1
|
Masoumifeshani E, Korona T. Intermolecular interaction energies with AROFRAG-A systematic approach for fragmentation of aromatic molecules. J Comput Chem 2024; 45:2446-2464. [PMID: 38946399 DOI: 10.1002/jcc.27429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Intermolecular interactions with polycyclic aromatic hydrocarbons (PAHs) represent an important area of physisorption studies. These investigations are often hampered by a size of interacting PAHs, which makes the calculation prohibitively expensive. Therefore, methods designed to deal with large molecules could be helpful to reduce the computational costs of such studies. Recently we have introduced a new systematic approach for the molecular fragmentation of PAHs, denoted as AROFRAG, which decomposes a large PAH molecule into a set of predefined small PAHs with a benzene ring being the smallest unbreakable unit, and which in conjunction with the Molecules-in-Molecules (MIM) approach provides an accurate description of total molecular energies. In this contribution we propose an extension of the AROFRAG, which provides a description of intermolecular interactions for complexes composed of PAH molecules. The examination of interaction energy partitioning for various test cases shows that the AROFRAG3 model connected with the MIM approach accurately reproduces all important components of the interaction energy. An additional important finding in our study is that the computationally expensive long-range electron-correlation part of the interaction energy, that is, the dispersion component, is well described at lower AROFRAG levels even without MIM, which makes the latter models interesting alternatives to existing methods for an accurate description of the electron-correlated part of the interaction energy.
Collapse
Affiliation(s)
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Sahre MJ, von Rudorff GF, Marquetand P, von Lilienfeld OA. Transferability of atomic energies from alchemical decomposition. J Chem Phys 2024; 160:054106. [PMID: 38341696 DOI: 10.1063/5.0187298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024] Open
Abstract
We study alchemical atomic energy partitioning as a method to estimate atomization energies from atomic contributions, which are defined in physically rigorous and general ways through the use of the uniform electron gas as a joint reference. We analyze quantitatively the relation between atomic energies and their local environment using a dataset of 1325 organic molecules. The atomic energies are transferable across various molecules, enabling the prediction of atomization energies with a mean absolute error of 23 kcal/mol, comparable to simple statistical estimates but potentially more robust given their grounding in the physics-based decomposition scheme. A comparative analysis with other decomposition methods highlights its sensitivity to electrostatic variations, underlining its potential as a representation of the environment as well as in studying processes like diffusion in solids characterized by significant electrostatic shifts.
Collapse
Affiliation(s)
- Michael J Sahre
- Vienna Doctoral School in Chemistry (DoSChem) and Institute of Theoretical Chemistry and Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| | - Guido Falk von Rudorff
- Department of Chemistry, University Kassel, Heinrich-Plett-Str.40, 34132 Kassel, Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Philipp Marquetand
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - O Anatole von Lilienfeld
- Vienna Doctoral School in Chemistry (DoSChem) and Institute of Theoretical Chemistry and Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, M5S 3H6 Ontario, Canada
- Department of Materials Science and Engineering, University of Toronto, St. George Campus, Toronto, M5S 3E4 Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, M5S 1M1 Ontario, Canada
- ML Group, Technische Universität Berlin and Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Department of Physics, University of Toronto, St. George Campus, Toronto, M5S 1A7 Ontario, Canada
| |
Collapse
|
3
|
Masoumifeshani E, Korona T. AROFRAG─A Systematic Approach for Fragmentation of Aromatic Molecules. J Chem Theory Comput 2024. [PMID: 38252847 DOI: 10.1021/acs.jctc.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We present a new systematic fragmentation scheme of polycyclic aromatic hydrocarbons (PAHs), including fullerenes and nanotubes, based on an idea to treat a sextet ring as a single unbreakable unit so that the basic unit of aromaticity remains preserved upon fragmentation. In the approach, denoted as AROFRAG (from aromatic fragmentation), a set of predefined elementary subsystems, such as naphthalene and biphenyl in the first model and larger PAHs in the second and third models, is generated with appropriate weights with the aim of reproducing the structure of the original molecule. The energies of the molecules are approximated as weighted sums of the energies of these subsystems. For symmetric cases, e.g., fullerenes, the point-group symmetry is preserved during the decomposition. The AROFRAG is used in conjunction with the molecule-in-molecule (MIM) technique to obtain an accurate description of the electronic energies. The new approach has been applied for selected graphene structures and fullerene doped with boron and nitrogen atoms, for which isomerization energies were calculated, as well as for several nanotubes and regular fullerene molecules. The combination of the third AROFRAG model and the MIM approach leads to the reproduction of electronic energies with a few milli-hartree accuracy at a fraction of the computational cost of the original method.
