1
|
Kanika NH, Hou X, Liu H, Dong Y, Wang J, Wang C. Specific gut microbiome's role in skin pigmentation: insights from SCARB1 mutants in Oujiang colour common carp. J Appl Microbiol 2024; 135:lxae226. [PMID: 39243120 DOI: 10.1093/jambio/lxae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
AIMS Beyond the pivotal roles of the gut microbiome in initiating physiological processes and modulating genetic factors, a query persists: Can a single gene mutation alter the abundance of the gut microbiome community? Not only this, but the intricate impact of gut microbiome composition on skin pigmentation has been largely unexplored. METHODS AND RESULTS Based on these premises, our study examines the abundance of lipase-producing gut microbes about differential gene expression associated with bile acid synthesis and lipid metabolism-related blood metabolites in red (whole wild) and white (whole white wild and SCARB1-/- mutant) Oujiang colour common carp. Following the disruption of the SCARB1 gene in the resulting mutant fish with white body colour (SCARB1-/-), there is a notable decrease in the abundance of gut microbiomes (Bacillus, Staphylococcus, Pseudomonas, and Serratia) associated with lipase production. This reduction parallels the downregulation seen in wild-type white body colour fish (WW), as contrasting to the wild-type red body colour fish (WR). Meanwhile, in SCARB1-/- fish, there was a downregulation noted not only at the genetic and metabolic levels but also a decrease in lipase-producing bacteria. This consistency with WW contrasts significantly with WR. Similarly, genes involved in the bile acid synthesis pathway, along with blood metabolites related to lipid metabolism, exhibited downregulation in SCARB1-/- fish. CONCLUSIONS The SCARB1 knockout gene blockage led to significant alterations in the gut microbiome, potentially influencing the observed reduction in carotenoid-associated skin pigmentation. Our study emphasizes that skin pigmentation is not only impacted by genetic factors but also by the gut microbiome. Meanwhile, the gut microbiome's adaptability can be rapidly shaped and may be driven by specific single-gene variations.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Pasenkiewicz-Gierula M, Hryc J, Markiewicz M. Dynamic and Energetic Aspects of Carotenoids In-and-Around Model Lipid Membranes Revealed in Molecular Modelling. Int J Mol Sci 2024; 25:8217. [PMID: 39125791 PMCID: PMC11312187 DOI: 10.3390/ijms25158217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In contrast to plants, humans are unable to synthesise carotenoids and have to obtain them from diet. Carotenoids fulfil several crucial biological functions in the organism; however, due to poor solubility in water, their bioavailability from plant-based food is low. The processes of carotenoid absorption and availability in the human body have been intensively studied. The recent experimental findings concerning these processes are briefly presented in the introductory part of this review, together with a summary of such topics as carotenoid carriers, body transport and tissue delivery, to finally report on molecular-level studies of carotenoid binding by membrane receptors. The main message of the review is contained in the section describing computational investigations of carotenoid intercalation and dynamic behaviour in lipid bilayers. The relevance of these computational studies lies in showing the direct link between the microscopic behaviour of molecules and the characteristics of their macroscopic ensembles. Furthermore, studying the interactions between carotenoids and lipid bilayers, and certainly proteins, on the molecular- and atomic-level using computational methods facilitates the interpretation and explanation of their macroscopic properties and, hopefully, helps to better understand the biological functions of carotenoids.
Collapse
Affiliation(s)
- Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (J.H.); (M.M.)
| | | | | |
Collapse
|
3
|
Chiariello MG, Zarmiento-Garcia R, Marrink SJ. Martini 3 Coarse-Grained Model for the Cofactors Involved in Photosynthesis. Int J Mol Sci 2024; 25:7947. [PMID: 39063190 PMCID: PMC11277265 DOI: 10.3390/ijms25147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available. To further assess the reliability of the parameterization, we tested the behavior of these cofactors within their physiological environments, specifically in a lipid bilayer and bound to photosynthetic complexes. The results demonstrate that our CG models maintain the essential features required for realistic simulations. This work lays the groundwork for detailed simulations of the PSII-LHCII super-complex, providing a robust parameter set for future studies.
