1
|
Schneider JS, Helten H. Hybrid materials comprising ferrocene and diaminoborane moieties: linear concatenation versus macrocyclization. Chem Commun (Camb) 2024; 60:11706-11709. [PMID: 39228359 DOI: 10.1039/d4cc03813d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Combination of borane and diaminoferrocene monomers by Si/B exchange condensation reactions afforded either diazabora-[3]ferrocenophanes or, via stepwise processes, larger macrocycles and a series of linear oligomers. Additional incorporation of p-phenylene moieties in the backbone yielded alternating concatenation.
Collapse
Affiliation(s)
- Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany.
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
2
|
Ikeno A, Hayakawa M, Sakai M, Tsutsui Y, Nakatsuka S, Seki S, Hatakeyama T. π-Extended 9b-Boraphenalenes: Synthesis, Structure, and Physical Properties. J Am Chem Soc 2024; 146:17084-17093. [PMID: 38861619 DOI: 10.1021/jacs.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Boraphenalenes, compounds in which one carbon atom in the phenalenyl skeleton is replaced with a boron atom, have attracted attention for their solid-state and electronic structures; however, the construction of boraphenalene skeletons remains challenging because of the lack of suitable methods. Through this study, we showed that the tandem borylative cyclization of C3-symmetric dehydrobenzo[12]annulenes produces a new class of fully fused boron-atom-embedded polycyclic hydrocarbons possessing a 9b-boraphenalene skeleton. The obtained compounds exhibited high electron-accepting characteristics, and their two-step redox process was reversible in the reductive region, involving interconversion of 9b-boraphenalene between Hückel aromaticity and antiaromaticity. Notably, the benzo[b]fluorene-fused derivative exhibited a stepwise single-crystal-to-single-crystal (SCSC) phase transition triggered by thermal annealing. Intermolecular electron coupling calculation of the crystal structures suggested a significant improvement of charge transporting ability associated with the SCSC phase transition. Moreover, adequate photoconductivity was observed for the single crystals before and after the SCSC phase transition through flash photolysis-time-resolved microwave conductivity.
Collapse
Affiliation(s)
- Atsuhiro Ikeno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mugiho Sakai
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615-8510, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Scholz AS, Massoth JG, Stoess L, Bolte M, Braun M, Lerner HW, Mewes JM, Wagner M, Froitzheim T. NBN- and BNB-Phenalenyls: the Yin and Yang of Heteroatom-doped π Systems. Chemistry 2024; 30:e202400320. [PMID: 38426580 DOI: 10.1002/chem.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
NBN- and BNB-doped phenalenyls are isoelectronic to phenalenyl anions and cations, respectively. They represent a pair of complementary molecules that have essentially identical structures but opposite properties as electron donors and acceptors. The NBN-phenalenyls 1-4 considered here were prepared from N,N'-dimethyl-1,8-diaminonaphthalene and readily available boron-containing building blocks (i. e., BH3⋅SMe2 (1), p-CF3-C6H4B(OH)2 (2), C6H5B(OH)2 (3), or MesBCl2/iPr2NEt (4)). Treatment of 1 with 4-Me2N-2,6-Me2-C6H2Li gave the corresponding NBN derivative 5. The BNB-phenalenyl 6 was synthesized from 1,8-naphthalenediyl-bridged diborane(6), PhNH2, and MesMgBr. A computational study reveals that the photoemission of 1, 4, and 5 originates from locally excited (LE) states at the NBN-phenalenyl fragments, while that of 2 is dominated by charge transfer (CT) from the NBN-phenalenyl to the p-CF3-C6H4 fragment. Depending on the dihedral angle θ between its Ph and NBN planes, compound 3 emits mainly from a less polar LE (θ >55°) or more polar CT state (θ <55°). In turn, the energetic preference for either state is governed by the polarity of the solvent used. An equimolar aggregate of the NBN- and BNB-phenalenyls 3 and 6 (in THF/H2O) shows a distinct red-shifted emission compared to that of the individual components, which originates from an intermolecular CT state.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Julian G Massoth
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Lennart Stoess
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Markus Braun
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-M Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
4
|
Scholz AS, Bolte M, Virovets A, Peresypkina E, Lerner HW, Anstöter CS, Wagner M. Tetramerization of BEB-Doped Phenalenyls to Obtain (BE) 8-[16]Annulenes (E = N, O). J Am Chem Soc 2024; 146:12100-12112. [PMID: 38635878 DOI: 10.1021/jacs.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic "clamps" and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Eugenia Peresypkina
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Cate S Anstöter
- EaStCHEM School of Chemistry, University of Edinburgh, EH8 9YLEdinburgh,U.K