Collapse
Affiliation(s)
- Emran Masoumifeshani
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Lima Costa AH, Bezerra KS, de Lima Neto JX, Oliveira JIN, Galvão DS, Fulco UL. Deciphering Interactions between Potential Inhibitors and the Plasmodium falciparum DHODH Enzyme: A Computational Perspective. J Phys Chem B 2023; 127:9461-9475. [PMID: 37897437 DOI: 10.1021/acs.jpcb.3c05738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Malaria is a parasitic disease that, in its most severe form, can even lead to death. Insect-resistant vectors, insufficiently effective vaccines, and drugs that cannot stop parasitic infestations are making the fight against the disease increasingly difficult. It is known that the enzyme dihydroorotate dehydrogenase (DHODH) is of paramount importance for the synthesis of pyrimidine from the Plasmodium precursor, that is, for its growth and reproduction. Therefore, its blockade can lead to disruption of the parasite's life cycle in the vertebrate host. In this scenario, PfDHODH inhibitors have been considered candidates for a new therapy to stop the parasitic energy source. Given what is known, in this work, we applied molecular fractionation with conjugated caps (MFCC) in the framework of the quantum formalism of density functional theory (DFT) to evaluate the energies of the interactions between the enzyme and the different triazolopyrimidines (DSM483, DMS557, and DSM1), including a complex carrying the mutation C276F. From these results, it was possible to identify the main features of each system, focusing on the wild-type and mutant PfDHODH and examining the major amino acid residues that are part of the four complexes. Our analysis provides new information that can be used to develop new drugs that could prove to be more effective alternatives to present antimalarial drugs.
Collapse
Affiliation(s)
- Aranthya Hevelly Lima Costa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Katyanna Sales Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
- Applied Physics Department, University of Campinas, 130838-59 Campinas, São Paulo, Brazil
| | - José Xavier de Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| | - Douglas Soares Galvão
- Applied Physics Department, University of Campinas, 130838-59 Campinas, São Paulo, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
| |
Collapse
|
5
|
Fedorov DG. Site-Specific Ionization Potentials and Electron Affinities in Large Molecular Systems at Coupled Cluster Level. J Phys Chem A 2023; 127:9357-9364. [PMID: 37782030 DOI: 10.1021/acs.jpca.3c04847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A many-body expansion of ionization potentials and electron affinities is developed based on a combination of the fragment molecular orbital method and equation-of-motion coupled-cluster (EOM-CC). In addition to site-specific values, obtained as one-body properties, pair and triple corrections are added to account for nonlocal EOM-CC contributions of the molecular environment of a chromophore. The developed method is applied to carboxylic acids, alkyl cations, a protein ubiquitin (Protein Data Bank ID 1UBQ), and a nano ribbon of white graphene elucidating the effect of environment on ionization potential and electron affinity.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
6
|
Ma Y, Li Z, Chen X, Ding B, Li N, Lu T, Zhang B, Suo B, Jin Z. Machine-learning assisted scheduling optimization and its application in quantum chemical calculations. J Comput Chem 2023; 44:1174-1188. [PMID: 36648254 DOI: 10.1002/jcc.27075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Easy and effective usage of computational resources is crucial for scientific calculations, both from the perspectives of timeliness and economic efficiency. This work proposes a bi-level optimization framework to optimize the computational sequences. Machine-learning (ML) assisted static load-balancing, and different dynamic load-balancing algorithms can be integrated. Consequently, the computational and scheduling engine of the ParaEngine is developed to invoke optimized quantum chemical (QC) calculations. Illustrated benchmark calculations include high-throughput drug suit, solvent model, P38 protein, and SARS-CoV-2 systems. The results show that the usage rate of given computational resources for high throughput and large-scale fragmentation QC calculations can primarily profit, and faster accomplishing computational tasks can be expected when employing high-performance computing (HPC) clusters.
Collapse
Affiliation(s)
- Yingjin Ma
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - ZhiYing Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Xin Chen
- ShenZhen Bay Laboratory, Shenzhen, China
| | - Bowen Ding
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wen Zhou, China
| | - Teng Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zhang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - BingBing Suo
- Department of Physics, Northwest University, Xi'an, China
| | - Zhong Jin
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Sutikdja LW, Nguyen HVL, Jelisavac D, Stahl W, Mouhib H. Benchmarking quantum chemical methods for accurate gas-phase structure predictions of carbonyl compounds: the case of ethyl butyrate. Phys Chem Chem Phys 2023; 25:7688-7696. [PMID: 36857713 PMCID: PMC10015624 DOI: 10.1039/d2cp05774c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
High-resolution spectroscopy techniques play a pivotal role to validate and efficiently benchmark available methods from quantum chemistry. In this work, we analyzed the microwave spectrum of ethyl butyrate within the scope of a systematic investigation to benchmark state-of-the-art exchange-correlation functionals and ab initio methods, to accurately predict the lowest energy conformers of carbonyl compounds in their isolated state. Under experimental conditions, we observed two distinct conformers, one of Cs and one of C1 symmetry. As reported earlier in the cases of some ethyl and methyl alkynoates, structural optimizations of the most abundant conformer that exhibits a C1 symmetry proved extremely challenging for several quantum chemical levels. To probe the sensitivity of different methods and basis sets, we use the identified soft-degree of freedom in proximity to the carbonyl group as an order parameter. The results of our study provide useful insight for spectroscopists to select an adapted method for structure prediction of carbonyl compounds based on their available computational resources, suggesting a reasonable trade-off between accuracy and CPU cost. At the same time, our observations and the resulting sets of highly accurate experimental constants from high-resolution spectroscopy experiments give an appeal to theoretical groups to look further into this seemingly simple family of chemical compounds, which may prove useful for the further development and parametrization of theoretical methods in computational chemistry.
