka
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Jun Yoshinobu
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akira Yamakata
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
8
|
Irfan M, Afzal S, Hussain M, Naz MY, Shukrullah S, Rahman S, Faraj Mursal SN, Ghanim AAJ. Testing of Sr-Doped ZnO/CNT Photocatalysts for Hydrogen Evolution from Water Splitting under Atmospheric Dielectric Barrier Plasma Exposure. ACS OMEGA 2023; 8:18891-18900. [PMID: 37273618 PMCID: PMC10233682 DOI: 10.1021/acsomega.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
Nonthermal plasma is a well-recognized environmentally advantageous method for producing green fuels. This work used different photocatalysts, including PZO, SxZO, and SxZCx for hydrogen production using an atmospheric argon coaxial dielectric barrier discharge (DBD)-based light source. The photocatalysts were produced using a sol-gel route. The DBD discharge column was filled with water, methanol, and the catalyst to run the reaction under argon plasma. The DBD reactor was operated with a 10 kV AC source to sustain plasma for water splitting. The light absorption study of the tested catalysts revealed a decrease in the band gap with an increase in the concentration of Sr and carbon nanotubes (CNTs) in the Sr/ZnO/CNTs series. The photocatalyst S25ZC2 demonstrated the lowest photoluminescence (PL) intensity, implying the most quenched recombination of charge carriers. The highest H2 evolution rate of 2760 μmol h-1 g-1 was possible with the S25ZC2 catalyst, and the lowest evolution rate of 56 μmol h-1 g-1 was observed with the PZO catalyst. The photocatalytic activity of S25ZC2 was initially high, which decreased slightly over time due to the deactivation of the photocatalyst. The photocatalytic activity decreased from 2760 to 1670 μmol h-1 g-1 at the end of the process.
Collapse
Affiliation(s)
- Muhammad Irfan
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Saba Afzal
- Department
of Physics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muzammil Hussain
- Department
of Physics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Yasin Naz
- Department
of Physics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shazia Shukrullah
- Department
of Physics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Saifur Rahman
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Salim Nasar Faraj Mursal
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | | |
Collapse
|
9
|
Bootharaju MS, Lee CW, Deng G, Kim H, Lee K, Lee S, Chang H, Lee S, Sung YE, Yoo JS, Zheng N, Hyeon T. Atom-Precise Heteroatom Core-Tailoring of Nanoclusters for Enhanced Solar Hydrogen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207765. [PMID: 36773328 DOI: 10.1002/adma.202207765] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/07/2023] [Indexed: 05/05/2023]
Abstract
While core-shell nanomaterials are highly desirable for realizing enhanced optical and catalytic properties, their synthesis with atomic-level control is challenging. Here, the synthesis and crystal structure of [Au12 Ag32 (SePh)30 ]4- , the first example of selenolated Au-Ag core-shell nanoclusters, comprising a gold icosahedron core trapped in a silver dodecahedron, which is protected by an Ag12 (SePh)30 shell, is presented. The gold core strongly modifies the overall electronic structure and induces synergistic effects, resulting in high enhancements in the stability and near-infrared-II photoluminescence. The Au12 Ag32 and its homometal analog Ag44 , show strong interactions with oxygen vacancies of TiO2 , facilitating the interfacial charge transfer for photocatalysis. Indeed, the Au12 Ag32 /TiO2 exhibits remarkable solar H2 production (6810 µmol g-1 h-1 ), which is ≈6.2 and ≈37.8 times higher than that of Ag44 /TiO2 and TiO2 , respectively. Good stability and recyclability with minimal catalytic activity loss are additional features of Au12 Ag32 /TiO2 . The experimental and computational results reveal that the Au12 Ag32 acts as an efficient cocatalyst by possessing a favorable electronic structure that aligns well with the TiO2 bands for the enhanced separation of photoinduced charge carriers due to the relatively negatively charged Au12 core. These atomistic insights will motivate uncovering of the structure-catalytic activity relationships of other nanoclusters.
