1
|
Wang Y, Ye H, Wang P, Wu Z, Guan Q, Zhang C, Li H, Chen S, Luo J. Durable Photo-Pyroelectric Detection in a Diamine-Constructed Lead-Free Hybrid Perovskite Ferroelectric. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409245. [PMID: 39363649 DOI: 10.1002/adma.202409245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Indexed: 10/05/2024]
Abstract
As a subcategory of pyroelectric materials, hybrid perovskite ferroelectrics possess substantial pyroelectric properties and exceptional light absorption characteristics, demonstrating significant potential in the photo-pyroelectric (PPE) detection field. Despite the significant advantages of hybrid perovskite ferroelectric materials for PPE detection, both the lead issue and the weak stability from van der Waals interactions in monoamines have hindered their further application. Here, 1D lead-free ferroelectric (BDA)SbBr5 (1, where BDA is 1,4-butanediammonium) is fabricated to achieve PPE detection. Compound 1 exhibits significant symmetry breaking attributed to the order-disorder transition of organic cations and octahedral distortions. Specifically, compound 1 enables broad-spectrum PPE detection from UV to near-infrared (377-980 nm) and further realizes switchable pyroelectric current after polarization. More importantly, the stability of the pyroelectric current is preserved without degradation over three months, attributed to the hydrogen bonding interactions of butanediamide. Further theoretical calculations of compound 1 reveal a more negative energy of formation than its monoamine homologs (BA)2SbBr5 (where BA is n-butylammonium), which is evidence of its stability. These findings highlight 1 as a promising candidate for high-stability and environmentally friendly PPE wide-spectrum detection, representing a noteworthy advancement in the ferroelectric field.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ziyang Wu
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qianwen Guan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengshu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Chen
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
2
|
Luo T, Zhang G, Wen J, Liu Z, Hou J, Li D, Fang Y. Switchable Photoelectric Response in High-Temperature Leadless Molecular Ferroelectric [C 4N 2H 14][BiI 5]. Inorg Chem 2024; 63:18296-18303. [PMID: 39297717 DOI: 10.1021/acs.inorgchem.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lead-free molecular ferroelectrics have garnered considerable attention for their promising potential, but such species with narrow band gap and sensitive photoelectric response are yet inadequate. Herein, we demonstrated the bulk ferroelectric photovoltaic effect in a novel lead-free molecular ferroelectric [C4N2H14][BiI5] with a Curie temperature (Tc) of 366 K and a narrow band gap (Eg) of 1.92 eV. The transformation of the crystal structure from the polar space group P21 to the nonpolar space group P21/m was elucidated using single-crystal X-ray diffraction. Room-temperature (RT) hysteresis loop reveals the intrinsic ferroelectricity of [C4N2H14][BiI5] with a relative small coercive field (Ec ∼ 0.27 kV/cm), saturation polarization (Ps ∼ 1.87 μC/cm2), and remanent polarization (Pr ∼ 1.61 μC/cm2). [C4N2H14][BiI5]-based solar device exhibits significant PV effects with a steady-state photocurrent (Jsc) of 3.54 μA/cm2 and a photovoltage (Voc) of 0.34 V under AM 1.5 G illumination, which can be significantly improved by adjusting the ferroelectric polarization, reaching a maximum Jsc of 140 μA/cm2 and Voc of 0.51 V. This work offers a promising avenue for lead-free molecular ferroelectric materials in the field of optoelectronic devices.
Collapse
Affiliation(s)
- Tianhong Luo
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Ganghua Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jinrong Wen
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Zhanqiang Liu
- Department of Materials Chemistry, Huzhou University, 759 East Erhuan Road, Huzhou 313000, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Dezeng Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
3
|
Lyu W, Yu X, Lv Y, Rao AM, Zhou J, Lu B. Building Stable Solid-State Potassium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305795. [PMID: 38294305 DOI: 10.1002/adma.202305795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Indexed: 02/01/2024]
Abstract
Solid-state potassium metal batteries (SPMBs) are promising candidates for the next generation of energy storage systems for their low cost, safety, and high energy density. However, full SPMBs are not yet reported due to the K dendrites, interfacial incompatibility, and limited availability of suitable solid-state electrolytes. Here, stable SPMBs using a new iodinated solid polymer electrolyte (ISPE) are presented. The functional ions reconstruct ion transport channels, providing efficient potassium ion transport. ISPE shows a combination of high ionic conductivity, superior interfacial compatibility, and electrochemical stability. In situ alloying and iodinated interlayer increase K metal compatibility for prolonged cycling with low polarization. Moreover, the ISPE enables SPMBs with Prussian blue cathode stable operation at a high voltage of 4.5 V, a superior rate capability, and long-term cycling over 3000 cycles (4.2 V vs K+/K) with an ultra-high coulombic efficiency of 99.94%. More importantly, a classic solid-state potassium metal pouch cell achieves 4.2 V stable cycling over 800 cycles with a high retention of 93.6%, presenting a new development strategy for secure and high-performance rechargeable solid-state potassium metal batteries.