Collapse
Affiliation(s)
- Lilian W Sutikdja
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074, Aachen, Germany
| | - Ha Vinh Lam Nguyen
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France.
- Institut Universitaire de France (IUF), F-75231, Paris cedex 05, France
| | - Dragan Jelisavac
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074, Aachen, Germany
| | - Wolfgang Stahl
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074, Aachen, Germany
| | - Halima Mouhib
- Department of Computer Science, VU Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Hong B, Fang T, Li W, Li S. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. J Chem Phys 2023; 158:044117. [PMID: 36725497 DOI: 10.1063/5.0137072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The generalized energy-based fragmentation (GEBF) approach under periodic boundary conditions (PBCs) has been developed to facilitate calculations of molecular crystals containing large molecules. The PBC-GEBF approach can help predict structures and properties of molecular crystals at different theory levels by performing molecular quantum chemistry calculations on a series of non-periodic subsystems constructed from the studied systems. A more rigorous formula of the forces on translational vectors of molecular crystals was proposed and implemented, enabling more reliable predictions of crystal structures. Our benchmark results on several typical molecular crystals show that the PBC-GEBF approach could reproduce the forces on atoms and the translational vectors and the optimized crystal structures from the corresponding conventional periodic methods. The improved PBC-GEBF approach is then applied to predict the crystal structures and vibrational spectra of two molecular crystals containing large molecules. The PBC-GEBF approach can provide a satisfactory description on the crystal structure of a molecular crystal containing 312 atoms in a unit cell at density-fitting second-order Møller-Plesset perturbation theory and density functional theory (DFT) levels and the infrared vibrational spectra of another molecular crystal containing 864 atoms in a unit cell at the DFT level. The PBC-GEBF approach is expected to be a promising theoretical tool for electronic structure calculations on molecular crystals containing large molecules.
Collapse
Affiliation(s)
- Benkun Hong
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Tao Fang
- Genesys Microelectronics (Shanghai) Co., Ltd., 6th Floor, 11th Building, No. 3000 LongDong Road, Pu Dong District, Shanghai, People's Republic of China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
9
|
Liu J, He X. Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering East China Normal University Shanghai China
- New York University‐East China Normal University Center for Computational Chemistry New York University Shanghai Shanghai China
| |
Collapse
|
10
|
Hellmers J, Hedegård ED, König C. Fragmentation-Based Decomposition of a Metalloenzyme-Substrate Interaction: A Case Study for a Lytic Polysaccharide Monooxygenase. J Phys Chem B 2022; 126:5400-5412. [PMID: 35833656 DOI: 10.1021/acs.jpcb.2c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel decomposition scheme for electronic interaction energies based on the flexible formulation of fragmentation schemes through fragment combination ranges (FCRs; J. Chem. Phys., 2021, 155, 164105). We devise a clear additive decomposition with contribution of nondisjoint fragments and correction terms for overlapping fragments and apply this scheme to the metalloenzyme-substrate complex of a lytic polysaccharide monooxygenase (LPMO) with an oligosaccharide. By this, we further illustrate the straightforward adaptability of the FCR-based schemes to novel systems. Our calculations suggest that the description of the electronic structure is a larger error source than the fragmentation scheme. In particular, we find a large impact of the basis set size on the interaction energies. Still, the introduction of three-body interaction terms in the fragmentation setup improves the agreement to the supermolecular reference. Yet, the qualitative results for the decomposition scheme with two-body terms only largely agree within the investigated electronic-structure approaches and basis sets, which are B97-3c, DFT (TPSS and B3LYP), and MP2 methods. The overlap contributions are found to be small, allowing analysis of the interaction energy into individual amino acid residues: We find a particularly strong interaction between the substrate and the LPMO copper active site.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
11
|
Tzeli D, Xantheas SS. Breaking covalent bonds in the context of the many-body expansion (MBE). I. The purported "first row anomaly" in XH n (X = C, Si, Ge, Sn; n = 1-4). J Chem Phys 2022; 156:244303. [PMID: 35778077 DOI: 10.1063/5.0095329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new, novel implementation of the Many-Body Expansion (MBE) to account for the breaking of covalent bonds, thus extending the range of applications from its previous popular usage in the breaking of hydrogen bonds in clusters to molecules. A central concept of the new implementation is the in situ atomic electronic state of an atom in a molecule that casts the one-body term as the energy required to promote it to that state from its ground state. The rest of the terms correspond to the individual diatomic, triatomic, etc., fragments. Its application to the atomization energies of the XHn series, X = C, Si, Ge, Sn and n = 1-4, suggests that the (negative, stabilizing) 2-B is by far the largest term in the MBE with the higher order terms oscillating between positive and negative values and decreasing dramatically in size with increasing rank of the expansion. The analysis offers an alternative explanation for the purported "first row anomaly" in the incremental Hn-1X-H bond energies seen when these energies are evaluated with respect to the lowest energy among the states of the XHn molecules. Due to the "flipping" of the ground/first excited state between CH2 (3B1 ground state, 1A1 first excited state) and XH2, X = Si, Ge, Sn (1A1 ground state, 3B1 first excited state), the overall picture does not exhibit a "first row anomaly" when the incremental bond energies are evaluated with respect to the molecular states having the same in situ atomic states.