Collapse
Affiliation(s)
- Megalamane Siddaramappa Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hyeseung Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seongbeom Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Kawawaki T, Mitomi Y, Nishi N, Kurosaki R, Oiwa K, Tanaka T, Hirase H, Miyajima S, Niihori Y, Osborn DJ, Koitaya T, Metha GF, Yokoyama T, Iida K, Negishi Y. Pt 17 nanocluster electrocatalysts: preparation and origin of high oxygen reduction reaction activity. NANOSCALE 2023; 15:7272-7279. [PMID: 36987742 DOI: 10.1039/d3nr01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We recently found that [Pt17(CO)12(PPh3)8]z (Pt = platinum; CO = carbon monoxide; PPh3 = triphenylphosphine; z = 1+ or 2+) is a Pt nanocluster (Pt NC) that can be synthesized with atomic precision in air. The present study demonstrates that it is possible to prepare a Pt17-supported carbon black (CB) catalyst (Pt17/CB) with 2.1 times higher oxygen reduction reaction (ORR) activity than commercial Pt nanoparticles/CB by the adsorption of [Pt17(CO)12(PPh3)8]z onto CB and subsequent calcination of the catalyst. Density functional theory calculation strongly suggests that the high ORR activity of Pt17/CB originates from the surface Pt atoms that have an electronic structure appropriate for the progress of ORR. These results are expected to provide design guidelines for the fabrication of highly active ORR catalysts using Pt NCs with a diameter of about 1 nm and thereby enabling the use of reduced amounts of Pt in polymer electrolyte fuel cells.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Naoki Nishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Ryuki Kurosaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kazutaka Oiwa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tomoya Tanaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Hinoki Hirase
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiki Niihori
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - D J Osborn
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Takanori Koitaya
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Toshihiko Yokoyama
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Kenji Iida
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
11
|
Kawawaki T, Akinaga Y, Yazaki D, Kameko H, Hirayama D, Negishi Y. Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry 2023; 29:e202203387. [PMID: 36524615 PMCID: PMC10107262 DOI: 10.1002/chem.202203387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Suppressing the amount of carbon dioxide in the atmosphere is an essential measure toward addressing global warming. Specifically, the photocatalytic CO2 reduction reaction (CRR) is an effective strategy because it affords the conversion of CO2 into useful carbon feedstocks by using sunlight and water. However, the practical application of photocatalyst-promoting CRR (CRR photocatalysts) requires significant improvement of their conversion efficiency. Accordingly, extensive research is being conducted toward improving semiconductor photocatalysts, as well as cocatalysts that are loaded as active sites on the photocatalysts. In this review, we summarize recent research and development trends in the improvement of cocatalysts, which have a significant impact on the catalytic activity and selectivity of photocatalytic CRR. We expect that the advanced knowledge provided on the improvement of cocatalysts for CRR in this review will serve as a general guideline to accelerate the development of highly efficient CRR photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| | - Yuki Akinaga
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daichi Yazaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Hinano Kameko
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Daisuke Hirayama
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo162-8601Japan
- Research Institute for Science & TechnologyTokyo University of ScienceShinjuku-kuTokyo162-8601Japan
| |
Collapse
|
12
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Wei J, Kahlal S, Halet JF, Saillard JY, Muñoz-Castro A. Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au 13 Superatomic Clusters. J Phys Chem A 2022; 126:536-545. [PMID: 35044183 DOI: 10.1021/acs.jpca.1c09084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atomically precise gold nanoclusters (AuNCs) belong to a relevant area offering useful templates with tunable properties toward functional nanostructures. In this work, we explored the feasible incorporation of N-heterocyclic carbenes (NHCs), as part of the protecting-ligand shell in AuNCs. Our results, which are based on the substitution of phosphine ligands in experimentally characterized AuNCs by NHCs in various eight-electron superatoms Au13 and M4Au9 (M = Cu, Ag), indicate similar electronic structure and stability but somewhat different optical properties. These findings support the feasible obtention of novel targets for explorative synthetic efforts featuring NHC ligands on medium-sized species based on the recurrent Au13 icosahedral core. The hypothetical species appear to be interesting templates for building blocks in nanostructured materials with tuned properties, which encourage experimental exploration of ligand versatility in homo- and heterometallic superatomic clusters.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, 8910188 Santiago, Chile