Collapse
Affiliation(s)
- Wang Lyu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Xinzhi Yu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong Province, 511300, P. R. China
| | - Yawei Lv
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, SC, SC29634, USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Meena N, Sahoo S, Deka N, Zaręba JK, Boomishankar R. Ferroelectric Organic-Inorganic Hybrid Ammonium Halogenobismuthate(III) for Piezoelectric Energy Harvesting. Inorg Chem 2024; 63:9245-9251. [PMID: 38700990 PMCID: PMC11110009 DOI: 10.1021/acs.inorgchem.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Halogenobismuthate(III) compounds are of recent interest because of their low toxicity and distinct electrical properties. The utility of these materials as ferroelectrics for piezoelectric energy harvesters is still in its early stages. Herein, we report a hybrid ammonium halogenobismuthate(III) [BPBrDMA]2·[BiBr5], crystallizing in a ferroelectrically active polar noncentrosymmetric Pna21 space group. Its noncentrosymmetric structure was confirmed by the detection of the second harmonic generation response. The ferroelectric P-E hysteresis loop measurements on the thin film sample of [BPBrDMA]2·[BiBr5] gave a saturation polarization (Ps) of 5.72 μC cm-2. The piezoresponse force microscopy analysis confirmed its ferroelectric and piezoelectric nature, showing characteristic domain structures and signature hysteresis and butterfly loops. The piezoelectric energy harvesting attributes of [BPBrDMA]2·[BiBr5] were further probed on its polylactic acid (PLA) composites. The 15 wt % [BPBrDMA]2·[BiBr5]-PLA polymer composite resulted in a high output voltage of 26.2 V and power density of 15.47 μW cm-2. The energy harvested from this device was further utilized for charging a 10 μF capacitor within 3 min.
Collapse
Affiliation(s)
- Namonarayan Meena
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Supriya Sahoo
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Nilotpal Deka
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Jan K. Zaręba
- Institute
of Advanced Materials, Wrocław University
of Science and Technology, 50-370 Wrocław, Poland
| | - Ramamoorthy Boomishankar
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
5
|
Saraswat A, Vishnoi P. 0-D and 1-D Perovskite-like Hybrid Bismuth(III) Iodides. Chem Asian J 2024; 19:e202400048. [PMID: 38454534 DOI: 10.1002/asia.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Low-dimensional hybrid bismuth halide perovskites have recently emerged as a class of non-toxic alternative to lead perovskites with promising optoelectronic properties. Here, we report three hybrid bismuth(III)-iodides: 0-D (H2DAC)2Bi2I10 ⋅ 6H2O (H2DAC_Bi_I), 0-D (H2DAF)4Bi2I10 ⋅ 2I3 ⋅ 2I ⋅ 6H2O (H2DAF_Bi_I), and 1-D (H2DAP)BiI5 (H2DAP_Bi_I) (where H2DAC=trans-1,4-diammoniumcyclohexane; H2DAF=2,7-diammoniumfluorene and H2DAP=1,5-diammoniumpentane). Their synthesis, single-crystal X-ray structures, and photophysical properties are reported. The first two compounds comprise edge-sharing [Bi2I10]4- dimers, while the last compound has cis-corner-sharing 1-D chains of [BiI6]3- octahedra. Intercalation of triiodide (I3 -) and iodide (I-) ions enhance electronic coupling between the [Bi2I10]4- of H2DAF_Bi_I, leading to enhanced optical absorption, compared to H2DAC_Bi_I which lacks such intercalants. Furthermore, calorimetric and variable temperature X-ray diffraction measurements suggest a centrosymmetric to non-centrosymmetric phase transition (monoclinic P212121↔orthorhombic Pnma) of H2DAP_Bi_I at 448 K (in heating step) and at 443 K (in cooling step).