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Deng CL, Hollister KK, Molino A, Tra BYE, Dickie DA, Wilson DJD, Gilliard RJ. Unveiling Three Interconvertible Redox States of Boraphenalene. J Am Chem Soc 2024; 146:6145-6156. [PMID: 38380615 DOI: 10.1021/jacs.3c13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Ma T, Dong J, Yang DT. Heteroatom-boron-heteroatom-doped π-conjugated systems: structures, synthesis and photofunctional properties. Chem Commun (Camb) 2023; 59:13679-13689. [PMID: 37901914 DOI: 10.1039/d3cc04302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The potency of heteroatom-doping in reshaping optoelectronic properties arises from the distinct electronegativity variations between heteroatoms and carbon atoms. By incorporating two heteroatoms with differing electronegativities (e.g., B = N), not only is the architectural coherence of π-conjugated systems retained, but also dipolar traits are introduced, accompanied by unique intermolecular interactions absent in their all-carbon analogs. Another burgeoning doping strategy, featuring the heteroatom-boron-heteroatom motif (X-B-X, where X = N, O), has captured growing attention. This configuration's coexistence of the boron-heteroatom unit and an isolated heteroatom stimulates mutual modulation in the dipole of the boron-heteroatom unit and the heteroatom's electronegativity. In this Feature article, we present an encompassing survey of XBX-doped π-conjugated systems, elucidating how the integration of the X-B-X unit induces transformative structural and property changes within π-conjugated systems.
Collapse
Affiliation(s)
- Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, 430056 Wuhan, China
| |
Collapse
|
7
|
Zeh V, Schneider JS, Bachmann J, Krummenacher I, Braunschweig H, Helten H. Poly(ferrocenylene iminoborane): an inorganic-organic hybrid polymer comprising a backbone of moderately interacting ferrocenes. Chem Commun (Camb) 2023; 59:13723-13726. [PMID: 37909177 DOI: 10.1039/d3cc03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The first poly(ferrocenylene iminoborane), that is, a polyferrocene-based metallopolymer featuring CC-isoelectronic/-isosteric BN linking units, and a series of monodisperse ferrocenylene iminoborane oligomers are presented. Our studies provide important insight into the structural and electronic nature of this novel class of hybrid materials.
Collapse
Affiliation(s)
- Vivien Zeh
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Jonas Bachmann
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Ivo Krummenacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
8
|
Maier M, Chorbacher J, Hellinger A, Klopf J, Günther J, Helten H. Poly(arylene iminoborane)s, Analogues of Poly(arylene vinylene) with a BN-Doped Backbone: A Comprehensive Study. Chemistry 2023:e202302767. [PMID: 37724629 DOI: 10.1002/chem.202302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Despite the great success of the concept of doping organic compounds with BN units to access new materials with tailored properties, its use in polymer chemistry has only been realized quite recently. Herein, we present a comprehensive study of oligo- and poly(arylene iminoborane)s comprising a backbone of phenylene or thiophene moieties, as well as combinations thereof, linked via B=N units. The novel polymers can be regarded as BN analogues of poly(p-phenylene vinylene) (PPV) or poly(thiophene vinylene) (PTV) or their copolymers. Our modular synthetic approach allowed us to prepare four polymers and 12 monodisperse oligomers with modulated electronic properties. Alternating electron-releasing diaminoarylene and electron-accepting diborylarylene building blocks gave rise to a pronounced donor-acceptor character. Effective π-conjugation over the arylene iminoborane backbone is evidenced by systematic bathochromic shifts of the low-energy UV-vis absorption maximum with increasing chain length, which is furthermore supported by crystallographic and computational investigations. Furthermore, all compounds investigated show emission of visible light in the solid state and aggregation-induced emission (AIE) behavior, due to the presence of partially flexible linear B=N linkages in the backbone.
Collapse
Affiliation(s)
- Matthias Maier
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Chorbacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anna Hellinger
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julian Günther
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
9
|
Yang CC, Tian WQ. Electronic Structure Modulation of Nanographenes for Second Order Nonlinear Optical Molecular Materials. Chempluschem 2023; 88:e202300279. [PMID: 37515505 DOI: 10.1002/cplu.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Nanographenes (NGs) have drawn extensive attention as promising candidates for next-generation optoelectronic and nonlinear optical (NLO) materials, owing to its unique optoelectronic properties and high thermal stability. However, the weak polarity or even non-polarity of NGs (resulting in weak even order NLO properties) and the high chemical reactivity of zigzag edged NGs hinder their further applications in nonlinear optics, thus stabilization (lowering the chemical reactivity) and polarizing the charge distribution in NGs are necessary for such applications of NGs. The fusion of heptagon and pentagon endows the azulene with the character of donor-acceptor, and the B=N unit is isoelectronic to C=C unit. The introduction of polar azulene and BN are idea to polarize and stabilize the electronic structure of NGs for NLO applications. In the present review, a survey on the functionalization and applications of NGs in nonlinear optics is conducted. The engineering of the electronic structure of NGs by topological defects, doping and edge modulation is summarized. Finally, a summary of challenges and perspectives for carbon-based NLO nanomaterials is presented.