Collapse
Affiliation(s)
| | | | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (M.G.C.); (R.Z.-G.)
| |
Collapse
|
4
|
Múnera-Jaramillo J, López GD, Suesca E, Carazzone C, Leidy C, Manrique-Moreno M. The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184288. [PMID: 38286247 DOI: 10.1016/j.bbamem.2024.184288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.
Collapse
Affiliation(s)
- Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia; PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá D.C., Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
5
|
Yang X, Wu S, Luo S, Weng X, Wu Y, Yu X, Huang X, Wang X, Hu X. Inactivation of Carotenogenic-Biosynthesizing Genes Altered Lipids Composition and Intensity in Cronobacter sakazakii. Foodborne Pathog Dis 2024; 21:174-182. [PMID: 38112720 DOI: 10.1089/fpd.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Cronobacter sakazakii, an opportunistic milk-borne pathogen responsible for severe neonatal meningitis and bacteremia, can synthesize yellow pigment (various carotenoids) benefiting for bacterial survival, while little literature was available about the influence of various carotenoids on bacterial resistance to a series of stresses and the characteristics of cell membrane, obstructing the development of novel bactericidal strategies overcoming the strong tolerance of C. sakazakii. Thus in this study, for the first time, five carotenogenic genes of C. sakazakii BAA-894 were inactivated, respectively, to construct a series of mutants producing various carotenoids and their effects on the cell membrane properties, and resistances to food- and host-related stresses, were investigated systematically. Furthermore, to explore its possible mode of action, comparative lipidomics analysis was performed to reveal the change of lipids that were mainly located at cell membranes. The results showed that five mutants (ΔcrtB, ΔcrtI, ΔcrtY, ΔcrtZ, and ΔcrtX) displayed negligible change in growth rate but higher permeability of the outer membrane and lower fluidity of cell membrane compared to the wild type. Besides, these mutants exhibited poorer ability of biofilm formation and lower resistances to acid, oxidative, osmotic, and desiccation stresses, indicating that different carotenoid composition significantly affected environmental tolerance of C. sakazakii. To discover the possible causes, lipidomics analysis of C. sakazakii was conducted and more than 500 lipid species belonging to 27 classes had been identified at first. Compared to that of BAA-894, the composition and relative intensity of lipid species in five mutants varied significantly, especially the monounsaturated and biunsaturated phosphatidylethanolamine. The evidence presented in this study demonstrated that the varied composition of carotenoids in C. sakazakii significantly altered the lipid profile and intensity, which maybe a crucial means to influencing the characteristics of cell membranes and resistance to environmental stresses.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuyan Wu
- Hopkirk Research Institute, AgResearch Ltd., Palmerston North, New Zealand
| | - Shuanghua Luo
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xing Weng
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yue Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xia Yu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- Hopkirk Research Institute, AgResearch Ltd., Palmerston North, New Zealand
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Postnikov EB, Wasiak M, Bartoszek M, Polak J, Zyubin A, Lavrova AI, Chora̧żewski M. Accessing Properties of Molecular Compounds Involved in Cellular Metabolic Processes with Electron Paramagnetic Resonance, Raman Spectroscopy, and Differential Scanning Calorimetry. Molecules 2023; 28:6417. [PMID: 37687246 PMCID: PMC10490169 DOI: 10.3390/molecules28176417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, we review some physical methods of macroscopic experiments, which have been recently argued to be promising for the acquisition of valuable characteristics of biomolecular structures and interactions. The methods we focused on are electron paramagnetic resonance spectroscopy, Raman spectroscopy, and differential scanning calorimetry. They were chosen since it can be shown that they are able to provide a mutually complementary picture of the composition of cellular envelopes (with special attention paid to mycobacteria), transitions between their molecular patterning, and the response to biologically active substances (reactive oxygen species and their antagonists-antioxidants-as considered in our case study).
Collapse
Affiliation(s)
- Eugene B. Postnikov
- Theoretical Physics Department, Kursk State University, Radishcheva St. 33, 305000 Kursk, Russia
| | - Michał Wasiak
- Department of Physical Chemistry, University of Lódź, ul. Pomorska 165, 90-236 Lódź, Poland;
| | - Mariola Bartoszek
- Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-006 Katowice, Poland; (M.B.); (J.P.)
| | - Justyna Polak
- Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-006 Katowice, Poland; (M.B.); (J.P.)
| | - Andrey Zyubin
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, Nevskogo St. 14, 236041 Kaliningrad, Russia; (A.Z.); (A.I.L.)
| | - Anastasia I. Lavrova
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, Nevskogo St. 14, 236041 Kaliningrad, Russia; (A.Z.); (A.I.L.)