| |
Collapse
|
14
|
Xu C, Yuan Q, Wei X, Li H, Shen H, Kang X, Zhu M. Surface environment complication makes Ag 29 nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chem Sci 2022; 13:1382-1389. [PMID: 35222922 PMCID: PMC8809389 DOI: 10.1039/d1sc06002c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Silver nanoclusters have received unprecedented attention in cluster science owing to their promising functionalities and intriguing physical/chemical properties. However, essential instability significantly impedes their extensive applications. We herein propose a strategy termed “surface environment complication” to endow Ag29 nanoclusters with high robustness. The Ag29(S-Adm)18(PPh3)4 nanocluster with monodentate PPh3 ligands was extremely unstable and uncrystallizable. By substituting PPh3 with bidentate PPh2py with dual coordination sites (i.e., P and N), the Ag29 cluster framework was twisted because of the generation of N–Ag interactions, and three NO3 ligands were further anchored onto the nanocluster surface, yielding a new Ag29(S-Adm)15(NO3)3(PPh2py)4 nanocluster with high stability. The metal-control or ligand-control effects on stabilizing the Ag29 nanocluster were further evaluated. Besides, Ag29(S-Adm)15(NO3)3(PPh2py)4 followed a unique packing mode in the supracrystal lattice with several intercluster channels, which has yet been observed in other M29 cluster crystals. Overall, this work presents a new approach (i.e., surface environment complication) for tailoring the surface environment and improving the stability of metal nanoclusters. A strategy of “surface environment complication” has been exploited to endow Ag29 nanoclusters with high robustness and a unique packing mode in the supracrystal lattice.![]()
Collapse
Affiliation(s)
- Chao Xu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Qianqin Yuan
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xiao Wei
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Hao Li
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Honglei Shen
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xi Kang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei 230601 P. R. China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| |
Collapse
|
15
|
Kawawaki T, Kawachi M, Yazaki D, Akinaga Y, Hirayama D, Negishi Y. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:344. [PMID: 35159689 PMCID: PMC8838403 DOI: 10.3390/nano12030344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
With global warming and the depletion of fossil resources, our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this, the photocatalytic water-splitting reaction, which produces H2 from water and solar energy through photocatalysis, has attracted much attention. However, for practical use, the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light, which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis, researchers in the various fields must be employed in this type of study to achieve this. However, for researchers in fields other than catalytic chemistry, ceramic (semiconductor) materials chemistry, and electrochemistry to participate in this field, new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore, in this review, we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary, we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masanobu Kawachi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuki Akinaga
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Daisuke Hirayama
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (T.K.); (M.K.); (D.Y.); (Y.A.); (D.H.)
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Center for Space System Innovation, Tokyo University of Science, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
16
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
17
|
Kawawaki T, Shimizu N, Mitomi Y, Yazaki D, Hossain S, Negishi Y. Supported, ∼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Daichi Yazaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan
| |
Collapse
|
18
|
Kawawaki T, Kataoka Y, Hirata M, Akinaga Y, Takahata R, Wakamatsu K, Fujiki Y, Kataoka M, Kikkawa S, Alotabi AS, Hossain S, Osborn DJ, Teranishi T, Andersson GG, Metha GF, Yamazoe S, Negishi Y. Creation of High-Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angew Chem Int Ed Engl 2021; 60:21340-21350. [PMID: 34038609 PMCID: PMC8518739 DOI: 10.1002/anie.202104911] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Indexed: 12/30/2022]
Abstract