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Mississippi K1-83, Richland, Washington 99352, USA
| |
Collapse
|
12
|
Liu J, Lan J, He X. Toward High-level Machine Learning Potential for Water Based on Quantum Fragmentation and Neural Networks. J Phys Chem A 2022; 126:3926-3936. [PMID: 35679610 DOI: 10.1021/acs.jpca.2c00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate and efficient simulation of liquids, such as water and salt solutions, using high-level wave function theories is still a formidable task for computational chemists owing to the high computational costs. In this study, we develop a deep machine learning potential based on fragment-based second-order Møller-Plesset perturbation theory (DP-MP2) for water through neural networks. We show that the DP-MP2 potential predicts the structural, dynamical, and thermodynamic properties of liquid water in better agreement with the experimental data than previous studies based on density functional theory (DFT). The nuclear quantum effects (NQEs) on the properties of liquid water are also examined, which are noticeable in affecting the structural and dynamical properties of liquid water under ambient conditions. This work provides a general framework for quantitative predictions of the properties of condensed-phase systems with the accuracy of high-level wave function theory while achieving significant computational savings compared to ab initio simulations.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinggang Lan
- Chaire de Simulation à l'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,New York University-East China Normal University Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
13
|
Du J, Ma Y, Ma J, Li S, Li W. Transition orbital projection approach for excited state tracking. J Chem Phys 2022; 156:214104. [DOI: 10.1063/5.0081207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantitively comparing the features between different electronic excited states (ESs) is a crucial task in both potential energy surface (PES) studies and excited-state fragmentation approaches. However, it is still a challenging problem in regard to the comparison of complex and highly degenerate systems. Herein, we present a transition orbital projection (TOP) method to calculate the similarity of different ESs based on the configuration vectors of two types of transition densities. It fully considers four significant problems, including phase, hole-particle bijectivity, orbital permutation, and sign of configuration coefficients. TOP state-tracking-based excited-state optimization shows high robustness in several high-symmetric systems, which are difficult to describe with traditional state-tracking approaches. The TOP state-tracking method is expected to be widely applied to the PES of photochemical reactions, ES molecular dynamics to track the diabatic states, and fragmentation approaches for local excitation of large systems.
Collapse
Affiliation(s)
- Jiahui Du
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yixuan Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
14
|
Fedorov DG. Polarization energies in the fragment molecular orbital method. J Comput Chem 2022; 43:1094-1103. [PMID: 35446441 DOI: 10.1002/jcc.26869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022]
Abstract
Using isolated and polarized states of fragments, a method for computing the polarization energies in density functional theory (DFT) and density-functional tight-binding (DFTB) is developed in the framework of the fragment molecular orbital method. For DFTB, the method is extended into the use of periodic boundary conditions (PBC), for which a new component, a periodic self-polarization energy, is derived. The couplings of the polarization to other components in the pair interaction energy analysis (PIEDA) are derived for DFT and DFTB, and compared to Hartree-Fock and second-order Møller-Plesset perturbation theory (MP2). The effect of the self-consistent (DFT) and perturbative (MP2) treatment of the electron correlation on the polarization is discussed. The difference in the polarization in the bulk (PBC) and micro (cluster) solvation is elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
15
|
Nakamura T, Fedorov DG. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. Phys Chem Chem Phys 2022; 24:7739-7747. [PMID: 35293902 DOI: 10.1039/d1cp05851g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adsorption and chemical reactions occurring on industrially important ZSM-5 and faujasite zeolite catalysts are investigated with the quantum-mechanical fragment molecular orbital method combined with periodic boundary conditions. Suitable fragmentation patterns are devised and tested providing important case studies of computing real materials with fragmentation methods. A good accuracy is demonstrated in comparison to full calculations, and a good agreement with the available experimental data is obtained. The full production cycle of p-xylene on faujasite zeolite is mapped. The catalytic role of the zeolite in the dehydration reaction, analyzed with the partition analysis, is attributed to the delocalization of the negative charge over the zeolite. On the other hand, an increase of the barrier in the Diels-Alder reaction by the zeolite is attributed to the preferential stabilization of the reactants over the transition state as demonstrated by the guest-zeolite interaction energy.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| |