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ligovskiy Prospect 2-4, 194064 Saint Petersburg, Russia
| | - Mirosław Chora̧żewski
- Institute of Chemistry, University of Silesia in Katowice, ul. Szkolna 9, 40-006 Katowice, Poland; (M.B.); (J.P.)
| |
Collapse
|
7
|
Widomska J, Subczynski WK, Welc-Stanowska R, Luchowski R. An Overview of Lutein in the Lipid Membrane. Int J Mol Sci 2023; 24:12948. [PMID: 37629129 PMCID: PMC10454802 DOI: 10.3390/ijms241612948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Lutein, zeaxanthin, and meso-zeaxanthin (a steroisomer of zeaxanthin) are macular pigments. They modify the physical properties of the lipid bilayers in a manner similar to cholesterol. It is not clear if these pigments are directly present in the lipid phase of the membranes, or if they form complexes with specific membrane proteins that retain them in high amounts in the correct place in the retina. The high content of macular pigments in the Henle fiber layer indicates that a portion of the lutein and zeaxanthin should not only be bound to the specific proteins but also directly dissolved in the lipid membranes. This high concentration in the prereceptoral region of the retina is effective for blue-light filtration. Understanding the basic mechanisms of these actions is necessary to better understand the carotenoid-membrane interaction and how carotenoids affect membrane physical properties-such as fluidity, polarity, and order-in relation to membrane structure and membrane dynamics. This review focuses on the properties of lutein.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
| | - Witold K. Subczynski
- Department of Biophysics, Medical College on Wisconsin, Milwaukee, WI 53226, USA;
| | | | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
8
|
Lester A, Sandman M, Herring C, Girard C, Dixon B, Ramsdell H, Reber C, Poulos J, Mitchell A, Spinney A, Henager ME, Evans CN, Turlington M, Johnson QR. Computational Exploration of Potential CFTR Binding Sites for Type I Corrector Drugs. Biochemistry 2023; 62:2503-2515. [PMID: 37437308 PMCID: PMC10433520 DOI: 10.1021/acs.biochem.3c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The recent development of a class of drugs called "correctors", which repair the structure and function of mutant CFTR, has greatly enhanced the life expectancy of CF patients. These correctors target the most common disease causing CFTR mutant F508del and are exemplified by the FDA-approved VX-809. While one binding site of VX-809 to CFTR was recently elucidated by cryo-electron microscopy, four additional binding sites have been proposed in the literature and it has been theorized that VX-809 and structurally similar correctors may engage multiple CFTR binding sites. To explore these five binding sites, ensemble docking was performed on wild-type CFTR and the F508del mutant using a large library of structurally similar corrector drugs, including VX-809 (lumacaftor), VX-661 (tezacaftor), ABBV-2222 (galicaftor), and a host of other structurally related molecules. For wild-type CFTR, we find that only one site, located in membrane spanning domain 1 (MSD1), binds favorably to our ligand library. While this MSD1 site also binds our ligand library for F508del-CFTR, the F508del mutation also opens a binding site in nucleotide binding domain 1 (NBD1), which enables strong binding of our ligand library to this site. This NBD1 site in F508del-CFTR exhibits the strongest overall binding affinity for our library of corrector drugs. This data may serve to better understand the structural changes induced by mutation of CFTR and how correctors bind to the protein. Additionally, it may aid in the design of new, more effective CFTR corrector drugs.
