1
|
Yang Y, Gan M, Liu C, Xie Z, Wang M, Zhou C, Cheng W, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Wang J, Shen L, Zhu L. Analysis of genetic evolutionary differences among four Tibetan pig populations in China. Genomics 2024; 116:110950. [PMID: 39393592 DOI: 10.1016/j.ygeno.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Tibetan pigs are a locally bred domestic pig breed originating from the Tibetan Plateau in China. They can be categorized into four distinct groups based on their geographical locations: Sichuan Tibetan pigs, Tibetan pigs from Tibet, Yunnan Tibetan pigs, and Gansu Tibetan pigs. This study aimed to explore population diversity, genetic structure and selection signals among Tibetan pigs in four Chinese national nature reserves. The results show that there is different observed heterozygosity among Tibetan pig populations (0.1957-0.1978). Ratio of runs of homozygosity (Froh) calculation of four Tibetan pig populations by runs of homozygosity (ROH) revealed the presence of inbreeding within the population (0.0336-0.0378). Analysis of the genetic structure demonstrated distinct population stratification among the four Tibetan pig populations, with each showing relatively independent evolutionary directions. Furthermore, Five methods (FST, Piratio, ROD, Tajima's D, XP-CLR) were used to artificially select evolutionary trajectories. The results mainly involved processes such as DNA repair, immune regulation, muscle fat deposition and adaptation to hypoxia. In conclusion, this study enhances our understanding of the genetic characteristics of Tibetan pig populations and provides a theoretical reference for the conservation of resources across different populations of Tibetan pigs.
Collapse
Affiliation(s)
- Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengpeng Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Panuszko A, Szymczak M, Dłużewska J, Godlewska J, Kuffel A, Bruździak P. Effect of ectoine on hydration spheres of peptides-spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123590. [PMID: 37922848 DOI: 10.1016/j.saa.2023.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
In this paper, we use FTIR spectroscopy to characterize the hydration water of ectoine, its interactions with two peptides-diglycine and NAGMA, and the properties of water molecules in the hydration spheres of both peptides changed by the presence of the osmolyte. We found that the interaction of ectoine with the peptide hydration shells had no effect on its own hydration sphere. However, the enhanced hydration layer of the osmolyte influences the hydration shells of both peptides and does so in a different way for both peptides: (1) the interfacial interaction of the NAGMA peptide and ectoine hydration spheres strengthened the hydration shell of this peptide; (2) the inclusion of water molecules from the ectoine hydration sphere into the diglycine hydration sphere had only a marginally enhancing effect. Since ectoine is being used in more and more biopharmaceutical products and cosmetics, knowledge of the properties of its hydration shell and its effect on the hydration shell of other molecules is extremely relevant to understanding its protective mechanism.
Collapse
Affiliation(s)
- Aneta Panuszko
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Marek Szymczak
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Julia Dłużewska
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Julia Godlewska
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Anna Kuffel
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Piotr Bruździak
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
3
|
Xu S, Zhang B, Chen W, Ye K, Shen J, Liu P, Wu J, Wang H, Chu X. Highly efficient production of ectoine via an optimized combination of precursor metabolic modules in Escherichia coli BL21. BIORESOURCE TECHNOLOGY 2023; 390:129803. [PMID: 37758030 DOI: 10.1016/j.biortech.2023.129803] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Ectoine is an osmotic pressure protectant observed in various microorganisms and is widely used in cosmetics and pharmaceuticals. The market value of ectoine has increased considerably with social progress, resulting in high demand for ectoine production technology. Herein, a microbial cell factory in Escherichia coli that produces ectoine at high titers is described as developing efficient and environmentally friendly bio-based ectoine production technology. The ectoine biosynthetic pathway of Halomonas hydrothermalis was introduced into E. coli BL21 (DE3). Subsequent overexpression of precursor metabolic modules, including aspartate branching, pyruvate-oxoacetate, and glutamate biosynthesis pathways, resulted in the final strain, E. coli BCT08, which produced ectoine at a titer of 36.58 g/L during 30 h of fermentation. Sugar feeding speed optimization improved the ectoine titer to 131.8 g/L after 96 h of cultivation. This represents a remarkable achievement in ectoine production from glucose under low-salt conditions and has vast potential for industrial applications.