Collapse
|
16
|
Fedorov DG, Nakamura T. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem Lett 2022; 13:1596-1601. [PMID: 35142207 DOI: 10.1021/acs.jpclett.2c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A decomposition of the free energy is developed in the many-body expansion framework of the fragment molecular orbital (FMO) method combined with umbrella sampling molecular dynamics (MD). In FMO/MD simulations, performed with density-functional tight-binding and periodic boundary conditions, all atoms are treated quantum mechanically. The free energy is computed and decomposed for a series of SN2 Menshutkin reactions in water. The barrier lowering by the solvent is attributed to the competition between the solvent polarization and the solute-solvent interactions including charge transfer.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
17
|
Nakamura T, Yokaichiya T, Fedorov DG. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method. J Phys Chem A 2022; 126:957-969. [PMID: 35080391 DOI: 10.1021/acs.jpca.1c10229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For gaining insights into interactions in periodic systems, an analysis is developed based on the fragment molecular orbital method combined with periodic boundary conditions. The adsorption energy is decomposed into guest and surface polarization and deformation energy, guest-surface and guest-guest interactions, and the vibrational free energy. The analysis is applied to the adsorption of guest molecules to Ih (001) ice surface. The cooperativity effects result in a non-linear change in the adsorption energy with coverage due to many-body effects. The role of dispersion is found to be dominant for guests with long hydrophobic tails. A rule is proposed relating the length of the alkyl tail with the formation of the guest layer. The computed binding enthalpies are in good agreement with experimental values. For high coverage, adsorbed molecules can form an ordered layer known as self-assembled monolayer.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Tomoko Yokaichiya
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
18
|
Shen C, Wang X, He X. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs. Front Chem 2022; 9:801062. [PMID: 35004616 PMCID: PMC8727457 DOI: 10.3389/fchem.2021.801062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Fluorescent RNA aptamers have been successfully applied to track and tag RNA in a biological system. However, it is still challenging to predict the excited-state properties of the RNA aptamer–fluorophore complex with the traditional electronic structure methods due to expensive computational costs. In this study, an accurate and efficient fragmentation quantum mechanical (QM) approach of the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) scheme was applied for calculations of excited-state properties of the RNA aptamer–fluorophore complex. In this method, the excited-state properties were first calculated with one-body fragment quantum mechanics/molecular mechanics (QM/MM) calculation (the excited-state properties of the fluorophore) and then corrected with a series of two-body fragment QM calculations for accounting for the QM effects from the RNA on the excited-state properties of the fluorophore. The performance of the EE-GMFCC on prediction of the absolute excitation energies, the corresponding transition electric dipole moment (TEDM), and atomic forces at both the TD-HF and TD-DFT levels was tested using the Mango-II RNA aptamer system as a model system. The results demonstrate that the calculated excited-state properties by EE-GMFCC are in excellent agreement with the traditional full-system time-dependent ab initio calculations. Moreover, the EE-GMFCC method is capable of providing an accurate prediction of the relative conformational excited-state energies for different configurations of the Mango-II RNA aptamer system extracted from the molecular dynamics (MD) simulations. The fragmentation method further provides a straightforward approach to decompose the excitation energy contribution per ribonucleotide around the fluorophore and then reveals the influence of the local chemical environment on the fluorophore. The applications of EE-GMFCC in calculations of excitation energies for other RNA aptamer–fluorophore complexes demonstrate that the EE-GMFCC method is a general approach for accurate and efficient calculations of excited-state properties of fluorescent RNAs.
Collapse
Affiliation(s)
- Chenfei Shen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| |
Collapse
|
19
|
Santos JLS, Bezerra KS, Barbosa ED, Pereira ACL, Meurer YSR, Oliveira JIN, Gavioli EC, Fulco UL. In silico analysis of energy interactions between nociceptin/orfanin FQ receptor and two antagonists with potential antidepressive action. NEW J CHEM 2022. [DOI: 10.1039/d2nj00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study addresses the binding energies of NOPR-ligand complexes and presents the main amino acid residues involved in the interaction between these complexes.