Collapse
Affiliation(s)
- Aditi Saraswat
- New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Pratap Vishnoi
- New Chemistry Unit, International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
6
|
Wan MY, Wang ZY, Li QL, Wang FX, Liao J, Wang LJ, Tang YZ, Tan YH. Investigating the Structure-property Relationships of Two Cd-based Hybrid Multifunctional Compounds with High Tc, Bright Fluorescence and Wide Band-gap. Chemistry 2024; 30:e202303717. [PMID: 38072903 DOI: 10.1002/chem.202303717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 01/09/2024]
Abstract
Organic-inorganic hybrid multifunctional materials have shown significant application in lighting and sensor fields, owing to their prominent performance and diversity structures. Herein, we synthesized two multifunctional compounds: (propyl-quinuclidone)2 CdBr4 (1) and (F-butyl-quinuclidone)2 CdBr4 (2). By introducing light-emitting organic cation with flexible long chain, 1 and 2 exhibit excellent transition properties and bright blue-white fluorescence. Then, combine fluorescence lifetime and first-principal calculation, providing evidence for the electron transfer emission. Subsequently, investigated the impact of substituent carbon chain length (methyl to butyl), structural rigidity (C-C to C-F) and halide framework (Cl to I) on the fluorescence properties. Results indicate that Cd⋅⋅⋅Cd distance and structural rigidity play an important role in fluorescence. Overall, our research provides valuable insight and example for chemical modifications enhance compound performance.
Collapse
Affiliation(s)
- Ming-Yang Wan
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Zhi-Ying Wang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Qing-Lian Li
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Fang Xin Wang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Juan Liao
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Li-Juan Wang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yun-Zhi Tang
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yu-Hui Tan
- Key Laboratory of Development and Application of Ionic Rare Earth Resource, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
7
|
Wan MY, Liu WF, Luo JL, Liao J, Wang FX, Wang LJ, Tang YZ, Tan YH. Silver/Antimony-Base Multifunctional Double Perovskite with H/F Substitution Enhance Properties. Inorg Chem 2024; 63:3083-3090. [PMID: 38278552 DOI: 10.1021/acs.inorgchem.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Two-dimensional double perovskites have experienced rapid development due to their outstanding optoelectronic properties and diverse structural characteristics. However, the synthesis of high-performance multifunctional compounds and the regulation of their properties still lack relevant examples. Herein, we synthesized two multifunctional compounds, (C6H14N)4AgSbBr8 (1) and (F2-C6H12N)4AgSbBr8 (2), which exhibit high solid-state phase transition temperature, bistable dielectric constant switching, second harmonic generation (SHG), and bright emission. Through H/F substitution, the transition temperature increases and achieves a smaller band gap attributed to reduced interlayer spacing. Furthermore, we investigated the broad emission mechanism of the compounds through first-principles calculation and variable-temperature fluorescence, confirming the presence of the STE1 emission. Our work provides insight into the further development of multifunctional compounds and chemical modification that enhances compound properties.
Collapse
Affiliation(s)
- Ming-Yang Wan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Wei-Fei Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Jin Lin Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Juan Liao
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Fang Xin Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Li-Juan Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| |
Collapse
|
8
|
Peng Z, Wang P, Wei Z, Guo W, Zhang H, Cai H. Antimony Bromide Organic-Inorganic Hybrid Compound with a Long-Chain Diamine Showing Switchable Phase Transition and Second-Harmonic Generation Properties. Inorg Chem 2024; 63:184-190. [PMID: 38113285 DOI: 10.1021/acs.inorgchem.3c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Organic-inorganic hybrid metal halides have attracted significant attention in recent years due to their excellent optoelectronic properties and potential applications in solar cells. Herein, the organic-inorganic hybrid molecule [N,N-dimethyl-1,3-propanediamine]SbBr5 (1) was synthesized by reacting a long-chain organic diamine N,N-dimethyl-1,3-propanediamine with SbBr3 as a metal halide precursor in HBr aqueous solution. Compound 1 possesses a one-dimensional chainlike structure with the second-harmonic generation switch and two continuous phase transitions above room temperature. The band gap of compound 1 is about 2.62 eV, exhibiting a semiconductive property, which may have important implications for the development of new optoelectronic devices.