Collapse
Affiliation(s)
- Anna Lester
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Madeline Sandman
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Caitlin Herring
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Christian Girard
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Brandon Dixon
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Havanna Ramsdell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Callista Reber
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Jack Poulos
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Alexis Mitchell
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Allison Spinney
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Marissa E. Henager
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Claudia N. Evans
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Mark Turlington
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| | - Quentin R. Johnson
- Berry College Department
of Chemistry and Biochemistry, Mount Berry, Georgia 30149, United States
| |
Collapse
|
9
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|
11
|
Cámara CI, Crosio MA, Juarez AV, Wilke N. Dexamethasone and Dexamethasone Phosphate: Effect on DMPC Membrane Models. Pharmaceutics 2023; 15:pharmaceutics15030844. [PMID: 36986705 PMCID: PMC10053563 DOI: 10.3390/pharmaceutics15030844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Dexamethasone (Dex) and Dexamethasone phosphate (Dex-P) are synthetic glucocorticoids with high anti-inflammatory and immunosuppressive actions that gained visibility because they reduce the mortality in critical patients with COVID-19 connected to assisted breathing. They have been widely used for the treatment of several diseases and in patients under chronic treatments, thus, it is important to understand their interaction with membranes, the first barrier when these drugs get into the body. Here, the effect of Dex and Dex-P on dimyiristoylphophatidylcholine (DMPC) membranes were studied using Langmuir films and vesicles. Our results indicate that the presence of Dex in DMPC monolayers makes them more compressible and less reflective, induces the appearance of aggregates, and suppresses the Liquid Expanded/Liquid Condensed (LE/LC) phase transition. The phosphorylated drug, Dex-P, also induces the formation of aggregates in DMPC/Dex-P films, but without disturbing the LE/LC phase transition and reflectivity. Insertion experiments demonstrate that Dex induces larger changes in surface pressure than Dex-P, due to its higher hydrophobic character. Both drugs can penetrate membranes at high lipid packings. Vesicle shape fluctuation analysis shows that Dex-P adsorption on GUVs of DMPC decreases membrane deformability. In conclusion, both drugs can penetrate and alter the mechanical properties of DMPC membranes.
Collapse
Affiliation(s)
- Candelaria Ines Cámara
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
- Correspondence: ; Tel.: +54-9-351-5353570
| | - Matías Ariel Crosio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Ana Valeria Juarez
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| | - Natalia Wilke
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina
| |
Collapse
|
12
|
Ashokkumar V, Flora G, Sevanan M, Sripriya R, Chen WH, Park JH, Rajesh Banu J, Kumar G. Technological advances in the production of carotenoids and their applications- A critical review. BIORESOURCE TECHNOLOGY 2023; 367:128215. [PMID: 36332858 DOI: 10.1016/j.biortech.2022.128215] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 05/21/2023]
Abstract
Carotenoids are naturally occurring pigments that are widely distributed in algae, fungi, bacteria, and plants. Carotenoids play a significant role in the food, feed, cosmetic, nutraceutical, and pharmaceutical industries. These pigments are effectively considered as a health-promoting compounds, which are widely used in our daily diet to reduce the risk of chronic diseases such as cardiovascular diseases, cancer, acute lung injury, cataracts, neural disorders, etc. In this context, this review paper demonstrates the synthesis of carotenoids and their potential application in the food and pharmaceutical industries. However, the demand for carotenoid production is increasing overtime, and the extraction and production are expensive and technically challenging. The recent developments in carotenoid biosynthesis, and key challenges, bottlenecks, and future perspectives were also discussed to enhance the circular bioeconomy.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory (BBBL), Center for Trandisciplinary Research, Department of Pharmacology, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to be University), Combatore, India
| | - R Sripriya
- Department of Zoology, St. Mary's College (Autonomous), Thoothukudi, India
| | - W H Chen
- Department Aeronautical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
13
|
Caimi AT, Yasynska O, Rivas Rojas PC, Romero EL, Morilla MJ. Improved stability and biological activity of bacterioruberin in nanovesicles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Unravelling the neuroprotective mechanisms of carotenes in differentiated human neural cells: Biochemical and proteomic approaches. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100088. [PMID: 35415676 PMCID: PMC8991711 DOI: 10.1016/j.fochms.2022.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Total mixed carotenes (TMC) protect differentiated human neural cells against 6-hydroxydopamine-induced toxicity. TMC elevated the antioxidant enzymes activities and suppressed generation of reactive oxygen species. TMC augmented the dopamine and tyrosine hydroxylase levels. TMC exerted differential protein expression in human neural cells.