Collapse
Affiliation(s)
- J. L. S. Santos
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| | - K. S. Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| | - E. D. Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| | - A. C. L. Pereira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| | - Y. S. R. Meurer
- Departamento de Psicologia, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| | - E. C. Gavioli
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil
| |
Collapse
|
20
|
Barbosa ED, Lima Neto JX, Bezerra KS, Oliveira JIN, Machado LD, Fulco UL. Quantum Biochemical Investigation of Lys49-PLA 2 from Bothrops moojeni. J Phys Chem B 2021; 125:12972-12980. [PMID: 34793159 DOI: 10.1021/acs.jpcb.1c07298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Envenomation via snakebites occurs largely in areas where it is harder to access the hospital. Its mortality rate and sequelae acquired by the survivors symbolize a big challenge for antivenom therapy. In particular, the homologous phospholipase A2 (Lys49-PLA2) proteins can induce myonecrosis and are not effectively neutralized by current treatments. Thus, by taking advantage of crystallographic structures of Bothrops moojeni Lys49-PLA2 complexed with VRD (varespladib) and AIN (aspirin), a quantum biochemistry study based on the molecular fractionation with conjugate cap scheme within the density functional theory formalism is performed to unveil these complexes' detailed interaction energies. The calculations revealed that important interactions between ligands and the Lys49-PLA2 pocket could occur up to a pocket radius of r = 6.5 (5.0 Å) for VRD (AIN), with the total interaction energy of the VRD ligand being higher than that of the AIN ligand, which is well-correlated with the experimental binding affinity. Furthermore, we have identified the role played by the amino acids LYS0069, LYS0049, LEU0005, ILE0009, CYS0029, GLY0030, HIS0048, PRO0018, ALA0019, CYS0045, TYR0052, TYR0022, PRO0125*, and PHE0126* (LYS0069, LYS0049, GLY0032, LEU0002, and LEU0005) in the VRD↔Lys49-PLA2 (AIN↔Lys49-PLA2) complex. Our simulations are a valuable tool to support the big challenge for neutralizing the damages in victims of snakebites.
Collapse
Affiliation(s)
- E D Barbosa
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - K S Bezerra
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - J I N Oliveira
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - L D Machado
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, Rio Grande do Norte, Brazil
| |
Collapse
|
21
|
Liu J, He X. Ab initio molecular dynamics simulation of liquid water with fragment-based quantum mechanical approach under periodic boundary conditions. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
22
|
Hellmers J, König C. A unified and flexible formulation of molecular fragmentation schemes. J Chem Phys 2021; 155:164105. [PMID: 34717347 DOI: 10.1063/5.0059598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present a flexible formulation for energy-based molecular fragmentation schemes. This framework does not only incorporate the majority of existing fragmentation expansions but also allows for flexible formulation of novel schemes. We further illustrate its application in multi-level approaches and for electronic interaction energies. For the examples of small water clusters, a small protein, and protein-protein interaction energies, we show how this flexible setup can be exploited to generate a well-suited multi-level fragmentation expansion for the given case. With such a setup, we reproduce the electronic protein-protein interaction energy of ten different structures of a neurotensin and an extracellular loop of its receptor with a mean absolute deviation to the respective super-system calculations below 1 kJ/mol.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
23
|
Towards complete assignment of the infrared spectrum of the protonated water cluster H +(H 2O) 21. Nat Commun 2021; 12:6141. [PMID: 34686665 PMCID: PMC8536673 DOI: 10.1038/s41467-021-26284-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
The spectroscopic features of protonated water species in dilute acid solutions have been long sought after for understanding the microscopic behavior of the proton in water with gas-phase water clusters H+(H2O)n extensively studied as bottom-up model systems. We present a new protocol for the calculation of the infrared (IR) spectra of complex systems, which combines the fragment-based Coupled Cluster method and anharmonic vibrational quasi-degenerate perturbation theory, and demonstrate its accuracy towards the complete and accurate assignment of the IR spectrum of the H+(H2O)21 cluster. The site-specific IR spectral signatures reveal two distinct structures for the internal and surface four-coordinated water molecules, which are ice-like and liquid-like, respectively. The effect of inter-molecular interaction between water molecules is addressed, and the vibrational resonance is found between the O-H stretching fundamental and the bending overtone of the nearest neighboring water molecule. The revelation of the spectral signature of the excess proton offers deeper insight into the nature of charge accommodation in the extended hydrogen-bonding network underpinning this aqueous cluster. Protonated water species have been the subject of numerous experimental and computational studies. Here the authors provide a nearly complete assignment of the experimental IR spectrum of the H+(H2O)21 water cluster based on high-level wavefunction theory and anharmonic vibrational quasi-degenerate perturbation theory.