Collapse
Affiliation(s)
- Cui-Cui Yang
- College of Science, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan, Chongqing, 400054, P. R. China
- College of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Wei Quan Tian
- College of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| |
Collapse
|
10
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
11
|
Yang CC, Zheng XL, Chen J, Tian WQ, Li WQ, Yang L. Spin engineering of triangulenes and application for nano nonlinear optical materials design. Phys Chem Chem Phys 2022; 24:18529-18542. [PMID: 35899847 DOI: 10.1039/d2cp02915d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently synthesized triangulenes with non-bonding edge states could have broad potential applications in magnetics, spintronics and electro-optics if they have appropriate electronic structure modulation. In the present work, strategies based on molecular orbital theory through heteroatom doping are proposed to redistribute, reduce or eliminate the spin of triangulenes for novel functional materials design, and the role of B, N, NBN, and BNB in such intended electronic structure manipulation is scrutinized. π-Extended triangulenes with tunable electronic properties could be potential nonlinear optical (NLO) materials with appropriate inhibition of their polyradical nature. The elimination of spin is achieved by B, N, NBN, and BNB doping with the intended geometric arrangement for enhanced polarity. Intended doping of BNB results in an optimal structure with large static first hyperpolarizability (〈β0〉) as well as strong Hyper-Rayleigh scattering (HRS) βHRS(-2ω; ω, ω) (ω = 1064.0 nm), TG7-BNB-ba with a large 〈β0〉 (18.85 × 10-30 esu per heavy atom) and βHRS (1.15 × 10-28 esu per heavy atom) much larger than that of a synthesized triangular molecule (1.12 × 10-30 esu of 〈β0〉 per heavy atom and 5.04 × 10-30 esu of βHRS per heavy atom). The strong second order NLO responses in the near-infrared and visible regions, particularly the strong sum frequency generation, make these B or (and) N doped triangulenes promising candidates for the fabrication of novel carbon-based optoelectronic devices and micro-NLO devices.
Collapse
Affiliation(s)
- Cui-Cui Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Xue-Lian Zheng
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Jiu Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Wei-Qi Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China.,Technology Innovation Center of Materials and Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325001, China.
| |
Collapse
|
12
|
Li E, Jin M, Jiang R, Zhang L, Zhang Y, Liu M, Wu X, Liu X. Synthesis, Characterization, and Properties of BN-Fluoranthenes. Org Lett 2022; 24:5503-5508. [PMID: 35730794 DOI: 10.1021/acs.orglett.2c01342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boron/nitrogen-doped fluoranthenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via pyrrolic-type nitrogen directed C-H borylation. Regioselective bromination of BN-fluoranthene (3a) gave mono- and dibrominated BN-fluoranthenes. The halogenated BN-fluoranthene (3b) can undergo various of further cross-coupling reactions to deliver a series of BN-fluoranthenes. Moreover, incorporating BN unit in to fluoranthene resulted in a wider HOMO-LUMO energy gaps. The aromaticities of the BN-fluoranthene (3a) were quantified by experimental and computational studies.
Collapse
Affiliation(s)
- Erlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mengjia Jin
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Meiyan Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
13
|
Güven Z, Denker L, Dolati H, Wullschläger D, Trzaskowski B, Frank R. Reactions of a Four‐Membered Borete with Carbon, Silicon, and Gallium Donor Ligands: Fused and Spiro‐Type Boracycles. Chemistry 2022; 28:e202200673. [PMID: 35362629 PMCID: PMC9322404 DOI: 10.1002/chem.202200673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Donor‐acceptor cyclopropanes or cyclobutanes are dipolar reagents, which are widely used in the synthesis of complex organic (hetero)cycles in ring expansion reactions. Applying this concept to boron containing heterocycles, the four‐membered borete cyclo‐iPr2N‐BC10H6 reacted with the carbon donor ligands 2,6‐xylylisonitrile and the carbene IMes :C(NMesCH)2 with ring expansion and ring fusion, respectively. In particular, the tetracyclic structure formed with IMes displays zwitterionic character and absorption in the visible region. In contrast to the carbene IMes, the heavier carbenoids :Si(NDippCH)2 and :Ga(AmIm) with a two‐coordinate donor atom afford spiro‐type bicyclic compounds, which display four‐coordinate geometry at silicon or gallium. (TD‐)DFT calculations provide deeper insight into the mechanism of formation and the absorption properties of these new compounds.