Collapse
Affiliation(s)
- Shunqing Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanhe Chen
- Zhejiang Lvchuang Biotechnology Co., Ltd, Huzhou 313200, Zhejiang, China
| | - Kai Ye
- Zhejiang Lvchuang Biotechnology Co., Ltd, Huzhou 313200, Zhejiang, China
| | - Jian Shen
- Zhejiang Lvchuang Biotechnology Co., Ltd, Huzhou 313200, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
4
|
Harakeh S, Al-Raddadi R, Alamri T, Al-Jaouni S, Qari M, Qari Y, Kumar A, Tashkandi HM, Moulay M, Aldahlawi AM, Slama P, Haque S. Apoptosis induction in human hepatoma cell line HepG2 cells by trans- Anethole via activation of mitochondria-mediated apoptotic pathways. Biomed Pharmacother 2023; 165:115236. [PMID: 37531780 DOI: 10.1016/j.biopha.2023.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
trans-Anethole a valuable compound derived from star anise widely used by ethnic tribals to manage numerous human diseases. In this study antiproliferative activities of trans-Anethole towards human liver cancer (HepG2), cervical cancer (HeLa) and breast cancer (MCF-7) cells were explored. trans-Anethole showed free radical scavenging potential as assessed by DNA nicking assay. trans-Anethole exhibited strong antiproliferative potential towards HepG2 cells compared to other cell lines. trans-Anethole strongly induced apoptosis in HepG2 cells by significantly upregulating the protein expressions of p53, Caspase-3 and Caspase-9 were assessed by western blotting analysis which highlighted apoptosis-inducing capacity of trans-Anethole against HepG2 cells. Rt-qPCR analysis revealed that trans- Anethole upregulated p53, caspase - 3 and - 9 in comparison to untreated HepG2 cancer cells. Moreover, trans-Anethole provoked the generation of ROS and disruption of MMP. Our research suggests that trans-Anethole may have a significant anticancer therapeutic potential for treating liver cancer.
Collapse
Affiliation(s)
- Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajaa Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al-Jaouni
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Qari
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yousef Qari
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ajay Kumar
- University Centre for Research and Development, Biotechnology Engineering & Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates.
| |
Collapse
|
5
|
Hallier DC, Smales GJ, Seitz H, Hahn MB. Bio-SAXS of single-stranded DNA-binding proteins: radiation protection by the compatible solute ectoine. Phys Chem Chem Phys 2023; 25:5372-5382. [PMID: 36637121 DOI: 10.1039/d2cp05053f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL-1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies.
Collapse
Affiliation(s)
- Dorothea C Hallier
- Universität Potsdam, Institut für Biochemie und Biologie, 14476 Potsdam, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476 Potsdam, Germany.,Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany.
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany.
| | - Harald Seitz
- Universität Potsdam, Institut für Biochemie und Biologie, 14476 Potsdam, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476 Potsdam, Germany
| | - Marc Benjamin Hahn
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany.
| |
Collapse
|
6
|
Zhang T, Zhang X, Li Y, Yang N, Qiao L, Miao Z, Xing J, Zhu D. Study of osmoadaptation mechanisms of halophilic Halomonas alkaliphila XH26 under salt stress by transcriptome and ectoine analysis. Extremophiles 2022; 26:14. [PMID: 35229247 DOI: 10.1007/s00792-022-01256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Halophilic bacteria such as the genus Halomonas are promising candidates in diverse industrial, agricultural and biomedical applications. Here, we successfully isolated a halophilic Halomonas alkaliphila strain XH26 from Xiaochaidan Salt Lake, and studied its osmoadaptation strategies using transcriptome and ectoine analysis. Divergent mechanisms were involved in osmoadaptation at different salinities in H. alkaliphila XH26. At moderate salinity (6% NaCl), increased transcriptions of ABC transporters related to iron (III), phosphate, phosphonate, monosaccharide and oligosaccharide import were observed. At high salinity (15% NaCl), transcriptions of flagellum assembly and cell motility were significantly inhibited. The transcriptional levels of ABC transporter genes related to iron (III) and iron3+-hydroxamate import, glycine betaine and putrescine uptake, and cytochrome biogenesis and assembly were significantly up-regulated. Ectoine synthesis and accumulation was significantly increased under salt stress, and the increased transcriptional expressions of ectoine synthesis genes ectB and ectC may play a key role in high salinity induced osmoadaptation. At extreme high salinity (18% NaCl), 5-hydroxyectoine and ectoine worked together to maintain cell survival. Together these results give valuable insights into the osmoadaptation mechanisms of H. alkaliphila XH26, and provide useful information for further engineering this specific strain for increased ectoine synthesis and related applications.