Collapse
|
24
|
Scholz L, Neugebauer J. Protein Response Effects on Cofactor Excitation Energies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory with Many-Body Expansion Techniques. J Chem Theory Comput 2021; 17:6105-6121. [PMID: 34524815 DOI: 10.1021/acs.jctc.1c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigate the possibility of describing protein response effects on a chromophore excitation by means of subsystem time-dependent density-functional theory (sTDDFT) in combination with a many-body expansion (MBE) approach. While sTDDFT is in principle intrinsically able to include such contributions, addressing cofactor excitations in protein models or entire proteins with full environment-response treatments is currently out of reach. Taking different model structures of the green fluorescent protein (GFP) and bovine rhodopsin as examples, we demonstrate that an embedded-MBE approach based on sTDDFT in its simplest version leads to a good agreement of the predicted protein response effect already at second order. To reproduce reference response effects from nonsubsystem TDDFT calculations quantitatively (error ≤ 5%), however, a third- or even fourth-order MBE may be required. For the latter case, we explore a selective inclusion of fourth-order terms that drastically reduces the computational burden. In addition, we demonstrate how this sTDDFT-MBE treatment can be utilized as an analysis tool to identify residues with dominant response contributions. This, in turn, can be employed to arrive at smaller structural models for light-absorbing proteins, which still feature all of the main characteristics in terms of photoresponse properties.
Collapse
Affiliation(s)
- Linus Scholz
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
25
|
Nakamura T, Yokaichiya T, Fedorov DG. Quantum-Mechanical Structure Optimization of Protein Crystals and Analysis of Interactions in Periodic Systems. J Phys Chem Lett 2021; 12:8757-8762. [PMID: 34478310 DOI: 10.1021/acs.jpclett.1c02510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fast quantum-mechanical approach, density-functional tight-binding combined with the fragment molecular orbital method and periodic boundary conditions, is used to optimize atomic coordinates and cell parameters for a set of protein crystals: 1ETL, 5OQZ, 3Q8J, 1CBN, and 2VB1. Good agreement between experimental and calculated structures is obtained for both atomic coordinates and cell parameters. Sterical clashes present in the experimental structures are corrected by simulations. The partition analysis is extended to treat periodic boundary conditions and applied to analyze protein-solvent interactions in crystals.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Tomoko Yokaichiya
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
26
|
Liao K, Wang S, Li W, Li S. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Phys Chem Chem Phys 2021; 23:19394-19401. [PMID: 34490874 DOI: 10.1039/d1cp02814f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A generalized energy-based fragmentation (GEBF) approach has been combined with a universal solvation model based on solute electron density (SMD) to compute the solvation energies of general large systems (such as protein molecules) in solutions. In the GEBF-SMD method, the solvation energy of a target system could be combined by the corresponding solvation energies of various subsystems, each of which is embedded in the background point charges and surface charges on the surface of solute cavity at the positions of its atoms and neighbouring atoms outside of the subsystem. Our results show that the GEBF-SMD model could reproduce the conventional SMD solvation energies quite well for various proteins in solutions, and could significantly reduce the computational costs for the SMD calculations of large proteins. In addition, the GEBF-SMD approach is almost independent of the basis sets and the types of solvents (including protic, polar, and nonpolar ones). Also, the GEBF-SMD approach could reproduce the relative energies of various conformers of large systems in solutions. Therefore, the GEBF-SMD method is expected to be applicable for computing the solvation energies of a broad range of large systems.
Collapse
Affiliation(s)
- Kang Liao
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shirong Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic, Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
27
|
Hisama K, Orimoto Y, Pomogaeva A, Nakatani K, Aoki Y. Ab initio multi-level layered elongation method and its application to local interaction analysis between DNA bulge and ligand molecules. J Chem Phys 2021; 155:044110. [PMID: 34340364 DOI: 10.1063/5.0050096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A multi-level layered elongation method was developed for efficiently analyzing the electronic states of local structures in large bio/nano-systems at the full ab initio level of theory. The original elongation method developed during the last three decades in our group has focused on the system in one direction from one terminal to the other terminal to sequentially construct the electronic states of a polymer, called a theoretical synthesis of polymers. In this study, an important region termed the central (C) part is targeted in a large polymer and the remainder are terminal (T) parts. The electronic structures along with polymer elongation are calculated repeatedly from both end T parts to the C central part at the same time. The important C part is treated with large basis sets (high level) and the other regions are treated with small basis sets (low level) in the ab initio theoretical framework. The electronic structures besides the C part can be reused for other systems with different structures at the C part, which renders the method computationally efficient. This multi-level layered elongation method was applied to the investigation on DNA single bulge recognition of small molecules (ligands). The reliability and validity of our approach were examined in comparison with the results obtained by direct calculations using a conventional quantum chemical method for the entire system. Furthermore, stabilization energies by the formation of the complex of bulge DNA and a ligand were estimated with basis set superposition error corrections incorporated into the elongation method.
Collapse
Affiliation(s)
- Keisuke Hisama
- Department of Interdisciplinary Engineering Sciences, Chemistry and Materials Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuuichi Orimoto
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Anna Pomogaeva
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuriko Aoki
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| |
Collapse
|
28
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
29
|
Shen C, Jin X, Glover WJ, He X. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules 2021; 26:4486. [PMID: 34361639 PMCID: PMC8347797 DOI: 10.3390/molecules26154486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.