Collapse
Affiliation(s)
- Ziqin Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Pan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City 330031, P. R. China
| |
Collapse
|
9
|
Wang P, Tong YQ, Yin SQ, Gu QJ, Huang B, Zhu AX. Exceptional structural phase transition near room temperature in an organic-inorganic hybrid ferroelectric. Chem Commun (Camb) 2023; 59:13651-13654. [PMID: 37905986 DOI: 10.1039/d3cc04186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An organic-inorganic hybrid ferroelectric, (C6H5CH2CH2NH3)2[HgI4], undergoes an exceptional structural phase transition near room temperature, triggered by a flip of half the organic cations and an order-disorder transition of the inorganic anions, and may be regarded as a displacive-type ferroelectric. This finding provides a new structural phase transition mechanism in molecule-based ferroelectrics.
Collapse
Affiliation(s)
- Ping Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Yu-Qiao Tong
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Shi-Qing Yin
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Qian-Jun Gu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
10
|
Mandal A, Gupta S, Dutta S, Pati SK, Bhattacharyya S. Transition from Dion-Jacobson hybrid layered double perovskites to 1D perovskites for ultraviolet to visible photodetection. Chem Sci 2023; 14:9770-9779. [PMID: 37736622 PMCID: PMC10510777 DOI: 10.1039/d3sc01919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
New perovskite phases having diverse optoelectronic properties are the need of the hour. We present five variations of R2AgM(iii)X8, where R = NH3C4H8NH3 (4N4) or NH3C6H12NH3 (6N6); M(iii) = Bi3+ or Sb3+; and X = Br- or I-, by tuning the composition of (4N4)2AgBiBr8, a structurally rich hybrid layered double perovskite (HLDP). (4N4)2AgBiBr8, (4N4)2AgSbBr8, and (6N6)2AgBiBr8 crystallize as Dion-Jacobson (DJ) HLDPs, whereas 1D (6N6)SbBr5, (4N4)-BiI and (4N4)-SbI have trans-connected chains by corner-shared octahedra. Ag+ stays out of the 1D lattice either when SbBr63- distortion is high or if Ag+ needs to octahedrally coordinate with I-. Band structure calculations show a direct bandgap for all the bromide phases except (6N6)2AgBiBr8. (4N4)2AgBiBr8 with lower octahedral tilt shows a maximum UV responsivity of 18.8 ± 0.2 A W-1 and external quantum efficiency (EQE) of 6360 ± 58%, at 2.5 V. When self-powered (0 V), (4N4)-SbI has the best responsivity of 11.7 ± 0.2 mA W-1 under 485 nm visible light, with fast photoresponse ≤100 ms.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| | - Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| | - Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur - 741246 India +091-6136-0000-1275
| |
Collapse
|
11
|
Shentseva IA, Usoltsev AN, Korobeynikov NA, Sukhikh TS, Shayapov VR, Sokolov MN, Adonin SA. Copper- and Silver-Containing Heterometallic Iodobismuthates: Features of Thermochromic Behavior. Int J Mol Sci 2023; 24:ijms24087234. [PMID: 37108397 PMCID: PMC10138349 DOI: 10.3390/ijms24087234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Nine heterometallic iodobismuthates with the general formula Cat2{[Bi2M2I10}] (M = Cu(I), Ag(I), Cat = organic cation) were synthesized. According to X-ray diffraction data, their crystal structures consisted of {Bi2I10} units interconnected with Cu(I) or Ag(I) atoms through I-bridging ligands, forming one-dimensional polymers. The compounds are thermally stable up to 200 °C. Optical band gaps (Eg), estimated at room temperature via diffuse reflectance measurements, range from 1.81 to 2.03 eV. Thermally induced changes in optical behavior (thermochromism) for compounds 1-9 were recorded, and general correlations were established. The thermal dependence of Eg appears to be close to linear for all studied compounds.