Recently, the creation of new heterogeneous catalysts using the unique electronic/geometric structures of small metal nanoclusters (NCs) has received considerable attention. However, to achieve this, it is extremely important to establish methods to remove the ligands from ligand-protected metal NCs while preventing the aggregation of metal NCs. In this study, the ligand-desorption process during calcination was followed for metal-oxide-supported 2-phenylethanethiolate-protected gold (Au) 25-atom metal NCs using five experimental techniques. The results clearly demonstrate that the ligand-desorption process consists of ligand dissociation on the surface of the metal NCs, adsorption of the generated compounds on the support and desorption of the compounds from the support, and the temperatures at which these processes occurred were elucidated. Based on the obtained knowledge, we established a method to form a metal-oxide layer on the surface of Au NCs while preventing their aggregation, thereby succeeding in creating a water-splitting photocatalyst with high activity and stability.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
- Photocatalysis International Research CenterTokyo University of Science2641 YamazakiNodaChiba278-8510Japan
| | - Yuki Kataoka
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
| | - Momoko Hirata
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
| | - Yuki Akinaga
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
| | - Ryo Takahata
- Institute for Chemical ResearchKyoto UniversityGokashoUji611-0011Japan
| | - Kosuke Wakamatsu
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
| | - Yu Fujiki
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University1-1 Minami-Osawa, Hachioji-shiTokyo192-0397Japan
| | - Miori Kataoka
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University1-1 Minami-Osawa, Hachioji-shiTokyo192-0397Japan
| | - Soichi Kikkawa
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University1-1 Minami-Osawa, Hachioji-shiTokyo192-0397Japan
| | - Abdulrahman S. Alotabi
- Flinders Institute for Nanoscale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| | - Sakiat Hossain
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
| | - D. J. Osborn
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | | | - Gunther G. Andersson
- Flinders Institute for Nanoscale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Seiji Yamazoe
- Department of ChemistryGraduate School of ScienceTokyo Metropolitan University1-1 Minami-Osawa, Hachioji-shiTokyo192-0397Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazakaShinjuku-kuTokyo162-8601Japan
- Photocatalysis International Research CenterTokyo University of Science2641 YamazakiNodaChiba278-8510Japan
| |
Collapse
|
19
|
Kawawaki T, Shimizu N, Funai K, Mitomi Y, Hossain S, Kikkawa S, Osborn DJ, Yamazoe S, Metha GF, Negishi Y. Simple and high-yield preparation of carbon-black-supported ∼1 nm platinum nanoclusters and their oxygen reduction reactivity. NANOSCALE 2021; 13:14679-14687. [PMID: 34558590 DOI: 10.1039/d1nr04202e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The improvement of oxygen reduction reaction (ORR) catalysts is essential before polymer electrolyte fuel cells can be used widely. To this end, we established a simple method for the size-selective synthesis of a series of ligand-protected platinum nanoclusters with ∼1 nm particle size (Ptn NCs; n = ∼35, ∼51, and ∼66) and narrow size distribution (±∼4 Pt atoms) under atmospheric conditions. Using this method, each ligand-protected ∼1 nm Pt NC was obtained in a relatively high yield (nearly 80% for Pt∼66). We succeeded in adsorbing each ligand-protected ∼1 nm Pt NC on carbon black (CB) and then removing most of the ligands from the surface of the Pt NCs via calcination while maintaining the original size. The obtained Pt∼35/CB, Pt∼51/CB, and Pt∼66/CB exhibited ORR mass activities that were 1.6, 2.1, and 1.6 times higher, respectively, than that of commercial CB supported-Pt nanoparticles, and also display high durability.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Nobuyuki Shimizu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kanako Funai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yusuke Mitomi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - D J Osborn
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Gregory F Metha
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
20
|
Gautam A, Sk S, Tiwari A, Abraham BM, Perupogu V, Pal U. Hot injection-induced synthesis of ZnCdS-rGO/MoS 2 heterostructures for efficient hydrogen production and CO 2 photoreduction. Chem Commun (Camb) 2021; 57:8660-8663. [PMID: 34373883 DOI: 10.1039/d1cc02292j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A highly efficient hybrid ZnCdS-rGO/MoS2 heterostructure is successfully synthesized through a hot injection method and control loading of rGO/MoS2. The synergism provides an unprecedently high H2-generation rate of 193.4 mmol H2 g-1 h-1 from water under full arc solar radiation and MeOH production (5.26 mmol g-1 h-1, AQY of 14.6% at λ = 420 ± 20 nm) from CO2 reduction.
Collapse
Affiliation(s)
- Amit Gautam
- CSIR Indian Institute of Chemical Technology, Uppal Rd, IICT Colony, Tarnaka, Hyderabad, Telangana 500007, India.
| | | | | | | | | | | |
Collapse
|
21
|
Hossain S, Miyajima S, Iwasa T, Kaneko R, Sekine T, Ikeda A, Kawawaki T, Taketsugu T, Negishi Y. [Ag 23Pd 2(PPh 3) 10Cl 7] 0: A new family of synthesizable bi-icosahedral superatomic molecules. J Chem Phys 2021; 155:024302. [PMID: 34266257 DOI: 10.1063/5.0057005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.