Collapse
Affiliation(s)
- Tiantian Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Xin Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Yongzhen Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Ning Yang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Lijuan Qiao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Zengqiang Miao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China.
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China.
| |
Collapse
|
7
|
Wittmar J, Ohle C, Kunte J, Brand I. Effect of Ectoine on the Conformation and Hybridization of dsDNA in Monolayer Films: A Spectroelectrochemical Study. ChemElectroChem 2021. [DOI: 10.1002/celc.202100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julia Wittmar
- Department of Chemistry University of Oldenburg 26111 Oldenburg Germany
- Institute of Cell Dynamics and Imaging Westfälische Wilhelms Universität Münster 48149 Münster Germany
| | - Corina Ohle
- Division Biodeterioration and Reference Organisms Bundesanstalt für Materialforschung und -prüfung BAM 12205 Berlin Germany
- Deutsche Akkreditierungsstelle GmbH (DAkkS) Spittelmarkt 10 10117 Berlin Germany
| | - Jörg Kunte
- Division Biodeterioration and Reference Organisms Bundesanstalt für Materialforschung und -prüfung BAM 12205 Berlin Germany
| | - Izabella Brand
- Department of Chemistry University of Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
8
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
9
|
Hermann L, Mais CN, Czech L, Smits SHJ, Bange G, Bremer E. The ups and downs of ectoine: structural enzymology of a major microbial stress protectant and versatile nutrient. Biol Chem 2021; 401:1443-1468. [PMID: 32755967 DOI: 10.1515/hsz-2020-0223] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.
Collapse
Affiliation(s)
- Lucas Hermann
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology, Karl-von Frisch Str. 10, D-35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Laura Czech
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von Frisch Str. 8, D-35043 Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany
| |
Collapse
|
10
|
Hahn MB, Dietrich PM, Radnik J. In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy. Commun Chem 2021; 4:50. [PMID: 36697687 PMCID: PMC9814248 DOI: 10.1038/s42004-021-00487-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Ionizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- grid.14095.390000 0000 9116 4836Institut für Experimentalphysik, Freie Universität Berlin, Berlin, Germany ,grid.71566.330000 0004 0603 5458Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | | | - Jörg Radnik
- grid.71566.330000 0004 0603 5458Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| |
Collapse
|
11
|
Combined cell and nanoparticle models for TOPAS to study radiation dose enhancement in cell organelles. Sci Rep 2021; 11:6721. [PMID: 33762596 PMCID: PMC7990972 DOI: 10.1038/s41598-021-85964-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dose enhancement by gold nanoparticles (AuNP) increases the biological effectiveness of radiation damage in biomolecules and tissue. To apply them effectively during cancer therapy their influence on the locally delivered dose has to be determined. Hereby, the AuNP locations strongly influence the energy deposit in the nucleus, mitochondria, membrane and the cytosol of the targeted cells. To estimate these effects, particle scattering simulations are applied. In general, different approaches for modeling the AuNP and their distribution within the cell are possible. In this work, two newly developed continuous and discrete-geometric models for simulations of AuNP in cells are presented. These models are applicable to simulations of internal emitters and external radiation sources. Most of the current studies on AuNP focus on external beam therapy. In contrast, we apply the presented models in Monte-Carlo particle scattering simulations to characterize the energy deposit in cell organelles by radioactive 198AuNP. They emit beta and gamma rays and are therefore considered for applications with solid tumors. Differences in local dose enhancement between randomly distributed and nucleus targeted nanoparticles are compared. Hereby nucleus targeted nanoparticels showed a strong local dose enhancement in the radio sensitive nucleus. These results are the foundation for future experimental work which aims to obtain a mechanistic understanding of cell death induced by radioactive 198Au.