Collapse
Affiliation(s)
- Irina A Shentseva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| | - Andrey N Usoltsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| | - Nikita A Korobeynikov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| | - Vladimir R Shayapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| | - Sergey A Adonin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Lavrentieva St. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Luo Y, Zhang YQ, Xu GC. Synthesis and Characterization of a Displacement-Type Ferroelectric-Ferroelectric Phase Transition Compound [(NH 3)(CH 2) 3(NH 3)] 2[InBr 6]Br·H 2O. Inorg Chem 2022; 61:13143-13148. [PMID: 35930462 DOI: 10.1021/acs.inorgchem.2c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferroelectric materials have aroused the researchers' great interest due to their wide applications. Here, a displacement-type ferroelectric-ferroelectric phase transition material [(NH3)(CH2)3(NH3)]2[InBr6]Br·H2O (1) with Tc = 143 K was successfully prepared. The ferroelectric phase transition is verified by the characterization techniques such as differential scanning calorimetry, single-crystal structure elucidation, dielectric and ferroelectric measurements. The single-crystal structure elucidation reveals that the displacement and distortion of [(NH3)(CH2)3(NH3)]2+ cations lead to the phase transition from Cmc21 to Pca21. The spontaneous polarizations at 293 and 133 K are 0.15 and 0.12 μC·cm-2, respectively. We expect that this work will help in further exploration of some new ferroelectric materials.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046 Xinjiang, PR China
| | - Yin-Qiang Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046 Xinjiang, PR China
| | - Guan-Cheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046 Xinjiang, PR China
| |
Collapse
|
13
|
Ye S, Liu J, Liang‐Tong, Wang Y, Wan M, Mensah A, Jiang X, Li J, Chen L. Anions Distorting Triggering Ferroelectricity in a Molecular Crystal
†. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Si‐Yu Ye
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jing‐Yuan Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Liang‐Tong
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yan‐Ning Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Min Wan
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Abraham Mensah
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Xiao‐Fan Jiang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Jun‐Yi Li
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Li‐Zhuang Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
14
|
Deswal S, Panday R, Naphade DR, Dixit P, Praveenkumar B, Zaręba JK, Anthopoulos TD, Ogale S, Boomishankar R. Efficient Piezoelectric Energy Harvesting from a Discrete Hybrid Bismuth Bromide Ferroelectric Templated by Phosphonium Cation. Chemistry 2022; 28:e202200751. [PMID: 35357732 DOI: 10.1002/chem.202200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3 P]3 [Bi2 Br9 ] (MTPBB) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 μC cm-2 . Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33 ) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 μW cm-2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB-based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.
Collapse
Affiliation(s)
- Swati Deswal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rishukumar Panday
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Prashant Dixit
- PZT Centre, Armament Research and Development Establishment, Dr. Homi Bhabha Road, Pune, 411021, India
| | - Balu Praveenkumar
- PZT Centre, Armament Research and Development Establishment, Dr. Homi Bhabha Road, Pune, 411021, India
| | - Jan K Zaręba
- Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India.,Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
15
|
Wang Z, Wang P, You X, Wei Z. A Hybrid Organic‐Inorganic Bismuth Iodine Material Showing High Phase Transition Point and Low Bandgap. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyu Wang
- School of Chemistry and Chemical Engineering Nanchang University Nanchang City 330031 People's Republic of China
| | - Pan Wang
- School of Chemistry and Chemical Engineering Nanchang University Nanchang City 330031 People's Republic of China
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry Jiangxi Science and Technology Normal University Nanchang City 330013 People's Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering Nanchang University Nanchang City 330031 People's Republic of China
| |
Collapse
|
16
|
Szklarz P, Jakubas R, Medycki W, Gągor A, Cichos J, Karbowiak M, Bator G. (C 3N 2H 5) 3Sb 2I 9 and (C 3N 2H 5) 3Bi 2I 9: ferroelastic lead-free hybrid perovskite-like materials as potential semiconducting absorbers. Dalton Trans 2022; 51:1850-1860. [PMID: 35018903 DOI: 10.1039/d1dt03455c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have synthesised and characterised novel organic-inorganic hybrid crystals: (C3N2H5)3Sb2I9 and (C3N2H5)3Bi2I9 (PSI and PBI). The thermal DSC and TG analyses indicate four structural phase transitions (PTs) at 366.2/366.8, 274.6/275.4, 233.3/233.3 and 142.8/143.1 K (on cooling/heating) for PSI and two reversible PTs at 365.2/370.8 and 252.6/257.9 K for PBI. Both analogues crystallize at room temperature in the orthorhombic Cmcm structure, which transforms, in the case of PBI, to monoclinic P21/n at low temperature. According to the X-ray diffraction results, the anionic component is discrete and built of face-sharing bioctahedra, [M2I9]3-, in both compounds, whereas cations exhibit distinct dynamical disorder over high temperature phases. Dielectric spectroscopy and 1H NMR spectroscopy have been used to characterise the dynamical state of the C3N2H5+ cations. The ferroelastic domain structure has been characterised by observations under a polarized optical microscope. Both compounds are semiconductors with narrow bandgaps of 1.97 eV (PBI) and 2.10 eV (PSI).
Collapse
Affiliation(s)
- Przemysław Szklarz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Ryszard Jakubas
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Wojciech Medycki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Anna Gągor
- W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Science, P.O. Box 1410, 50-950 Wrocław, Poland
| | - Jakub Cichos
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Mirosław Karbowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Grażyna Bator
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|