Collapse
Affiliation(s)
- Chenfei Shen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
| | - William J. Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China;
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
30
|
Liu J, Liu Y, Yang J, Zeng XC, He X. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H 3O . J Phys Chem Lett 2021; 12:3379-3386. [PMID: 33784110 DOI: 10.1021/acs.jpclett.1c00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The reaction of Criegee intermediates with water vapor has been widely known as a key Criegee reaction in the troposphere. Herein, we investigated the reaction of the smallest Criegee intermediate, CH2OO, with a water cluster through fragment-based ab initio molecular dynamics simulations at the MP2/aug-cc-pVDZ level. Our results show that the CH2OO-water reaction could occur not only at the air/water interface but also inside the water cluster. Moreover, more than one reactive water molecules are required for the CH2OO-water reaction, which is always initiated from the Criegee carbon atom and ends at the terminal Criegee oxygen atom via a directional proton transfer process. The observed reaction pathways include the loop-structure-mediated and stepwise mechanisms, and the latter involves the formation of transient H3O+. The lifetime of transient H3O+ is on the order of a few picoseconds, which may impact the atmospheric budget of the other trace gases in the actual atmosphere.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yanqing Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU, Shanghai, Shanghai, 200062, China
| |
Collapse
|
31
|
Nguyen ALP, Mason TG, Freeman BD, Izgorodina EI. Prediction of lattice energy of benzene crystals: A robust theoretical approach. J Comput Chem 2021; 42:248-260. [PMID: 33231872 DOI: 10.1002/jcc.26452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
We present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJ⋅mol-1 . Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two- and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å. Adding the corrections to account for a higher correlated level of theory and basis set superposition for the Hartree Fock (HF) level produced a lattice energy of -57.5 kJ⋅mol-1 for the benzene crystal structure at 138 K. This estimate is within 1.6 kJ⋅mol-1 off the best theoretical prediction of -55.9 kJ⋅mol-1 . We applied this approach to calculate lattice energies of the crystal structures of phase I and phase II-polymorphs of benzene-observed at a higher temperature of 295 K. The stability of these polymorphs was correctly predicted, with phase II being energetically preferred by 3.7 kJ⋅mol-1 over phase I. The proposed approach gives a tremendous potential to predict stability of other molecular crystal polymorphs.
Collapse
Affiliation(s)
- Anh L P Nguyen
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Thomas G Mason
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Benny D Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
32
|
Silva SRB, de Lima Neto JX, Fuzo CA, Fulco UL, Vieira DS. A quantum biochemistry investigation of the protein-protein interactions for the description of allosteric modulation on biomass-degrading chimera. Phys Chem Chem Phys 2020; 22:25936-25948. [PMID: 33164009 DOI: 10.1039/d0cp04415f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The worldwide dependence of population on fossil fuels continues to have several harmful implications for the environment. Bioethanol is an excellent option for renewable fuel to replace the current greenhouse gas emitters. In addition, its production by enzymatic route has gained space among the industrial processes because it replaces the traditional acid treatment. Due to its high versatility, the xylanase family is used in this process as an accessory enzyme for degrading the lignocellulosic substrate of biomass. A chimera built by a xylanolytic domain (Xyl) and a xylose-binding protein (XBP) showed an experimentally improved catalytic efficiency and interdomain allosteric modulation after xylose binding. In this context, we performed a quantum biochemistry characterization of the interactions between these domains and dynamic cross-correlation (DCC) analysis after performing molecular dynamics (DM) simulations of the systems in the presence and absence of xylose in the XBP active site. We used the density functional theory (DFT) within the molecular fractionation with the conjugated caps (MFCC) approach to describe the pair energies, and the corresponding energy difference between the chimera domains responsible for the allosteric effect and amino acid DCC to evaluate the interdomain coupling differences between the energy states. The detailed energetic investigation together with the related structural and dynamics counterparts revealed the molecular mechanisms of chimeric improvement of the xylanase activity observed experimentally. This mechanism was correlated with greater stability and high connectivity at the interdomain interface in the xylose bound relative to the free chimera. We identify the contributions of hydrogen bonds, hydrophobic interactions and water-mediated interactions in the interdomain region responsible for stability together with the structural and dynamical elements related to the allosteric effect. Taken together, these observations led to a comprehensive understanding of the chimera's modulatory action that occurs through the formation of a highly connected interface that makes the essential movements related to xylanolytic activity in xylanase correlated to those of the xylose-binding protein.
Collapse
|
33
|
Campos DMO, Bezerra KS, Esmaile SC, Fulco UL, Albuquerque EL, Oliveira JIN. Intermolecular interactions of cn-716 and acyl-KR-aldehyde dipeptide inhibitors against Zika virus. Phys Chem Chem Phys 2020; 22:15683-15695. [DOI: 10.1039/d0cp02254c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Structural representation and graphic panel showing the most relevant residues that contribute to the ZIKV NS2B–NS3–ligand complexes.
Collapse
Affiliation(s)
- Daniel M. O. Campos
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Stephany C. Esmaile
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|