Collapse
Affiliation(s)
- Zeynep Güven
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Lars Denker
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Hadi Dolati
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Daniela Wullschläger
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Bartosz Trzaskowski
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warszawa Poland
| | - René Frank
- Department of Inorganic and Analytical Chemistry Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
14
|
Tian X, Guo J, Sun W, Yuan L, Dou C, Wang Y. Tuning Diradical Properties of Boron-Containing π-Systems by Structural Isomerism. Chemistry 2022; 28:e202200045. [PMID: 35146820 DOI: 10.1002/chem.202200045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/01/2023]
Abstract
Tuning diradical character is an important topic for organic diradicaloids. Herein, we report the precise borylation enabling structural isomerism as an effective strategy to modulate diradical character and thereby properties of organic diradicaloids. We synthesized a new B-containing polycyclic hydrocarbon that has the indeno[1,2-b]fluorene π-skeleton with the β-carbons bonding to two boron atoms. Detailed theoretical and experimental results show that this bonding pattern leads to its distinctive electronic structures and properties in comparison to that of its isomeric molecule. This molecule has the efficient conjugation between boron atoms and π-skeleton, resulting in downshifted LUMO and HOMO levels. Moreover, it exhibits smaller diradical character and thereby inhibited diradical properties, such as significantly blue-shifted light absorption, larger energy bandgap and weak para-magnetic resonance. Notably, this B-containing polycyclic hydrocarbon possesses much stronger Lewis acidity and its Lewis acid-base adducts display enhanced diradical character, demonstrating the positive effects of Lewis coordination on modulating diradical performance.
Collapse
Affiliation(s)
- Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Jiang Z, Zhou S, Jin W, Zhao C, Liu Z, Yu X. Synthesis, Structure, and Photophysical Properties of BN-Embedded Analogue of Coronene. Org Lett 2022; 24:1017-1021. [PMID: 35072476 DOI: 10.1021/acs.orglett.1c04161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two BN-embedded benzo[ghi]perylene (Bzp) and coronene derivatives (BN-Bzp and BN-Cor) have been successfully synthesized from binaphthyl precursors by new efficient one-pot-multibond routes, and their single crystal structures were analyzed. Both experimental spectra and DFT theoretical calculations indicated that the absorption and emission of these BN-embedded polycyclic aromatic hydrocarbons are significantly enhanced comparing with those of their all carbon analogues. Especially, the fluorescence quantum yield of BN-Cor is nearly 20 times higher than that of ordinary coronene.
Collapse
Affiliation(s)
- Zhen Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Cuihua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Gao FW, Li SB, Xu HL, Su ZM. Periodic B- and N-doped phenalenyl π-aggregates: unexpected nonlinear optical properties by tuning pancake π-π bonding. Phys Chem Chem Phys 2021; 23:23998-24003. [PMID: 34664046 DOI: 10.1039/d1cp03540a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phenalenyl (PLY) and its derivatives could form one-dimensional π-aggregates through pancake π-π bonding, which would lead to exotic optoelectronic properties. We will highlight the key aspects of the PLY derivatives from the design strategies to exploration of the electronic properties. Here, we primarily construct alternating boron (B)- and nitrogen (N)-doped PLY π-aggregates: dimer[12], trimer[12-1], trimer[12-2], tetramer[12]2, pentamer[12]2-1, pentamer[12]2-2, and hexamer[12]3. The geometric and electronic structures show that the short intermolecular distances of the π-aggregates drive the formation of pancake π-π bonding. Significantly, the molecular structures show periodic changes in the π-aggregates, but the first hyperpolarizabilities (βtot) present unexpected changes, which are found to increase sharply with increasing even layer thickness due to intermolecular charge transfer. The βtot value of hexamer[12]3 (5.72 × 104 a.u.) is 6.4 times that of tetramer[12]2 (8.95 × 103 a.u.), and is 22.4 times that of dimer[12] (2.55 × 103 a.u.). Thus, constructing π-aggregates can significantly improve the second-order NLO response, which is mainly due to intermolecular charge transfer through pancake π-π bonding of the interlayers.
Collapse
Affiliation(s)
- Feng-Wei Gao
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Shi-Bin Li
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zhong-Min Su
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
17
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene‐Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
19
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021; 60:9290-9295. [PMID: 33522053 PMCID: PMC8252115 DOI: 10.1002/anie.202100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.
Collapse
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|