Collapse
Affiliation(s)
- Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryo Kaneko
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Tokuhisa Kawawaki
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
22
|
Kawawaki T, Kataoka Y, Hirata M, Akinaga Y, Takahata R, Wakamatsu K, Fujiki Y, Kataoka M, Kikkawa S, Alotabi AS, Hossain S, Osborn DJ, Teranishi T, Andersson GG, Metha GF, Yamazoe S, Negishi Y. Creation of High‐Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yuki Kataoka
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Momoko Hirata
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Yuki Akinaga
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Ryo Takahata
- Institute for Chemical Research Kyoto University Gokasho Uji 611-0011 Japan
| | - Kosuke Wakamatsu
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Yu Fujiki
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji-shi Tokyo 192-0397 Japan
| | - Miori Kataoka
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji-shi Tokyo 192-0397 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji-shi Tokyo 192-0397 Japan
| | - Abdulrahman S. Alotabi
- Flinders Institute for Nanoscale Science and Technology Flinders University Adelaide South Australia 5042 Australia
| | - Sakiat Hossain
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - D. J. Osborn
- Department of Chemistry University of Adelaide Adelaide South Australia 5005 Australia
| | | | - Gunther G. Andersson
- Flinders Institute for Nanoscale Science and Technology Flinders University Adelaide South Australia 5042 Australia
| | - Gregory F. Metha
- Department of Chemistry University of Adelaide Adelaide South Australia 5005 Australia
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji-shi Tokyo 192-0397 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
23
|
Kawawaki T, Kataoka Y, Hirata M, Iwamatsu Y, Hossain S, Negishi Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. NANOSCALE HORIZONS 2021; 6:409-448. [PMID: 33903861 DOI: 10.1039/d1nh00046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand-protected metal nanoclusters controlled by atomic accuracy (i. e. atomically precise metal NCs) have recently attracted considerable attention as active sites in heterogeneous catalysts. Using these atomically precise metal NCs, it becomes possible to create novel heterogeneous catalysts based on a size-specific electronic/geometrical structure of metal NCs and understand the mechanism of the catalytic reaction easily. However, to create high-performance heterogeneous catalysts using atomically precise metal NCs, it is often necessary to remove the ligands from the metal NCs. This review summarizes previous studies on the creation of heterogeneous catalysts using atomically precise metal NCs while focusing on the calcination as a ligand-elimination method. Through this summary, we intend to share state-of-art techniques and knowledge on (1) experimental conditions suitable for creating high-performance heterogeneous catalysts (e.g., support type, metal NC type, ligand type, and calcination temperature), (2) the mechanism of calcination, and (3) the mechanism of catalytic reaction over the created heterogeneous catalyst. We also discuss (4) issues that should be addressed in the future toward the creation of high-performance heterogeneous catalysts using atomically precise metal NCs. The knowledge and issues described in this review are expected to lead to clear design guidelines for the creation of novel heterogeneous catalysts.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Kataoka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Momoko Hirata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuki Iwamatsu
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan and Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
24
|
Wei X, Shen H, Xu C, Li H, Jin S, Kang X, Zhu M. Ag 48 and Ag 50 Nanoclusters: Toward Active-Site Tailoring of Nanocluster Surface Structures. Inorg Chem 2021; 60:5931-5936. [PMID: 33826306 DOI: 10.1021/acs.inorgchem.1c00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The determination of active sites in metal nanoclusters is of great significance for the in-depth understanding of the structural evolution and the mechanism of physicochemical properties. In this work, the surface active Ag2(SR)3 units of the Ag48Cl14(S-Adm)30 nanocluster are determined, and the active-site tailoring of this nanocluster gives rise to two derivative nanoclusters, i.e., the structure-maintained Ag48Cl14(S-Adm)26(S-c-C6H11)4 and the structure-growth Ag50Cl16(S-Adm)28(DPPP)2. Both Ag48 and Ag50 nanoclusters exhibit almost the same cluster framework, but the Ag2(S-Adm)3 active units are regulated to Ag3(S-Adm)2(DPPP)1Cl1 with the transformation from Ag48 to Ag50. The surface active sites on Ag48 are rationalized by analyzing its crystal structure and the ligand-exchange-induced cluster transformation. This study provides some inspiration toward the active-site tailoring of nanocluster surface structures, which is significant for the preparation of new cluster-based nanomaterials with customized structures and enhanced performance.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Chao Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
25
|
Zhu C, Duan T, Li H, Wei X, Kang X, Pei Y, Zhu M. Structural determination of a metastable Ag 27 nanocluster and its transformations into Ag 8 and Ag 29 nanoclusters. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00684c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The atomically precise structure of a metastable nanocluster, Ag27H11(SPhMe2)12(DPPM)6, was determined, and its transformations into size-reduction Ag8 and size-growth Ag29 nanoclusters have been mapped out.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|