Carotenoids, fat-soluble pigments found ubiquitously in plants and fruits, have been reported to exert significant neuroprotective effects against free radicals. However, the neuroprotective effects of total mixed carotenes complex (TMC) derived from virgin crude palm oil have not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of TMC on differentiated human neural cells against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. The human neural cells were differentiated using retinoic acid for six days. Then, the differentiated neural cells were pre-treated for 24 hr with TMC before exposure to 6-OHDA. TMC pre-treated neurons showed significant alleviation of 6-OHDA-induced cytotoxicity as evidenced by enhanced activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes. Furthermore, TMC elevated the levels of intra-neuronal dopamine and tyrosine hydroxylase (TH) in differentiated neural cells. The 6-OHDA induced overexpression of α-synuclein was significantly hindered in neural cells pre-treated with TMC. In proteomic analysis, TMC altered the expression of ribosomal proteins, α/β isotypes of tubulins, protein disulphide isomerases (PDI) and heat shock proteins (HSP) in differentiated human neural cells. The natural palm phytonutrient TMC is a potent antioxidant with significant neuroprotective effects against free radical-induced oxidative stress.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- 6-hydroxydopamine
- AD, Alzheimer’s disease
- BCM, beta-carotene-15,15′-monooxygenase
- CAT, catalase
- DRD2, dopamine receptor D2
- Dopamine
- ER, endoplasmic reticulum
- GO, gene ontology
- HSP, Heat shock protein
- HSPA9, Heat shock protein family A (HSP70) member 9
- HSPD1, Heat shock protein family D (HSP60) member 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS/MS, liquid chromatography-double mass spectrometry
- LDH, lactate dehydrogenase
- MCODE, minimal common oncology data elements
- MS, mass spectrometry
- Mixed carotene
- PD, Parkinson's disease
- PDI, protein disulphide isomerases
- PHB2, prohibitin 2
- PPI, protein–protein interaction
- RAN, Ras-related nuclear protein
- ROS, reactive oxygen species
- RPs, ribosomal proteins
- SH-SY5Y neuroblastoma cells
- SOD, superoxide dismutase
- TH, tyrosine hydroxylase
- TMC, total mixed carotene complex
Collapse
|
15
|
An electronic tongue as a tool for assessing the impact of carotenoids’ fortification on cv. Arbequina olive oils. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Simkin AJ. Carotenoids and Apocarotenoids in Planta: Their Role in Plant Development, Contribution to the Flavour and Aroma of Fruits and Flowers, and Their Nutraceutical Benefits. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112321. [PMID: 34834683 PMCID: PMC8624010 DOI: 10.3390/plants10112321] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Carotenoids and apocarotenoids are diverse classes of compounds found in nature and are important natural pigments, nutraceuticals and flavour/aroma molecules. Improving the quality of crops is important for providing micronutrients to remote communities where dietary variation is often limited. Carotenoids have also been shown to have a significant impact on a number of human diseases, improving the survival rates of some cancers and slowing the progression of neurological illnesses. Furthermore, carotenoid-derived compounds can impact the flavour and aroma of crops and vegetables and are the origin of important developmental, as well as plant resistance compounds required for defence. In this review, we discuss the current research being undertaken to increase carotenoid content in plants and research the benefits to human health and the role of carotenoid derived volatiles on flavour and aroma of fruits and vegetables.
Collapse
Affiliation(s)
- Andrew J. Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; or
- Crop Science and Production Systems, NIAB-EMR, New Road, East Malling, Kent ME19 6BJ, UK
| |
Collapse
|
17
|
Optimum Parameters for Extracting Three Kinds of Carotenoids from Pepper Leaves by Response Surface Methodology. SEPARATIONS 2021. [DOI: 10.3390/separations8090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To determine the optimum parameters for extracting three carotenoids including zeaxanthin, lutein epoxide, and violaxanthin from pepper leaves by response surface methodology (RSM), a solvent of acetone and ethyl acetate (1:2) was used to extract carotenoids with four independent factors: ultrasound time (20–60 min); ratio of sample to solvent (1:12–1:4); saponification time (10–50 min); and concentration of saponification solution (KOH–methanol) (10–30%). A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to zeaxanthin (R2 = 75.95%, p < 0.0197), lutein epoxide (R2 = 90.24%, p < 0.0001), and violaxanthin (R2 = 73.84%, p < 0.0809) content. The optimum joint extraction conditions of zeaxanthin, lutein epoxide, and violaxanthin were 40 min, 1:8, 32 min, and 20%, respectively. The optimal predicted contents for zeaxanthin (0.823022 µg/g DW), lutein epoxide (4.03684 µg/g dry; DW—dry weight), and violaxanthin (16.1972 µg/g DW) in extraction had little difference with the actual experimental values obtained under the optimum extraction conditions for each response: zeaxanthin (0.8118 µg/g DW), lutein epoxide (3.9497 µg/g DW), and violaxanthin (16.1590 µg/g DW), which provides a theoretical basis and method for cultivating new varieties at low temperatures and weak light resistance.