Collapse
|
12
|
Wittmar J, Meyer S, Sieling T, Kunte J, Smiatek J, Brand I. What Does Ectoine Do to DNA? A Molecular-Scale Picture of Compatible Solute-Biopolymer Interactions. J Phys Chem B 2020; 124:7999-8011. [PMID: 32816487 DOI: 10.1021/acs.jpcb.0c05273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compatible solutes accumulate in the cytoplasm of halophilic microorganisms, enabling their survival in a high-salinity environment. Ectoine is such a compatible solute. It is a zwitterionic molecule that strongly interacts with surrounding water molecules and changes the dynamics of the local hydration shell. Ectoine interacts with biomolecules such as lipids, proteins, and DNA. The molecular interaction between ectoine and biomolecules, in particular the interaction between ectoine and DNA, is far from being understood. In this paper, we describe molecular aspects of the interaction between ectoine and double-stranded DNA (dsDNA). Two 20 base pairs-long dsDNA fragments were immobilized on a gold surface via a thiol-tether. The interaction between the dsDNA monolayers with diluted and concentrated ectoine solutions was examined by means of X-ray photoelectron and polarization modulation infrared reflection absorption spectroscopies (PM IRRAS). Experimental results indicate that the ability of ectoine to bind water reduces the strength of hydrogen bonds formed to the ribose-phosphate backbone in the dsDNA. In diluted (0.1 M) ectoine solution, DNA interacts predominantly with water molecules. The sugar-phosphate backbone is involved in the formation of strong hydrogen bonds to water, which, over time, leads to a reorientation of the planes of nucleic acid bases. This reorientation destabilizes the strength of hydrogen bonds between the bases and leads to a partial dehybridization of the dsDNA. In concentrated ectoine solution (2.5 M), almost all water molecules interact with ectoine. Under this condition, ectoine is able to interact directly with DNA. Density functional theory (DFT) calculations demonstrate that the direct interaction involves the nitrogen atoms in ectoine and phosphate groups in the DNA molecule. The results of the quantum-chemical calculations show that rearrangements in the ribose-phosphate backbone, caused by a direct interaction with ectoine, facilitates contacts between the O atom in the phosphate group and H atoms in a nucleic acid base. In the PM IRRA spectra, an increase in the number of IR absorption modes in the base pair frequency region proves that the hydrogen bonds between bases become weaker. Thus, a sequence of reorientations caused by interaction with ectoine leads to a breakdown of hydrogen bonds between bases in the double helix.
Collapse
Affiliation(s)
- Julia Wittmar
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Susann Meyer
- Biodeterioration and Reference Organisms, Bundesanstalt für Materialforschung und -prüfung BAM, 12205 Berlin, Germany
| | - Thorben Sieling
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Jörg Kunte
- Biodeterioration and Reference Organisms, Bundesanstalt für Materialforschung und -prüfung BAM, 12205 Berlin, Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
13
|
Solomun T, Hahn MB, Smiatek J. Raman Spectroscopic Signature of Ectoine Conformations in Bulk Solution and Crystalline State. Chemphyschem 2020; 21:1945-1950. [PMID: 32628316 PMCID: PMC7540454 DOI: 10.1002/cphc.202000457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Indexed: 01/29/2023]
Abstract
Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules.
Collapse
Affiliation(s)
- Tihomir Solomun
- Bundesanstalt für Materialforschung und -prüfung (BAM)12205BerlinGermany
| | - Marc Benjamin Hahn
- Bundesanstalt für Materialforschung und -prüfung (BAM)12205BerlinGermany
- Freie Universität BerlinInstitut für Experimentalphysik14195BerlinGermany
| | - Jens Smiatek
- Institut für ComputerphysikUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
14
|
Akter M, Keya JJ, Kabir AMR, Asanuma H, Murayama K, Sada K, Kakugo A. Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chem Commun (Camb) 2020; 56:7953-7956. [PMID: 32537622 DOI: 10.1039/d0cc03124k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We regulate the persistency in motion of kinesin-driven microtubules (MTs) simply using a photoresponsive DNA (pDNA) and ultraviolet (UV)-visible light. The path persistence length of MTs, which is a measure of the persistency in their motion, increases and decreases upon illuminating the MTs with UV and visible light respectively. Moreover, pDNA is found to work as a shield for MTs against damage under UV irradiation.
Collapse
Affiliation(s)
- Mousumi Akter
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan.
| | | | | | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Osaka, 564-8680, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Osaka, 564-8680, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan. and Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan. and Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|