Collapse
|
18
|
Rizk S, Henke P, Santana-Molina C, Martens G, Gnädig M, Nguyen NA, Devos DP, Neumann-Schaal M, Saenz JP. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1. Mol Microbiol 2021; 116:1064-1078. [PMID: 34387371 DOI: 10.1111/mmi.14794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE, and crtB we disrupted the production of squalene, and phytoene in Methylobacterium extorquens PA1, which are the presumed precursors for hopanoids and carotenoids, respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.
Collapse
Affiliation(s)
- Sandra Rizk
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Petra Henke
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Carlos Santana-Molina
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Gesa Martens
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Marén Gnädig
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | | | - Damien P Devos
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| |
Collapse
|
19
|
Fiedor J, Przetocki M, Siniarski A, Gajos G, Spiridis N, Freindl K, Burda K. β-Carotene-Induced Alterations in Haemoglobin Affinity to O 2. Antioxidants (Basel) 2021; 10:451. [PMID: 33805826 PMCID: PMC8001951 DOI: 10.3390/antiox10030451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
β-Carotene (β-Crt) can be dispersed in hydrophobic regions of the membrane of red blood cells (RBC). Its location, orientation and distribution strongly depend on carotenoid concentration. In the present pilot trial (six human subjects involved), it is demonstrated that incubation of RBCs with β-Crt (1.8 × 107 β-Crt molecules per RBC, 50 μmol/L) results in expansion of the membrane of RBCs and slight elongation of the cell. The changes are of statistical significance, as verified by the Wilcoxon test at p < 0.05. They indicate (i) a highly random orientation and location of β-Crt inside the membrane and (ii) a tendency for its interaction with membrane skeleton proteins. The accompanying effect of decreased RBC resistance to lysis is possibly a result of the incorrect functioning of ion channels due to their modification/disruption. At higher β-Crt concentrations, its clustering inside membranes may occur, leading to further alterations in the shape and size of RBCs, with the most pronounced changes observed at 1.8 × 108 β-Crt molecules per RBC (500 μmol/L). Due to the reduced permeability of ions, such membranes exhibit increased resistance to haemolysis. Finally, we show that interactions of β-Crt with the membrane of RBCs lead to an alteration in haemoglobin-oxygen affinity, shifting the oxyhaemoglobin dissociation curve toward higher oxygen partial pressures. If the impact of β-Crt on a curve course is confirmed in vivo, one may consider its role in the fine tuning of O2 transportation to tissues. Hence, at low concentrations, providing unchanged elastic and functional properties of RBCs, it could serve as a beneficial agent in optimising heart performance and cardiovascular load.
Collapse
Affiliation(s)
- Joanna Fiedor
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland;
| | - Mateusz Przetocki
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland;
| | - Aleksander Siniarski
- Jagiellonian University Medical College, 31-202 Kraków, Poland; (A.S.); (G.G.)
- The John Paul II Hospital, 31-202 Kraków, Poland
| | - Grzegorz Gajos
- Jagiellonian University Medical College, 31-202 Kraków, Poland; (A.S.); (G.G.)
- The John Paul II Hospital, 31-202 Kraków, Poland
| | - Nika Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 30-239 Kraków, Poland; (N.S.); (K.F.)
| | - Kinga Freindl
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 30-239 Kraków, Poland; (N.S.); (K.F.)
| | - Kvetoslava Burda
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland;
| |
Collapse
|
20
|
Wongrattanakamon P, Yooin W, Sirithunyalug B, Nimmanpipug P, Jiranusornkul S. Tentative Peptide‒Lipid Bilayer Models Elucidating Molecular Behaviors and Interactions Driving Passive Cellular Uptake of Collagen-Derived Small Peptides. Molecules 2021; 26:710. [PMID: 33573083 PMCID: PMC7866492 DOI: 10.3390/molecules26030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Collagen contains hydroxyproline (Hyp), which is a unique amino acid. Three collagen-derived small peptides (Gly-Pro-Hyp, Pro-Hyp, and Gly-Hyp) interacting across a lipid bilayer (POPC model membrane) for cellular uptakes of these collagen-derived small peptides were studied using accelerated molecular dynamics simulation. The ligands were investigated for their binding modes, hydrogen bonds in each coordinate frame, and mean square displacement (MSD) in the Z direction. The lipid bilayers were evaluated for mass and electron density profiles of the lipid molecules, surface area of the head groups, and root mean square deviation (RMSD). The simulation results show that hydrogen bonding between the small collagen peptides and plasma membrane plays a significant role in their internalization. The translocation of the small collagen peptides across the cell membranes was shown. Pro-Hyp laterally condensed the membrane, resulting in an increase in the bilayer thickness and rigidity. Perception regarding molecular behaviors of collagen-derived peptides within the cell membrane, including their interactions, provides the novel design of specific bioactive collagen peptides for their applications.
Collapse
Affiliation(s)
- Pathomwat Wongrattanakamon
- Laboratory for Molecular Design and Simulation (LMDS), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wipawadee Yooin
- Laboratory for Molecular Design and Simulation (LMDS), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Piyarat Nimmanpipug
- Computational Simulation and Modelling Laboratory (CSML), Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supat Jiranusornkul
- Laboratory for Molecular Design and Simulation (LMDS), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
21
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Choi O, Kang B, Lee Y, Lee Y, Kim J. Pantoea ananatis carotenoid production confers toxoflavin tolerance and is regulated by Hfq-controlled quorum sensing. Microbiologyopen 2020; 10:e1143. [PMID: 33269542 PMCID: PMC7883899 DOI: 10.1002/mbo3.1143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Carotenoids are widely used in functional foods, cosmetics, and health supplements, and their importance and scope of use are continuously expanding. Here, we characterized carotenoid biosynthetic genes of the plant‐pathogenic bacterium Pantoea ananatis, which carries a carotenoid biosynthetic gene cluster (including crtE, X, Y, I, B, and Z) on a plasmid. Reverse transcription–polymerase chain reaction (RT‐PCR) analysis revealed that the crtEXYIB gene cluster is transcribed as a single transcript and crtZ is independently transcribed in the opposite direction. Using splicing by overlap extension with polymerase chain reaction (SOE by PCR) based on asymmetric amplification, we reassembled crtE–B, crtE–B–I, and crtE–B–I–Y. High‐performance liquid chromatography confirmed that Escherichia coli expressing the reassembled crtE–B, crtE–B–I, and crtE–B–I–Y operons produced phytoene, lycopene, and β‐carotene, respectively. We found that the carotenoids conferred tolerance to UV radiation and toxoflavin. Pantoea ananatis shares rice environments with the toxoflavin producer Burkholderia glumae and is considered to be the first reported example of producing and using carotenoids to withstand toxoflavin. We confirmed that carotenoid production by P. ananatis depends on RpoS, which is positively regulated by Hfq/ArcZ and negatively regulated by ClpP, similar to an important regulatory network of E. coli (HfqArcZ →RpoS Ͱ ClpXP). We also demonstrated that Hfq‐controlled quorum signaling de‐represses EanR to activate RpoS, thereby initiating carotenoid production. Survival genes such as those responsible for the production of carotenoids of the plant‐pathogenic P. ananatis must be expressed promptly to overcome stressful environments and compete with other microorganisms. This mechanism is likely maintained by a brake with excellent performance, such as EanR.
Collapse
Affiliation(s)
- Okhee Choi
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| | - Byeongsam Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Yongsang Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Yeyeong Lee
- Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| | - Jinwoo Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea.,Division of Applied Life Science, Gyeongsang National University, Jinju, Korea.,Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|